JP3703591B2 - Optoelectronic device - Google Patents

Optoelectronic device Download PDF

Info

Publication number
JP3703591B2
JP3703591B2 JP1821097A JP1821097A JP3703591B2 JP 3703591 B2 JP3703591 B2 JP 3703591B2 JP 1821097 A JP1821097 A JP 1821097A JP 1821097 A JP1821097 A JP 1821097A JP 3703591 B2 JP3703591 B2 JP 3703591B2
Authority
JP
Japan
Prior art keywords
emitting diode
weight
light
epoxy resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1821097A
Other languages
Japanese (ja)
Other versions
JPH10215004A (en
Inventor
幸一 竹迫
俊秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP1821097A priority Critical patent/JP3703591B2/en
Publication of JPH10215004A publication Critical patent/JPH10215004A/en
Application granted granted Critical
Publication of JP3703591B2 publication Critical patent/JP3703591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特にファクシミリ、ワードプロセッサ、複写機の画像読み取り用イメージスキャナおよび表示装置等で使用される発光装置または受光装置に適用される光電子装置に関するものである。
【0002】
【従来の技術】
近年、画像読み取り用光源がファクシミリ、ワードプロセッサあるいは複写機のイメージスキャナ部等においてイメージセンサで画像情報を読む際に、読み取りたい原稿に光を照射するための光源として使用されている。またこの種の装置の光源として発光ダイオード光源が使用されている。
【0003】
以下に従来の画像読み取り用光源の一例として、発光ダイオード光源について図4〜図6を参照して説明する。図4はこの発光ダイオード光源を使用した密着型イメージスキャナ部の要部断面図である。この密着型イメージスキャナ部は発光ダイオード光源1、原稿2、セルフォックレンズアレイ4、およびイメージセンサ5で構成されている。3は光軸である。この密着型イメージスキャナ部において原稿2上の読み取りラインに沿って発光ダイオード光源1から光が照射され原稿2からの反射光がセルフォックレンズアレイ4で集束されて同一直線上に配置されたイメージセンサ5へ導かれる。イメージセンサ5で受光されその微小画素に分解された画像情報が各画素濃度に対する電気信号として取り出される。
【0004】
図5および図6はこの密着型イメージスキャナ部に用いられる発光ダイオード光源1を示す。図5はその斜視図、図6は図4のY−Y線に沿った断面図である。この発光ダイオード光源1は所定のパターンの導電体が形成されたプリント配線基板10、発光ダイオードチップ11、金属細線12、その樹脂封止体13および電流制限用抵抗体19で構成される。プリント配線基板10上の導電体14の所定箇所に発光ダイオードチップ11を取り付け金属細線12で電気的接続を行い、かつプリント配線基板10上に透明樹脂封止体13で封止されている。電流制限用抵抗体19は発光ダイオードチップ11への供給電流を所定の値に制御するもので図5に示すように発光ダイオードチップ11群に対応させてプリント配線基板10上に取り付けられその導電体に接続されている。
【0005】
【発明が解決しようとする課題】
上述のような従来の発光ダイオード光源1に対して、市場では低価格化が求められるとともに、セットへの組み込み時等に、取り扱いに制約が少なく扱い易いものが求められている。そのため樹脂封止材料として発光ダイオードチップ11からの光を効率よく取り出し、発光ダイオードチップ11の数を最小限に押さえられるように透光性のよいものが求められている。
【0006】
また、発光ダイオード光源1をセットへ取り付ける時、あるいは取り付け不具合によりセットから発光ダイオード光源1を取り外す時のプリント配線基板10の屈曲、または製品の輸送、使用環境下における温度変化によるプリント配線基板10と樹脂封止体13の膨張収縮率差による剥離等に耐え得るよう柔軟性を有するシリコーン樹脂を採用しているのが一般的である。
【0007】
しかし、シリコーン樹脂は樹脂硬度が低いため、発光ダイオード光源1を製造する際の製造工程の作業者による樹脂封止体13への押圧、あるいはセットへの組み込み時の樹脂封止体13への押圧等の外圧により発光ダイオードチップ11や金属細線12が変形・破壊されてしまうという欠点があった。
そのため発光ダイオード光源1の組み立て工程においても常に外圧が加わらないように管理する必要があり、組み立て工数のアップにつながっている。さらにシリコーン樹脂は他物質との接着力が弱く、プリント配線基板10との剥離により発光ダイオードチップ11や金属細線12が破壊されるという不具合が発生する。また、シリコーン樹脂は価格的にも高価で実用的でないという欠点も有している。
【0008】
シリコーン樹脂の代わりにエポキシ樹脂の採用も考えられるが、一般的な酸無水物系やアミン系エポキシ樹脂では硬度が高く柔軟性がないため、プリント配線基板10の屈曲や膨張収縮差により樹脂の破壊・剥離が発生し、結果として発光ダイオードチップ11や金属細線12を破壊してしまうという不具合が発生している。また、エポキシ樹脂は2液混合タイプが一般的であり、時間の経過とともに粘度が変化するため短時間に使用する必要があり、工程構成上での課題があると同時に、粘度が上がり封止作業が困難となってしまったものについては廃棄せざるを得ないため材料のロスも大きくなってしまう。さらには、酸無水物硬化剤はエポキシ樹脂と1当量で配合し、熱硬化しても微量の未反応の硬化剤が残留するため発光ダイオードチップ11を高温高湿環境下で通電させると外部から浸入した水分は未反応硬化剤を抽出しながら発光ダイオードチップ11へ到達する。この未反応の硬化剤を含んだ水分は強酸性を示すことから高温高湿環境下での発光ダイオードチップ11のP側電極の電極腐食を促進してしまい、電極部の腐食破壊による断線が発生してしまう。また、アミン系エポキシ樹脂は使用環境下において樹脂が変色して、発光ダイオードチップ11からの光が効率よく取り出せないという課題を有していた。
【0009】
この発明は、上記課題を解決するもので、外圧による発光ダイオードチップや金属細線の変形・破壊に強く、またプリント配線基板の屈曲・膨張収縮差による封止樹脂の破壊・剥離に強く、さらには電極の腐食防止に対しても有効で、組み立て容易で低価格な光電子装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の光電子装置は、基板と、この基板上に取り付け接続されて受光または発光する素子と、この素子を前記基板上で封止した透光性の樹脂封止体とを備え、前記樹脂封止体はカチオン重合系硬化触媒を用いたエポキシ樹脂であり、前記エポキシ樹脂が、ビスフェノールA型、ビスフェノールF型、脂環式エポキシの単独もしくはこの組み合わせの第一のエポキシ樹脂100重量部に対し、第二のエポキシ樹脂であるポリプロピレングリコールジグリシジルエーテル1〜10重量部、平均粒径5〜50nmのシリカ2〜10重量部、トリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を1〜10重量部含有したものであることを特徴とするものである。
【0011】
請求項1記載の光電子装置によれば、外圧、屈曲、膨張および収縮さらには電極腐食に対して強くなるので、外圧による発光ダイオードチップおよび金属細線の変形や破壊を防止でき、プリント配線基板の屈曲ならびに膨張や収縮の差による封止樹脂の破壊および剥離を防止でき、しかも電極腐食に対して信頼性の向上が実現できる。さらには組み立てが容易で低価格化への対応できる製品を提供することが可能となる。
【0016】
お、エポキシ樹脂100重量部および硬化剤3重量部に対して、第二のエポキシ樹脂が0重量部でかつシリカが2重量部のとき断線し、また第二のエポキシ樹脂およびシリカが12重量部のとき樹脂剥離が生じる。またエポキシ樹脂100重量部、ポリプロピレングリコールジグリシジルエーテルが4重量部およびシリカが6重量部において、硬化剤が0.5重量部のとき硬化不十分であり、硬化剤が11重量部のとき断線する。
【0020】
【発明の実施の形態】
この発明の一実施の形態の光電子装置である発光ダイオード光源における構造について図1および図2を参照しながら説明する。図1はこの実施の形態の斜視図、図2は図1のX−X線に沿った断面図である。図1および図2において、21はプリント配線基板、22は発光ダイオードチップ、23は金属細線、24は透明樹脂封止体、25は所定のパターンに形成された導電体、26は電流制限用抵抗体で発光ダイオードチツプ22への電流を所定の値に保持するためのものである。プリント配線基板21は定尺シートをワークサイズに切断し、コストダウンのために多数個取りの構成としてそれぞれの配線回路パターンの導電体25を同時に形成し、最後に所定の寸法に分割したものである。発光ダイオードチップ22は各導電体25の所定箇所に図1に示すように直線上に取り付けられることでその一方の電極が接続され、他方の電極は他の導電体25′の所定箇所に金属細線23で接続されている。発光ダイオードチップ22とこの発光ダイオードチップ22が電気的に接続された導電体25および金属細線23とは、プリント配線基板21の主面上で透明樹脂封止体24によって封止・保護されている。透明樹脂封止体24は図1に示すようにプリント配線基板21の屈曲に対してより強くなるように形状を従来の一体物から略半球状とし、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を採用している。そして、プリント配線基板21の主面上で発光ダイオードチップ22、および発光ダイオードチップ22を電気的に接続する金属細線23をその粘性流動を阻止した状態で封止・硬化させたものである。透明樹脂材料はプリント配線基板21の屈曲・膨張収縮に耐えるとともに粘性流動を阻止した状態で所定の形状に封止・硬化できるチクソトロピック性の高いものであることが望ましい。このため、充填剤としてシリカを含有するのが好ましい。
【0021】
【表1】

Figure 0003703591
【0022】
発明者は、表1に示す通り第一のエポキシ樹脂100重量部に対し第二のエポキシ樹脂であるポリプロピレングリコールジグリシジルエーテルの配合比を変化させて、プレッシャークッカーバイアス試験(条件Ta=121℃、2気圧、定格電圧通電、48時間)を行った。なお、シリカについては、平均粒径5〜50nmのものを使用し、封止形状を維持できる量を添加した。硬化剤については有機溶媒に溶解したトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を3重量部配合した。
【0023】
表1から明らかなように、第一のエポキシ樹脂とポリプロピレングリコールジグリシジルエーテルの配合比はエポキシ樹脂100重量部に対しポリプロピレングリコールジグリシジルエーテルは1〜10重量部が適切であり、さらに発光ダイオードチップ22および金属細線23を封止できる樹脂高さを有するチクソトロピック性を確保するためには平均粒径5〜50nmのシリカを2〜10重量部添加することが必要であった。また調合後のエポキシ樹脂粘度は5000〜30000cpsであった。
【0024】
なお、エポキシ樹脂はビスフェノールA型、ビスフェノールF型、脂環式エポキシの単独もしくはこの組み合わせによる確認を行ったがいずれも同様の結果が得られた。
【0025】
【表2】
Figure 0003703591
【0026】
次に、硬化剤の配合比を確認するため表2に示す通り有機溶媒に溶解したトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤の配合比を変化させて、プレッシャークッカーバイアス試験(条件Ta=121℃、2気圧、定格電圧通電、48時間)を行ったところ表2の結果を得た。なお、その他の配合はエポキシ樹脂100重量部、ポリプロピレングリコールジグリシジルエーテル4重量部、シリカは平均粒径5〜50nmのものを6重量部とした。
【0027】
表2から明らかなように、有機溶媒に溶解したトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤の配合比は1〜10重量部が適切である。なお、トリアリールスルホニウムヘキサフルオロアンティモネート塩を溶解する溶媒は特に特性に関与しないことを確認した。
【0028】
【表3】
Figure 0003703591
【0029】
この実施の形態のカチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を使用した、エポキシ樹脂封止体24を採用した発光ダイオード光源1を作成して、外圧による破壊試験を行ったところ、表3に示す通りの結果が得られた。なお、従来のシリコーン樹脂を採用した発光ダイオード光源の評価結果も併せて示す。
【0030】
表3から明らかなように、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を使用したエポキシ樹脂封止体24を採用した本発明品は、従来品に比べ外圧に対して顕著な効果が得られた。
【0031】
【表4】
Figure 0003703591
【0032】
また、各使用環境下におけるプリント配線基板21の屈曲に対する樹脂封止体24の破壊試験を行った。なお、酸無水物系のエポキシ樹脂を採用した発光ダイオード光源の評価結果も併せて示す。
表4から明らかなように、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を使用したエポキシ樹脂封止体24を採用した本発明品は、従来品に比べ低・高温域において安定した特性を有する。
【0033】
この評価結果は、柔軟性を持たせるためのポリプロピレングリコールジグリシジルエーテル等の長鎖系の成分を配合することにより、ガラス転移温度が低下して可塑化し、外部応力に対する強度が高くなることによる。
【0034】
【表5】
Figure 0003703591
【0035】
つぎに寿命確認を行ったところ表5に示す通りの結果が得られた。なお、従来の酸無水物系のエポキシ樹脂を採用した発光ダイオード光源の評価結果も併せて示す。
表5から明らかなように、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を使用したエポキシ樹脂封止体を採用した本発明品は、従来品に比べ全ての寿命試験項目に対して安定した特性を有する。
【0036】
一般的に発光ダイオードチップ封止樹脂材料として使用される酸無水物硬化剤はエポキシ樹脂と1当量で配合し、加熱硬化しても微量の未反応の硬化剤が残留する。こうした状況において発光ダイオードチップを高温高湿環境下で通電すると外部からの水分は未反応硬化剤を抽出しながら発光ダイオードチップへ到達する。この未反応硬化剤を含んだ水分は強酸性を示すことから高温高湿環境下での発光ダイオードチップのP側電極の電気的腐食を促進し、断線に至ってしまう。
【0037】
この実施の形態によれば、硬化系は酸無水物硬化剤を使用しておらず、未反応硬化剤に起因する電極腐食は発生しない。また、各発光ダイオードチップ22および金属細線23の樹脂封止体24としてポリプロピレングリコールジグリシジルエーテル、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を使用したエポキシ樹脂封止体を採用することで、外圧による発光ダイオードチップ22および金属細線23の変形や破壊、プリント配線基板21の屈曲や膨張および収縮の差による封止樹脂の破壊および剥離がなく、組み立てが容易で低価格化への対応が可能な製品を提供することが可能となった。
【0038】
さらに、カチオン重合系硬化触媒であるトリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤は活性化温度が高く、この硬化剤を使用したエポキシ樹脂は90℃までは硬化反応が進まないため樹脂の一液化が可能であり、そのため組み立て工程の短縮化および工数削減が可能となり、さらなる価格低減が実現できる。
【0039】
なお、以上の説明では発光ダイオードチップ22を直線的に配置し、取り付けるよう構成した例で説明したが、図3に示すように発光ダイオードチップ2を封止した半球状の透明の樹脂封止体24をマトリクス的に配置した表示装置についても、同様に実施可能である。また発光素子を発光ダイオードで構成した例で説明したが、レーザやEL等の他の発光素子についても同様に実施可能である。そして受光装置についても実施可能である。
【0040】
【発明の効果】
請求項1記載の光電子装置によれば、外圧、屈曲、膨張および収縮さらには電極腐食に対して強くなるので、外圧による発光ダイオードチップおよび金属細線の変形や破壊を防止でき、プリント配線基板の屈曲ならびに膨張や収縮の差による封止樹脂の破壊および剥離を防止でき、しかも電極腐食に対して信頼性の向上が実現できる。さらには組み立てが容易で低価格化への対応できる製品を提供することが可能となる。
【図面の簡単な説明】
【図1】この発明の一実施の形態である発光ダイオード光源の斜視図である。
【図2】図1のX−X線に沿った断面図である。
【図3】この発明の他の実施の形態である表示装置の斜視図である。
【図4】従来のイメージスキャナの一例を示す断面図である。
【図5】その発光ダイオード光源の斜視図である。
【図6】そのY−Y線に沿った断面図である。
【符号の説明】
21 プリント配線基板
22 発光ダイオードチップ
23 金属細線
24 樹脂封止体
25 導電体
26 電流制限用抵抗体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optoelectronic device applied to a light emitting device or a light receiving device used in a facsimile, a word processor, an image scanner for reading an image of a copying machine, and a display device.
[0002]
[Prior art]
In recent years, a light source for image reading has been used as a light source for irradiating light on a document to be read when reading image information with an image sensor in a facsimile, word processor, or image scanner unit of a copying machine. In addition, a light emitting diode light source is used as a light source of this type of apparatus.
[0003]
A light-emitting diode light source will be described below with reference to FIGS. 4 to 6 as an example of a conventional image reading light source. FIG. 4 is a cross-sectional view of the main part of a contact image scanner unit using this light emitting diode light source. The contact image scanner unit includes a light emitting diode light source 1, a document 2, a selfoc lens array 4, and an image sensor 5. 3 is an optical axis. In this close contact type image scanner unit, an image sensor which is irradiated with light from the light emitting diode light source 1 along a reading line on the document 2 and reflected light from the document 2 is converged by the Selfoc lens array 4 and arranged on the same straight line. Guided to 5. Image information received by the image sensor 5 and decomposed into minute pixels is taken out as an electrical signal for each pixel density.
[0004]
5 and 6 show the light-emitting diode light source 1 used in the contact image scanner unit. 5 is a perspective view thereof, and FIG. 6 is a cross-sectional view taken along line YY of FIG. The light emitting diode light source 1 includes a printed wiring board 10 on which a conductor having a predetermined pattern is formed, a light emitting diode chip 11, a metal thin wire 12, a resin sealing body 13 thereof, and a current limiting resistor 19. A light emitting diode chip 11 is attached to a predetermined portion of the conductor 14 on the printed wiring board 10 and is electrically connected with a fine metal wire 12, and is sealed on the printed wiring board 10 with a transparent resin sealing body 13. The current limiting resistor 19 controls the current supplied to the light emitting diode chip 11 to a predetermined value. As shown in FIG. 5, the current limiting resistor 19 is mounted on the printed wiring board 10 corresponding to the group of light emitting diode chips 11 and its conductor. It is connected to the.
[0005]
[Problems to be solved by the invention]
The conventional light-emitting diode light source 1 as described above is required to be reduced in price in the market and easy to handle with few restrictions on handling when assembled in a set. Therefore, there is a demand for a resin-encapsulating material having good translucency so that light from the light-emitting diode chips 11 can be efficiently extracted and the number of light-emitting diode chips 11 can be minimized.
[0006]
Further, when the light emitting diode light source 1 is attached to the set, or when the light emitting diode light source 1 is removed from the set due to a mounting failure, the printed wiring board 10 is bent, or the product is transported, and the printed wiring board 10 is caused by temperature changes in the usage environment. In general, a silicone resin having flexibility is used so that it can withstand peeling due to a difference in expansion and contraction rate of the resin sealing body 13.
[0007]
However, since the resin hardness of the silicone resin is low, the operator presses the resin sealing body 13 during the manufacturing process when manufacturing the light-emitting diode light source 1 or the resin sealing body 13 when being assembled into a set. There is a drawback that the light emitting diode chip 11 and the thin metal wire 12 are deformed and destroyed by the external pressure such as.
Therefore, it is necessary to always manage the external light pressure in the assembly process of the light-emitting diode light source 1, which leads to an increase in the number of assembly steps. In addition, the silicone resin has a weak adhesive force with other substances, and the light emitting diode chip 11 and the fine metal wire 12 are broken due to peeling from the printed wiring board 10. Silicone resins also have the disadvantage that they are expensive and not practical.
[0008]
Epoxy resin can be used instead of silicone resin, but general acid anhydride and amine epoxy resins have high hardness and are not flexible. -Peeling occurs, resulting in a problem that the light-emitting diode chip 11 and the thin metal wire 12 are destroyed. Also, epoxy resin is generally a two-component mixed type, and the viscosity changes with time, so it needs to be used in a short time. However, materials that have become difficult to be disposed of must be discarded, resulting in a large material loss. Furthermore, the acid anhydride curing agent is blended with 1 equivalent of the epoxy resin, and a small amount of unreacted curing agent remains even after heat curing, so that when the light emitting diode chip 11 is energized in a high temperature and high humidity environment, it will be externally applied. The infiltrated moisture reaches the light emitting diode chip 11 while extracting the unreacted curing agent. Since the moisture containing the unreacted curing agent is strongly acidic, it promotes electrode corrosion of the P-side electrode of the light-emitting diode chip 11 in a high-temperature and high-humidity environment, and disconnection due to corrosion destruction of the electrode portion occurs. Resulting in. In addition, the amine-based epoxy resin has a problem that the resin is discolored in a use environment and light from the light-emitting diode chip 11 cannot be efficiently extracted.
[0009]
The present invention solves the above-mentioned problems, and is resistant to deformation / destruction of light-emitting diode chips and fine metal wires due to external pressure, and strong against destruction / separation of sealing resin due to bending / expansion / contraction difference of the printed wiring board. An object of the present invention is to provide an optoelectronic device that is effective in preventing corrosion of electrodes, is easy to assemble, and is inexpensive.
[0010]
[Means for Solving the Problems]
The optoelectronic device according to claim 1 includes a substrate, an element that is attached and connected to the substrate to receive or emit light, and a translucent resin sealing body that seals the element on the substrate, resin sealing body Ri epoxy resin der using cationic polymerization curing catalyst, wherein the epoxy resin is a bisphenol a type, bisphenol F type, single cycloaliphatic epoxy or the first epoxy resin 100 parts by weight of the combination In contrast, 1 to 10 parts by weight of polypropylene glycol diglycidyl ether as the second epoxy resin, 2 to 10 parts by weight of silica having an average particle diameter of 5 to 50 nm, and 1 to 3 triarylsulfonium hexafluoroantimonate salt-based curing agent. It is characterized by containing 10 parts by weight .
[0011]
According to the optoelectronic device of the first aspect, since it is strong against external pressure, bending, expansion and contraction and electrode corrosion, it is possible to prevent deformation and destruction of the light-emitting diode chip and the metal thin wire due to external pressure, and bending of the printed wiring board. In addition, it is possible to prevent the sealing resin from being broken and peeled off due to differences in expansion and contraction, and to improve reliability against electrode corrosion. Furthermore, it is possible to provide a product that can be easily assembled and can cope with a reduction in price.
[0016]
Na us, with respect to 100 parts by weight of the epoxy resin and curing agent 3 parts by weight, the second epoxy resin is 0 part by weight and and silica disconnected when 2 parts by weight, and a second epoxy resin and silica 12 wt When it is a part, resin peeling occurs. Further, when 100 parts by weight of epoxy resin, 4 parts by weight of polypropylene glycol diglycidyl ether and 6 parts by weight of silica are used, curing is insufficient when the curing agent is 0.5 part by weight, and disconnection occurs when the curing agent is 11 parts by weight. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A structure of a light-emitting diode light source that is an optoelectronic device according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of this embodiment, and FIG. 2 is a cross-sectional view taken along line XX of FIG. 1 and 2, 21 is a printed wiring board, 22 is a light emitting diode chip, 23 is a thin metal wire, 24 is a transparent resin encapsulant, 25 is a conductor formed in a predetermined pattern, and 26 is a current limiting resistor. This is to keep the current to the light emitting diode chip 22 at a predetermined value. The printed wiring board 21 is obtained by cutting a standard sheet into a work size, forming conductors 25 of each wiring circuit pattern at the same time as a multi-piece construction for cost reduction, and finally dividing it into predetermined dimensions. is there. As shown in FIG. 1, the light emitting diode chip 22 is attached to a predetermined portion of each conductor 25 in a straight line so that one electrode thereof is connected, and the other electrode is connected to a predetermined portion of the other conductor 25 'by a thin metal wire. 23. The light emitting diode chip 22, the conductor 25 and the thin metal wire 23 to which the light emitting diode chip 22 is electrically connected are sealed and protected by the transparent resin sealing body 24 on the main surface of the printed wiring board 21. . As shown in FIG. 1, the transparent resin encapsulant 24 has a shape that is substantially hemispherical from a conventional monolith so as to be stronger against bending of the printed wiring board 21, and is a triarylsulfonium hexacation that is a cationic polymerization curing catalyst. Fluoroantimonate salt curing agent is used. The light emitting diode chip 22 and the fine metal wires 23 that electrically connect the light emitting diode chip 22 are sealed and cured on the main surface of the printed wiring board 21 in a state where the viscous flow is prevented. It is desirable that the transparent resin material has a high thixotropic property that can withstand bending, expansion and contraction of the printed wiring board 21 and can be sealed and cured into a predetermined shape in a state in which viscous flow is prevented. For this reason, it is preferable to contain silica as a filler.
[0021]
[Table 1]
Figure 0003703591
[0022]
As shown in Table 1, the inventor changed the compounding ratio of polypropylene glycol diglycidyl ether, which is the second epoxy resin, with respect to 100 parts by weight of the first epoxy resin, and a pressure cooker bias test (condition Ta = 121 ° C., 2 atm, rated voltage energization, 48 hours). In addition, about the silica, the thing with an average particle diameter of 5-50 nm was used, and the quantity which can maintain a sealing shape was added. As for the curing agent, 3 parts by weight of a triarylsulfonium hexafluoroantimonate salt-based curing agent dissolved in an organic solvent was blended.
[0023]
As is apparent from Table 1, the mixing ratio of the first epoxy resin and the polypropylene glycol diglycidyl ether is suitably 1 to 10 parts by weight of the polypropylene glycol diglycidyl ether with respect to 100 parts by weight of the epoxy resin, and the light emitting diode chip. In order to secure thixotropic property having a resin height capable of sealing 22 and the fine metal wires 23, it was necessary to add 2 to 10 parts by weight of silica having an average particle diameter of 5 to 50 nm. Moreover, the epoxy resin viscosity after preparation was 5000 to 30000 cps.
[0024]
In addition, although the epoxy resin was confirmed by bisphenol A type, bisphenol F type, and alicyclic epoxy alone or in combination, the same result was obtained.
[0025]
[Table 2]
Figure 0003703591
[0026]
Next, in order to confirm the blending ratio of the curing agent, as shown in Table 2, the blending ratio of the triarylsulfonium hexafluoroantimonate salt-based curing agent dissolved in the organic solvent was changed, and the pressure cooker bias test (condition Ta = 121 ° C., 2 atm, rated voltage energization, 48 hours), the results shown in Table 2 were obtained. Other blends were 100 parts by weight of epoxy resin, 4 parts by weight of polypropylene glycol diglycidyl ether, and 6 parts by weight of silica having an average particle size of 5 to 50 nm.
[0027]
As is apparent from Table 2, the mixing ratio of the triarylsulfonium hexafluoroantimonate salt-based curing agent dissolved in the organic solvent is suitably 1 to 10 parts by weight. In addition, it confirmed that the solvent which melt | dissolves a triarylsulfonium hexafluoroantimonate salt did not participate in a characteristic in particular.
[0028]
[Table 3]
Figure 0003703591
[0029]
A light-emitting diode light source 1 using an epoxy resin encapsulant 24 using a triarylsulfonium hexafluoroantimonate salt-based curing agent, which is a cationic polymerization curing catalyst of this embodiment, is prepared and subjected to a destructive test by external pressure. As a result, results as shown in Table 3 were obtained. In addition, the evaluation result of the light emitting diode light source which employ | adopted the conventional silicone resin is also shown collectively.
[0030]
As is apparent from Table 3, the product of the present invention employing the epoxy resin encapsulant 24 using the triarylsulfonium hexafluoroantimonate salt curing agent, which is a cationic polymerization curing catalyst, has an external pressure higher than that of the conventional product. A remarkable effect was obtained.
[0031]
[Table 4]
Figure 0003703591
[0032]
Moreover, the destructive test of the resin sealing body 24 with respect to the bending of the printed wiring board 21 in each use environment was done. In addition, the evaluation result of the light emitting diode light source which employ | adopted the acid anhydride type epoxy resin is also shown collectively.
As is apparent from Table 4, the product of the present invention employing the epoxy resin encapsulant 24 using the triarylsulfonium hexafluoroantimonate salt curing agent, which is a cationic polymerization curing catalyst, is lower in comparison with the conventional product. Stable characteristics at high temperatures.
[0033]
This evaluation result is due to the fact that by blending a long-chain component such as polypropylene glycol diglycidyl ether for imparting flexibility, the glass transition temperature is lowered and plasticized, and the strength against external stress is increased.
[0034]
[Table 5]
Figure 0003703591
[0035]
Next, when the life was confirmed, the results shown in Table 5 were obtained. In addition, the evaluation result of the light emitting diode light source which employ | adopted the conventional acid anhydride type epoxy resin is also shown collectively.
As is apparent from Table 5, the product of the present invention employing the epoxy resin encapsulant using the triarylsulfonium hexafluoroantimonate salt curing agent, which is a cationic polymerization curing catalyst, has a longer lifetime than the conventional product. Has stable characteristics for test items.
[0036]
In general, an acid anhydride curing agent used as a light-emitting diode chip sealing resin material is blended with an epoxy resin in an equivalent amount, and a trace amount of unreacted curing agent remains even after heat curing. Under such circumstances, when the light emitting diode chip is energized in a high temperature and high humidity environment, moisture from the outside reaches the light emitting diode chip while extracting the unreacted curing agent. Since the moisture containing the unreacted curing agent shows strong acidity, electrical corrosion of the P-side electrode of the light-emitting diode chip in a high-temperature and high-humidity environment is promoted, leading to disconnection.
[0037]
According to this embodiment, the curing system does not use an acid anhydride curing agent, and electrode corrosion due to the unreacted curing agent does not occur. In addition, epoxy resin encapsulation using polypropylene glycol diglycidyl ether and a triarylsulfonium hexafluoroantimonate salt curing agent that is a cationic polymerization curing catalyst as the resin sealing body 24 of each light emitting diode chip 22 and the thin metal wire 23 By adopting the body, there is no deformation or breakage of the light-emitting diode chip 22 and the metal thin wire 23 due to external pressure, and no breakage or peeling of the sealing resin due to the difference in bending, expansion or contraction of the printed wiring board 21, and the assembly is easy and low. It has become possible to provide products that can be priced.
[0038]
Furthermore, a triarylsulfonium hexafluoroantimonate salt curing agent, which is a cationic polymerization curing catalyst, has a high activation temperature, and an epoxy resin using this curing agent does not proceed to 90 ° C. Liquefaction is possible, so that the assembly process can be shortened and the number of man-hours can be reduced, and further price reduction can be realized.
[0039]
In the above description, the light emitting diode chip 22 is linearly arranged and attached. However, as shown in FIG. 3, a hemispherical transparent resin sealing body in which the light emitting diode chip 2 is sealed is shown. The same can be applied to a display device in which 24 are arranged in a matrix. Further, although the example in which the light emitting element is configured by a light emitting diode has been described, the present invention can be similarly applied to other light emitting elements such as a laser and an EL. It can also be implemented for a light receiving device.
[0040]
【The invention's effect】
According to the optoelectronic device of the first aspect, since it is strong against external pressure, bending, expansion and contraction and electrode corrosion, it is possible to prevent deformation and destruction of the light-emitting diode chip and the metal thin wire due to external pressure, and bending of the printed wiring board In addition, it is possible to prevent the sealing resin from being broken and peeled off due to differences in expansion and contraction, and to improve reliability against electrode corrosion. Furthermore, it is possible to provide a product that can be easily assembled and can cope with a reduction in price.
[Brief description of the drawings]
FIG. 1 is a perspective view of a light-emitting diode light source according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line XX in FIG.
FIG. 3 is a perspective view of a display device according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing an example of a conventional image scanner.
FIG. 5 is a perspective view of the light emitting diode light source.
FIG. 6 is a sectional view taken along line YY.
[Explanation of symbols]
21 Printed Wiring Board 22 Light Emitting Diode Chip 23 Metal Thin Wire 24 Resin Sealing Body 25 Conductor 26 Current Limiting Resistor

Claims (1)

基板と、この基板上に取り付け接続されて受光または発光する素子と、この素子を前記基板上で封止した透光性の樹脂封止体とを備え、前記樹脂封止体はカチオン重合系硬化触媒を用いたエポキシ樹脂であり、前記エポキシ樹脂が、ビスフェノールA型、ビスフェノールF型、脂環式エポキシの単独もしくはこの組み合わせの第一のエポキシ樹脂100重量部に対し、第二のエポキシ樹脂であるポリプロピレングリコールジグリシジルエーテル1〜10重量部、平均粒径5〜50nmのシリカ2〜10重量部、トリアリールスルホニウムヘキサフルオロアンティモネート塩系硬化剤を1〜10重量部含有したものであることを特徴とする光電子装置。A substrate, an element connected to and connected to the substrate to receive or emit light, and a translucent resin encapsulant in which the element is encapsulated on the substrate, the resin encapsulant being cured by cationic polymerization Ri epoxy resins der using a catalyst, wherein the epoxy resin is a bisphenol a type, bisphenol F type, relative alone or the first epoxy resin 100 parts by weight of the combination of the alicyclic epoxy, the second epoxy resin 1-10 parts by weight of a certain polypropylene glycol diglycidyl ether, 2-10 parts by weight of silica having an average particle size of 5-50 nm, and 1-10 parts by weight of a triarylsulfonium hexafluoroantimonate salt-based curing agent An optoelectronic device.
JP1821097A 1997-01-31 1997-01-31 Optoelectronic device Expired - Fee Related JP3703591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1821097A JP3703591B2 (en) 1997-01-31 1997-01-31 Optoelectronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1821097A JP3703591B2 (en) 1997-01-31 1997-01-31 Optoelectronic device

Publications (2)

Publication Number Publication Date
JPH10215004A JPH10215004A (en) 1998-08-11
JP3703591B2 true JP3703591B2 (en) 2005-10-05

Family

ID=11965299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1821097A Expired - Fee Related JP3703591B2 (en) 1997-01-31 1997-01-31 Optoelectronic device

Country Status (1)

Country Link
JP (1) JP3703591B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196642A (en) 2000-01-11 2001-07-19 Toyoda Gosei Co Ltd Light emitting device
JP2001358370A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Wavelength conversion paste material and semiconductor light emitting device and its manufacturing method
MY145695A (en) * 2001-01-24 2012-03-30 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP2002241586A (en) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd Wavelength conversion paste material, composite light- emitting element, semiconductor light-emitting device, and method for producing the same
JP2005142174A (en) * 2002-04-25 2005-06-02 Opto Device Kenkyusho:Kk Light-emitting diode and its manufacturing method
TW200414572A (en) 2002-11-07 2004-08-01 Matsushita Electric Ind Co Ltd LED lamp
ATE546836T1 (en) * 2005-04-21 2012-03-15 Fiat Ricerche USE OF A TRANSPARENT LED DISPLAY DEVICE IN A MOTOR VEHICLE
JP2007329502A (en) * 2007-08-16 2007-12-20 Toshiba Corp Light-emitting device
JP4403199B2 (en) * 2008-11-17 2010-01-20 株式会社東芝 Light emitting device

Also Published As

Publication number Publication date
JPH10215004A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3703591B2 (en) Optoelectronic device
EP2980871B1 (en) Light-emitting device and production method therefor
EP0854523B1 (en) Semiconductor light emitting device and its manufacturing method
KR101155231B1 (en) Package for mounting optical semiconductor element and optical semiconductor device employing the same
JP4412787B2 (en) Irradiation device and irradiation module using metal substrate
KR101444479B1 (en) Housing for an optoelectronic component, optoelectronic component and method for producing a housing for an optoelectronic component
US20070132098A1 (en) Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin
EP2980870A1 (en) Light-emitting device, production method therefor, and device using light-emitting device
US6559879B1 (en) LED array head, circuit board, and LED array chip
JP3659635B2 (en) Optical semiconductor device
JPH10261821A (en) Semiconductor light emitting device and its manufacture
JP3696020B2 (en) Hybrid integrated circuit device
CN1211859C (en) LED matrix
EP3193075A1 (en) Led light emitting strip and arrangement of led light emitting strips
US11421861B2 (en) Light source module
US8030753B2 (en) Semiconductor device and method for making the same
JP6627227B2 (en) Light emitting device and method of manufacturing light emitting device
JP2020035910A (en) Light-emitting device and manufacturing method of light-emitting device
US11664353B2 (en) Light emitting device, and method for manufacturing light emitting device
JP2008033270A (en) Light emitting device
JP2004273690A (en) Led element for minimum optical source, and its manufacturing method
JP2561329B2 (en) Optically coupled semiconductor device
JP2524507B2 (en) Optical writing head
JP2000134411A (en) Image sensor and information processor provided with the sensor
JP4280973B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees