JP3698282B2 - Pll回路および周波数比較回路 - Google Patents

Pll回路および周波数比較回路 Download PDF

Info

Publication number
JP3698282B2
JP3698282B2 JP18277396A JP18277396A JP3698282B2 JP 3698282 B2 JP3698282 B2 JP 3698282B2 JP 18277396 A JP18277396 A JP 18277396A JP 18277396 A JP18277396 A JP 18277396A JP 3698282 B2 JP3698282 B2 JP 3698282B2
Authority
JP
Japan
Prior art keywords
circuit
signal
frequency
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18277396A
Other languages
English (en)
Other versions
JPH0974352A (ja
Inventor
昇 益田
和則 中島
文一 藤田
雅一 山本
和彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP18277396A priority Critical patent/JP3698282B2/ja
Publication of JPH0974352A publication Critical patent/JPH0974352A/ja
Application granted granted Critical
Publication of JP3698282B2 publication Critical patent/JP3698282B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、位相同期機能付き発振回路(いわゆるPLL回路)に係り、特にコンピュータ等の情報処理機器のクロック信号供給用として好適なPLL回路に関する。また、PLL回路を制御するために好適な周波数比較回路に関する。
【0002】
【従来の技術】
PLL回路をコンピュータのクロック信号供給用として使った従来例としては、例えば1994年のカスタムインテグレイテッドサーキッツコンファレンス(Custom Integrated Circuits Conference)の講演番号25.1にて“A 1.5% jitter PLL clock generation system for a 500MHz RISC processor”と題して発表された例のほか、同年の同じ学会の講演番号25.2にて発表された例、1992年の同じ学会の講演番号24.1、24.2、25.1にて発表された例、1992年のインタナショナルソリッドステイトサーキッツコンファレンス(International Solid−State Circuits Conference)の講演番号WP3.3にて発表された例などがある。
これらの例に使用される位相比較回路には、位相差にほぼ比例して出力値が変化する回路が用いられるが、多くの場合は出力信号のパルスの時間幅が出力値として用いられ、位相差に等しい時間幅のパルスが出力されるように構成されている。
このことは、上記公知例の文献の内のいくつかは位相比較回路の回路図が示されているし、位相比較回路の回路図が示されていない公知例については、位相比較回路の出力が直接チャージポンプ回路やフィルタ回路に入力されるような構成になっていることから推定できる。
このため、従来のPLL回路では電圧制御発振器(以下VCOと称す)を制御する電圧はその直前に検出された位相差の大小に応じて変化し、大きな位相差が検出された時には大きく、小さい時には小さく変化するようになっている。
また、VCOを備えたPLL回路を使用しないクロック位相調整回路としては、当社から特開昭63−231516や特開平2−168308、特開平6−97788として出願した方式などがある。
また、位相比較回路とは別に周波数比較回路を独立に設けてPLL回路を制御した例としては、1995年4月に発行されたアイイーイーイージャーナルオブソリッドステイトサーキッツ(IEEE JOURNAL OF SOLID−STATE CIRCUITS)という雑誌の第30巻の412〜422ページに記載された例があり、特にその416ページの図4には、2個のカウンタを設けて2つの信号のパルス数をカウントするように構成された周波数比較回路の回路図が記載されている。
【0003】
【発明が解決しようとする課題】
従来のPLL回路において、位相比較回路が判定した1回毎の位相差に比例してVCOを制御する係数が大きくなるように構成すると、突発的なノイズ等によって位相比較回路が誤った信号を出力した場合には、誤った制御が大きくかかり瞬間的に大きな位相差が発生する。また、従来のPLL回路で上記の係数を小さくすると、VCOの発振周波数が狂い始めても大きな位相差が発生するまでは充分な制御がかからず、結果的に大きな位相差が発生する。
更に位相差に比例して時間幅が変化するパルス信号を出力するような位相比較回路を使うと、位相差が0に近くなった時に比較結果として出力される信号は非常に短い時間幅のパルス信号となり、実際に実現できる回路では応答できなくなる。従って、位相がほぼ合っている時には回路が応答しない不感領域が生じ、その結果として発振器の出力の位相が細かく変動するジッタと呼ばれる現象が発生する。
また、当社から特開昭63−231516等として出願した方式では、何回かの位相比較結果を基に制御信号を決めることができるので突発的なノイズの影響を受けにくく、また、上記のようなジッタは原理的に発生しないため、位相精度の高いクロック信号が得られる。しかしその代わりに、PLLを使用した場合のVCOの発振周波数に相当する高い周波数の信号をLSIチップの外から供給しなければならないので、これを伝送できる高価な配線基板等が必要となる。
また、周波数比較回路を使用してPLL回路を制御する場合、その周波数比較回路として2個のカウンタを設けた構成を使うと、比較の精度を上げるためには多ビットのカウンタが必要となり、使用するトランジスタの数が増加する。さらに、カウンタがオーバーフローする数のパルスが入力されるまでは比較結果が出ないため、周波数比較に時間がかかる。
本発明の目的は、上述の位相差やジッタを低減し、位相精度の高いクロック信号を得ることのできるPLL回路を提供することにある。
本発明の他の目的は、少ないトランジスタ数で構成でき、かつ、高速に動作する周波数比較回路を実現することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明は、
電圧制御発振器と、該電圧制御発振器の出力からフィードバックされる信号と外部から加えられるリファレンス信号の位相を比較する位相比較回路と、その位相比較回路の比較結果に基づいて出力電圧を増減するチャージポンプ回路とを備え、該チャージポンプ回路の出力電圧を前記電圧制御発振器に加えることにより前記リファレンス信号と位相の一致するクロック信号を発生させるPLL回路において、前記位相比較回路が連続して同一の比較結果を出力しているか否かを判定する回路を備え、その判定結果が同一の比較結果を出力しているとき前記チャージポンプ回路の出力電圧を一定値づつ前記比較結果に応じて増減するように構成している。
さらに、前記位相比較回路が連続して同一の比較結果を出力した回数を計数するカウンタ回路を備え、前記比較結果が反転したとき、前記チャージポンプ回路の出力電圧を新たな比較結果に応じて前記計数結果に比例して増減するように構成している。
さらに、前記チャージポンプ回路の出力電圧を増減させる制御の強さは、前記位相比較回路が連続して同一の比較結果を出力している間は概ね一定であり、この時の制御の強さを1単位とした場合、前記位相比較回路の比較結果が反転した時の制御の強さは、前記1単位の制御の強さと前記カウンタ回路の計数結果との積の概ね半分程度となるようにしている。
また、前記電圧制御発振器の出力を分周して前記クロック信号を発生させる分周回路を備え、前記フィードバックされる信号を前記分周回路の出力の一部とするようにしている。
また、前記位相比較回路は、前記フィードバックされる信号と前記リファレンス信号の位相差の絶対値の大小に拘わらず、わずかでも位相に差があることを検出した時には、後続の回路が確実に動作するために充分な時間幅の信号を比較結果の信号として出力するようにしている。
また、前記位相比較回路の他に、前記フィードバックされる信号と前記リファレンス信号の周波数を比較する周波数比較回路を備え、該周波数比較回路が周波数に差があることを検出した時には、前記位相比較回路の比較結果や前記判定する回路の判定結果に拘わらず、前記フィードバックされる信号の周波数を前記リファレンス信号の周波数に近付けるように、前記チャージポンプ回路の出力電圧を増減させるようにしている。
また、前記位相比較回路の他に、前記フィードバックされる信号と前記リファレンス信号の周波数を比較する周波数比較回路を備え、該周波数比較回路が周波数に差があることを検出した時には、前記位相比較回路の比較結果や前記判定する回路の判定結果、前記カウンタ回路の計数結果等に拘わらず、前記フィードバックされる信号の周波数を前記リファレンス信号の周波数に近付けるように、前記チャージポンプ回路の出力電圧を増減させるようにしている。
また、前記周波数比較回路は、前記フィードバックされる信号と前記リファレンス信号の内のいずれか一方の信号の位相比較される側のエッジ(立ち上がりエッジまたは立ち下がりエッジの内、前記位相比較回路において位相を比較される側のエッジ)と、他方の信号の位相比較されない側のエッジ(前記位相比較回路において位相を比較されない側のエッジ)が交互に現われるか否かを検知し、いずれか一方の信号が2回以上連続して現われた時にその2回以上連続して現われた信号の周波数の方が高いことを示す信号を出力するようにしている。
また、前記電圧制御発振器は、前記チャージポンプ回路の出力電圧の他に、前記位相比較回路の直前の比較結果によって制御されるようにしている。
また、前記位相比較回路の直前の比較結果の変化による発振周波数の変化の程度は、前記チャージポンプ回路の出力電圧を増減させる制御の強さの1単位分だけ増減させた時の発振周波数の変化の少なくとも2倍を超えるようにしている。
また、前記PLL回路は1個の半導体集積回路チップの中に構成され、前記半導体集積回路チップの中には少なくとも2組以上の電源供給回路を備え、前記電源供給回路の中の1組は、前記電圧制御発振器と前記電圧制御発振器に直接信号を出力する回路にのみ電源供給を行なうようにしている。
【0005】
略一定の周波数で繰り返す第1の信号と、略一定の周波数で繰り返す第2の信号の周波数を比較する周波数比較回路であり、
前記第1の信号と前記第2の信号を入力し、該両入力信号が交互に現われるか否かを検知する手段を備え、該手段は、いずれか一方の信号が、他方の信号が現われてから次の他方の信号が現われまでに、2回以上連続して現われた時に該一方の信号の方が周波数が高いことを示す信号を出力するように構成している。
さらに、前記交互に現われるか否かを検知する手段は、
前記第1および第2の信号によってセットもしくはリセットされるS−R型のフリップフロップと、前記S−R型のフリップフロップの一方の出力を前記第1の信号に同期して取り込む第2のフリップフロップと、前記S−R型のフリップフロップの他方の出力を前記第2の信号に同期して取り込む第3のフリップフロップとを備え、
前記第2のフリップフロップの出力が所定の一方の出力値を取るとき前記第1の信号の方が周波数が高いことを示し、前記第3のフリップフロップの出力が所定の一方の出力値を取るとき前記第2の信号の方が周波数が高いことを示すように構成している。
さらに、前記交互に現われるか否かを検知する手段は、
前記第1の信号の立ち上がりエッジもしくは立ち下がりエッジのいずれかに起動されて所定の時間幅のパルス信号を出力する第1のエッジ検出回路と、前記第2の信号の立ち上がりエッジもしくは立ち下がりエッジのいずれかに起動されて前記所定の時間幅と略等しい時間幅のパルス信号を出力する第2のエッジ検出回路とを備え、
前記交互に現われるか否かを検知する対象の信号として、前記第1の信号および第2の信号に代えて、前記第1および第2のエッジ検出回路の出力するパルス信号を用いるよう構成している。
【0006】
また、アナログの制御電圧とデジタルの制御信号によって発振周波数を制御される電圧制御発振器と、前記電圧制御発振器から直接もしくは分周回路等を介して出力されるフィードバック信号と外部から加えられるリファレンス信号の位相を比較する位相比較回路と、前記フィードバック信号と前記リファレンス信号の周波数を比較する周波数比較回路と、前記位相比較回路の比較結果および前記周波数比較回路の比較結果に基づいて制御パルスを発生する制御パルス発生回路と、前記制御パルスによって出力電圧を制御されるチャージポンプ回路とを備え、
前記チャージポンプ回路の出力電圧を前記電圧制御発振器に前記アナログの制御電圧として加え、前記位相比較回路の比較結果を前記電圧制御発振器に前記デジタルの制御信号として加えることによって、前記フィードバック信号と前記リファレンス信号の周波数および位相を一致させるように構成されたPLL回路であり、
前記パルス発生回路が、前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知した時には、前記位相比較回路の比較結果にかかわらず前記フィードバック信号の周波数を前記リファレンス信号の周波数に近付かせる制御パルスを発生し、前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知しなくなった後、前記位相比較回路の比較結果が所定回数以上反転するまでの間は、前記フィードバック信号の周波数を変更するような制御パルスは発生せず、前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知しなくなった後、前記位相比較回路の比較結果が所定回数以上反転した後は、前記フィードバック信号の位相が前記リファレンス信号の位相に近付くように前記フィードバック信号の周波数を変更する制御パルスを発生するように構成されている。
さらに、前記PLL回路の周波数比較回路を前記した周波数比較回路とするようにしている。
さらに、前記PLL回路に前記電圧制御発振器の出力を分周する分周回路を備え、該分周回路の出力を前記フィードバック信号とするようにしている。
さらに、前記PLL回路は1個の半導体集積回路チップの中に構成され、
該半導体集積回路チップへの電源供給回路として、前記半導体集積回路チップの外部より電源を供給する第1組の電源供給回路と、前記第1組の電源供給回路から抵抗性素子を介して電源を供給する第2組の電源供給回路とを備え、
前記第2組の電源供給回路は、前記PLL回路の前記電圧制御発振器のみ、または、前記電圧制御発振器と前記チャージポンプ回路の一部のみに電源を供給するように構成している。
【0007】
【発明の実施の形態】
本発明によるPLL回路の一実施例の概略構成を図1に、その中の各構成要素の具体的な回路図を図3〜図10に示す。
図1において、101は位相比較回路、102はカウンタ回路、103は周波数比較回路、104は制御パルス発生回路、105はチャージポンプ回路、106は波形鈍化回路、107は電圧制御発振器、108は分周回路、109はバッファ回路である。
この回路は、チャージポンプ回路105の出力155と波形鈍化回路106の出力156によって制御される電圧制御発振器107の出力157を、分周回路108で分周することによって多相のクロック信号158を生成し、これを多数のバッファ回路109を介してクロック信号159として多数の分配先へ供給するように構成されている。
そして、クロック信号159の内の1つ160をフィードバック信号として位相比較回路101に加え、外部から供給されるリファレンス信号150の位相と比較する。
【0008】
従来のPLL回路はこの位相比較回路101が位相の早遅関係と差の絶対値を検出してその結果をチャージポンプ回路105に直接加えるように構成されているが、本発明の特徴は、図1に示すようにカウンタ回路102と制御パルス発生回路104を設けたことにある。
そして、位相比較回路101はフィードバック信号160とリファレンス信号150の位相の早遅関係のみを検出し、カウンタ回路102は位相比較回路101が連続して同じ比較結果を検出した回数を計数し、制御パルス発生回路104はカウンタ回路102の計数結果と位相比較回路101の比較結果を元に適切な制御パルス154を生成し、これをチャージポンプ回路105に加えるように構成した。
なお、周波数比較回路103は、位相調整動作の開始直後等において、フィードバック信号160とリファレンス信号150の周波数の差が大きい場合に引き込み時間を短縮させるために設置した回路である。
また、波形鈍化回路106はチャージポンプ回路105を通さずに位相比較回路101の出力151を電圧制御発振器107に加えることにより、位相比較結果を直ちに発振周波数に反映させるために設けた回路である。その時に、位相比較回路101の出力151が急峻に変化しても電圧制御発振器107の動作が不安定にならないようにするため、波形鈍化回路106において波形を鈍化する。
なお、上記の動作の不安定を考慮しなくてもよい場合には、波形鈍化回路106を設けずに上記位相比較回路101の直前の比較結果を直接電圧制御発信器107に入力するようにしてもよい。
また、カウンタ回路102と制御パルス発生回路104はクロック信号に従って動作するディジタル回路であり、リファレンス信号150はそのためのクロック信号としても使用する。
【0009】
次に、図1の回路の動作について説明する。
周波数比較回路103は、フィードバック信号160とリファレンス信号150が交互に現われている時にはこの2つの信号の周波数はほぼ一致しているとみなしてアクティブな信号は出力しないが、いずれか一方の信号のみが連続して2回以上現われると、その信号の方が周波数が高いと判断してそれを示す信号を153に出力する。
制御パルス発生回路104がこの信号を受けると、位相比較回路101の出力151やカウンタ回路102の出力152の状態に拘わらず、フィードバック信号160の周波数をリファレンス信号150の周波数に近付けるような信号を154に出力する。
例えば、電圧制御発振器107として制御信号155の電圧が高いほど発振周波数が低くなるような回路を使う場合、リファレンス信号150が1回現われてから次に現われるまでの間にフィードバック信号160が2回以上現われている間は、フィードバック信号160の周波数の方が高いことを示す信号が153に出力され、制御パルス発生回路104はチャージポンプ回路105の出力155の電圧を上げるような信号を154に出力し、その結果制御信号155の電圧は徐々に上昇して電圧制御発振器107の出力157の周波数は徐々に低くなる。すると、それを分周した信号158の周波数も徐々に低くなってその分配先の1つであるフィードバック信号160の周波数も低くなる。
逆に、フィードバック信号160が1回現われてから次に現われるまでの間にリファレンス信号150が2回以上現われている間は、フィードバック信号160の周波数の方が低いことを示す信号が153に出力され、制御パルス発生回路104はチャージポンプ回路105の出力155の電圧を下げるような信号を154に出力し、その結果制御信号155の電圧は徐々に下降して電圧制御発振器107の出力157の周波数は徐々に高くなる。
すると、それを分周した信号158の周波数も徐々に高くなってその分配先の1つであるフィードバック信号160の周波数も高くなる。
そして、フィードバック信号160とリファレンス信号150の周波数がほぼ一致すると、この2つの信号は交互に現われることになり、153にはアクティブな信号は出力されなくなり、制御パルス発生回路104は位相比較回路101の出力151とカウンタ回路102の出力152に基づいて信号を出力するようになる。
なお、フィードバック信号160とリファレンス信号150の周波数と位相がほぼ一致している時に周波数比較回路103がアクティブな信号を出力しないようにするため、具体的にはいずれか一方の信号の立ち上がりエッジと他方の信号の立ち下がりエッジが交互に現われるか否かを判定するように構成する。
【0010】
次に、周波数比較回路103がアクティブな信号を出力しなくなった後の動作を説明する。周波数比較回路103がアクティブな信号を出力しなくなった直後にはフィードバック信号160とリファレンス信号150の位相は大きくずれている場合が多く、しばらくの間はフィードバック信号160とリファレンス信号150の位相の早遅関係は変わらない。
この間は、制御パルス発生回路104はチャージポンプ回路105の出力155の電圧をごくわずかずつ変化させるような信号を154に出力する。この時の1回当たりの変化分が電圧制御発振器107の発振周波数の制御の最小単位となる。例えばフィードバック信号160の位相の方が早い場合は、チャージポンプ回路105の出力155の電圧を制御の最小単位に相当する分ずつ上げるような信号を154に出力し、電圧制御発振器107の出力157の周波数はゆっくりと下がってフィードバック信号160は少しずつ遅くなっていく。
この間、カウンタ回路102は位相比較回路101が同じ比較結果を出した回数をカウントする。そしてフィードバック信号160とリファレンス信号150の位相の早遅関係が逆転すると、制御パルス発生回路104はカウンタ回路102のカウント数と制御の最小単位に相当する電圧の積の約半分だけチャージポンプ回路105の出力電圧を戻すようなパルスを154に出力する。
すると、フィードバック信号160とリファレンス信号150の位相の早遅関係が逆転した少し後(チャージポンプ回路の時定数の分だけ後、以下同じ)には、チャージポンプ回路105の出力155の電圧は、前回に逆転した少し後の電圧と今回逆転する直前の電圧のほぼ中間の電圧になる。
その電圧は、フィードバック信号160とリファレンス信号150の位相の早遅関係が前回に逆転した後に最も位相が離れた時(すなわち、フィードバック信号160とリファレンス信号150の周波数がほぼ一致した時)の電圧にほぼ等しい。
従って、位相の早遅関係が逆転する毎に(すなわち、位相がほぼ一致する毎に)周波数も一致するようにチャージポンプ回路105の出力155の電圧が制御されるため、位相と周波数が共に一致する状態に急速に近付く。
【0011】
更に、位相比較回路101の比較結果は、波形鈍化回路106を介して電圧制御発振器107に加えられている。この信号156は、直前の位相比較結果のみに基づいて電圧制御発振器107の発振周波数を増減する。
すなわち、チャージポンプ回路105の出力155の電圧が同じであっても、フィードバック信号160の位相がリファレンス信号150の位相より早いと判定された直後には、遅いと判定された直後より若干低い周波数で発振する。
この信号156による電圧制御発振器107の発振周波数の変化量は、制御パルス発生回路104による制御の最小単位の2倍以上(望ましくは数倍以上)に設定しておく。
すると、位相と周波数がほぼ一致した後はフィードバック信号160とリファレンス信号150の位相の早遅関係は位相比較が行われる毎(すなわち、リファレンス信号150の周期毎)に逆転し、これに伴って電圧制御発振器107の発振周波数はこの信号156による周波数の変化量だけ上下する。
従って、この回路では突発的に大きなノイズを受けて位相比較結果が狂っても直ちに大きなジッタが発生することはなく、ジッタの大きさはこの信号156による周波数の変化量分と制御の最小単位による分のみとなる。
【0012】
図2には、フィードバック信号160とリファレンス信号150の位相差、フィードバック信号160の周波数、位相比較回路101の比較結果、カウンタ回路102のカウント数、チャージポンプ回路105の出力電圧の時間変化の概念を、ある時点で位相の早遅関係が逆転してから交互に繰り返されるまでについて示す。ただし、簡単のため図2ではチャージポンプ回路105の時定数は無視した。
図2において、各グラフは上から順に160と150の位相差、160の周波数、101の比較結果、102のカウント数、105の出力電圧を表わし、横軸は時間の経過を示す。横軸の1目盛はリファレンス信号150の1周期に相当する。
次に、160の周波数のグラフについて説明する。電圧制御発振器107の発振周波数はチャージポンプ回路105の出力電圧と位相比較回路101の直前の比較結果(図1における信号156)によって決まるが、位相比較回路101の比較結果には2つの状態しかないので、チャージポンプ回路105の出力電圧が決まれば電圧制御発振器107の発振周波数は2つの内のいずれかになる。
この図にはその両方の場合に対応するフィードバック信号160の周波数を示し、実際に起きたとした状態の側を実線、他方を破線で示した。
【0013】
ここで、チャージポンプ回路105の最初の出力電圧が、安定後の電圧(フィードバック信号160とリファレンス信号150の周波数がほぼ一致する時の電圧)よりかなり低い状態にあったとする。
すると、電圧制御発振器107が安定後の周波数より高い周波数で発振するため、フィードバック信号160の周波数もリファレンス信号150の周波数より高い状態にある。
この状態で図2の最初に示すようにフィードバック信号160とリファレンス信号150の位相が逆転すると、その後しばらくの間はフィードバック信号160の位相の方がリファレンス信号150の位相より早い状態が連続するので、チャージポンプ回路105の出力電圧は制御の最小単位ずつ上昇し、フィードバック信号160の周波数もその分だけ低くなっていく。
そして何周期か後にはフィードバック信号160の周波数はリファレンス信号150の周波数より低くなるが、その直後はフィードバック信号160の位相はリファレンス信号150の位相より相当早い状態になっているので、その後もしばらくの間は位相比較回路101の比較結果は変わらず、チャージポンプ回路105の出力電圧は制御の最小単位ずつの上昇を続け、フィードバック信号160の周波数もその分だけ低くなっていく。
ところが、その間はフィードバック信号160とリファレンス信号150の位相差は徐々に小さくなり、ある時点で位相差が逆転し101の比較結果が反転する。
ここで、カウンタ回路102のカウント数と制御の最小単位の積の半分(制御の最小単位に満たない端数は切り捨て)に相当する電圧だけ、チャージポンプ回路105の出力電圧が戻される。
すると、チャージポンプ回路105の出力電圧は、位相比較回路101の比較結果が最初に逆転した直後における電圧と次に逆転する直前における電圧の中間の値(すなわち、位相差が最も大きくなった時に近い値)になる。
これが何回か繰り返された後、チャージポンプ回路105の出力電圧は安定し、位相比較回路101は両方の比較結果を交互に出力するようになり、フィードバック信号160の周波数はリファレンス信号150の周波数の上下を細かく変化し、位相差は殆ど無い状態になる。
この後は、突発的なノイズ等によって位相比較回路101の比較結果が狂わされても、従来のPLL回路のように瞬時に大きなジッタが発生することはなく、位相比較回路101の比較結果による発振周波数の変化分のジッタしか出ない。
【0014】
図3は、位相比較回路101の具体的な回路構成の一実施例を示した図である。
図3において、301および302はセットリセット型のフリップフロップを構成するNAND回路、303および304はエッジトリガ型のフリップフロップ、305、306および309〜311はバッファとして作用するインバータ回路、307はNOR回路、308は信号を遅延させるためのインバータ回路である。
図3の回路は、150と160の両方の信号がローレベルである間は350と360の信号は両方ともハイレベルになるが、150と160のいずれか一方の信号がハイレベルになるとそれに対応する側の350または360の信号がローレベルになる。その後150と160の信号が両方ともハイレベルになっても、後からハイレベルになった方に対応する350または360の信号はハイレベルのままである。
すなわち、NAND回路301および302はセットリセット型フリップフロップとして動作し、150と160の信号の立ち上がりエッジの位相の早遅関係が比較され、その結果が350と360の信号に現われる。
そして150と160の信号が両方ともハイレベルになると、その少し後にはNOR回路307の出力もハイレベルとなり、更にその少し後にはフリップフロップ304のクロック端子に加えられている信号370もハイレベルとなる。すると、360の信号に現われている比較結果がフリップフロップ304に取り込まれ、インバータ回路309を介して151の信号として出力される。
なお、フリップフロップ303は、NAND回路301および302の負荷を等しくするために設けたダミーのフリップフロップである。
また、インバータ回路305、306、310および311は、リファレンス信号150とフィードバック信号160に直接かかる負荷をなるべく軽くしてより正確な位相比較を行うためのバッファとして設けた回路であり、カウンタ回路102、周波数比較回路103や制御パルス発生回路104へのリファレンス信号150およびフィードバック信号160の供給には、インバータ回路310および311の出力351および361を使用する。
【0015】
図4は、カウンタ回路102の具体的な回路構成の一実施例を示した図である。
図4において、401、411、421、431、441はエッジトリガ型のフリップフロップ、442は排他的論理和回路である。
図4の回路は、位相比較回路101内のインバータ回路310を介して送られてくるリファレンス信号351をクロック信号として、これに同期して動作する。
フリップフロップ441には位相比較結果を示す信号151がクロック信号351に同期して取り込まれるため、前回の位相比較結果が記憶されている。従って、同じ位相比較結果が連続している間(すなわち、前回の位相比較結果と今回の位相比較結果が等しい時)は、前回の位相比較結果を表わすフリップフロップ441の出力と今回の位相比較結果を表わす151の信号が等しいため、排他的論理和回路442の出力490はローレベルとなる。
この間は、フリップフロップ401、411、421、431の出力450〜480に現われる信号を2進数とみなした時、クロック信号351が立ち上がる毎にこの2進数の表わす数値が1ずつ増加するように変化する。ただし、450がLSB、480がMSBである。
なお、このカウンタは450〜480に現われる信号が全てハイレベルになった時(すなわち、最大カウント値に達した時)には、ゲート回路443の出力491がハイレベルとなり、以後は最大カウント値が保持されるように構成されている。
そして位相比較結果が反転すると(すなわち、前回の位相比較結果と今回の位相比較結果が異なる時)、排他的論理和回路442の出力490はハイレベルとなってゲート回路402、412、422、432の出力がローレベルとなり、その次にクロック信号351が立ち上がるとフリップフロップ401、411、421、431の出力450〜480がリセットされる。その後再び同一の位相比較結果が続くと、改めてカウントが始まる。
【0016】
図5は、周波数比較回路103の具体的な回路構成の一実施例を示した図である。
図5において、500〜502はリファレンス信号351の立ち上がりエッジが現われる毎に単発のパルス信号を出力するゲート回路群、511および512はフィードバック信号361の立ち下がりエッジが現われる毎に単発のパルス信号を出力するゲート回路群、503および513はセットリセット型のフリップフロップを構成するNOR回路、504および514はエッジトリガ型のフリップフロップである。
この回路は、リファレンス信号351が立ち上がると、ゲート502から550に単発のパルス信号が出力され、この単発のパルス信号はフリップフロップ504のクロック信号となり、この単発パルス信号発生時のNOR回路503の出力551をフリップフロップ504に取り込むと共に、その少し後に、この単発パルス信号によりNOR回路503の出力551をローレベルにする。
また、フィードバック信号361が立ち下がると、ゲート512から560に単発のパルス信号が出力され、この単発のパルス信号はフリップフロップ514のクロック信号となり、この単発パルス信号発生時のNOR回路513の出力561をフリップフロップ514に取り込むと共に、その少し後に、この単発パルス信号によりNOR回路513の出力561をローレベルにする。
そして、リファレンス信号351の立ち上がりとフィードバック信号361の立ち下がりが同時に現われない限り、551と561のいずれか一方がローレベルになると他方はハイレベルになる。また、もし仮に同時に現われたとしても、先に単発パルスが消えた側がハイレベル、他方がローレベルになる。
従って、リファレンス信号150とフィードバック信号160の位相と周波数がほぼ一致した後は、リファレンス信号351の立ち上がりとフィードバック信号361の立ち下がりはほぼ半周期毎に必ず交互に現われるためフリップフロップ504および514には必ずハイレベルが取り込まれるが、いずれかの周波数が高い状態が続くと、位相差が1周期ずれる毎に周波数の高い側に2回連続して単発パルスが現われ、その側のフリップフロップ504または514にローレベルが取り込まれる。これが、周波数に差があることを示す信号として553または563に出力される。
【0017】
図6は、制御パルス発生回路104の具体的な回路構成の一実施例を示した図である。
図6において、615、616、625、626、635、636はエッジトリガ型のフリップフロップであり、位相比較回路101内のインバータ回路310を介して送られてくるリファレンス信号351をクロック信号として、これに同期して動作する。
また、603および604はクロック信号351の立ち下がりエッジが現われる毎に単発のパルス信号を出力するゲート回路群である。
また、図6の回路の出力の内、661、671、681はチャージポンプ回路105の出力電圧を下げるための制御パルスを出力し、661をLSB、681をMSBとする2進数でその制御の大きさが表現される。同様に662、672、682はチャージポンプ回路105の出力電圧を上げるための制御パルスを出力し、662をLSB、682をMSBとする2進数の補数でその制御の大きさが表現される。
【0018】
この回路は、リファレンス信号の周波数の方がフィードバック信号の周波数より高いことを示す信号553がハイレベルの時は、位相比較回路101やカウンタ回路102から来る信号の状態にかかわらず、ゲート回路613、623、633の出力はローレベルになり、ゲート回路614、624、634の出力はハイレベルになる。
その状態でクロック信号351が立ち上がると、フリップフロップ615、625、635の出力はハイレベル、フリップフロップ616、626、636の出力はローレベルとなる。
更にその後クロック信号351が立ち下がると、ゲート回路604の出力651に単発パルスが現われ、チャージポンプ回路の出力電圧を下げるための信号661、671、681は、その単発パルスが現われている間だけ全てハイレベル(すなわち、最大数を表わす信号)となる。この間、チャージポンプ回路の出力電圧を上げるための信号662、672、682は、全てハイレベル(すなわち、補数で“0”を表わす信号)に固定されたままである。
また逆に、フィードバック信号の周波数の方がリファレンス信号の周波数より高いことを示す信号563がハイレベルの時は、チャージポンプ回路の出力電圧を上げるための信号662、672、682は、ゲート回路604の出力651に単発パルスが現われている間だけ全てローレベル(すなわち、補数で最大数を表わす信号)となる。この間、チャージポンプ回路の出力電圧を下げるための信号661、671、681は、全てローレベル(すなわち、“0”を表わす信号)に固定されたままである。
【0019】
周波数比較回路103から来る信号553および563が共にローレベルになると、図6の回路の出力はカウンタ回路102から来る信号460〜490と位相比較回路101から来る信号151に基づいて変化する。
このうち、位相比較回路101から来る信号151がローレベルの時(すなわち、リファレンス信号の位相の方がフィードバック信号の位相より早い時)には、チャージポンプ回路の出力電圧を上げるための信号662、672、682は全てハイレベル(すなわち、補数で“0”を表わす信号)に固定され、チャージポンプ回路の出力電圧を下げるための信号661、671、681はゲート回路604の出力651に単発パルスが現われている間だけカウンタ回路102から来る信号460〜490によって決まる値をとる。
逆に位相比較回路101から来る信号151がハイレベルの時(すなわち、フィードバック信号の位相の方がリファレンス信号の位相より早い時)にはチャージポンプ回路の出力電圧を下げるための信号661、671、681は、全てローレベル(すなわち、“0”を表わす信号)に固定され、チャージポンプ回路の出力電圧を上げるための信号662、672、682はゲート回路604の出力651に単発パルスが現われている間だけカウンタ回路102から来る信号460〜490によって決まる値をとる。
【0020】
カウンタ回路102から来る信号のうち、490がローレベルの間(すなわち、同じ比較結果が連続している間)は、フリップフロップ615または616の出力はハイレベル、フリップフロップ625、626、635および636の出力はローレベルとなる。
すると、チャージポンプ回路の出力電圧を下げるための信号681、671、661または上げるための信号682、672、662のいずれかに、“001”を表わす信号または補数で“001”を表わす信号が出力される。
490がハイレベルの時(すなわち、比較結果が反転した時)は、カウンタ回路102から来る信号480、470、460の表わす数値がそのままもしくは補数で出力される。
カウンタ回路102から来る信号480、470、460の表わす数値は、カウンタ回路102のカウント値を表わす信号488、470、460、450の内のLSBを除いた数値(すなわち、カウント値の半分に相当する値)である。
【0021】
以上による図6の回路の動作をまとめると、以下のようになる。
(1)リファレンス信号の周波数の方がフィードバック信号の周波数より高いことを示す信号がハイレベルの時は、チャージポンプ回路の出力電圧を下げるための信号には最大数を表わすパルスが出力され、チャージポンプ回路の出力電圧を上げるための信号は補数で“0”を表わす信号に固定される。
(2)フィードバック信号の周波数の方がリファレンス信号の周波数より高いことを示す信号がハイレベルの時は、チャージポンプ回路の出力電圧を上げるための信号には補数で最大数を表わすパルスが出力され、チャージポンプ回路の出力電圧を下げるための信号は“0”を表わす信号に固定される。
(3)周波数比較回路の出力が共にローレベルで、位相比較回路の出力はリファレンス信号の位相の方がフィードバック信号の位相より早いことを示している時は、同じ比較結果が連続している間は“1”を表わすパルス、比較結果が反転した時にはカウント値の半分に相当する値を表わすパルスがチャージポンプ回路の出力電圧を下げるための信号に出力され、チャージポンプ回路の出力電圧を上げるための信号は補数で“0”を表わす信号に固定される。
(4)周波数比較回路の出力が共にローレベルで、位相比較回路の出力はフィードバック信号の位相の方がリファレンス信号の位相より早いことを示している時は、同じ比較結果が連続している間は補数で“1”を表わすパルス、比較結果が反転した時にはカウント値の半分に相当する値を補数で表わすパルスがチャージポンプ回路の出力電圧を上げるための信号に出力され、チャージポンプ回路の出力電圧を下げるための信号は“0”を表わす信号に固定される。
【0022】
図7は、チャージポンプ回路105の具体的な回路構成の一実施例を示した図である。
図7において、711、721、731、713、723および733はNMOS素子、712、722、732、714、724および734はPMOS素子、701および702は容量素子、703および704は抵抗素子である。
また、760にはマイナス側の電源、770および771にはプラス側の電源を加える。ただし、771に加える電源は、他の論理回路等の動作により発生するノイズの影響を受けにくいような方法で、特に安定な電源を加えるのが望ましい。
【0023】
図7のNMOS素子およびPMOS素子の大きさは、713と714は同じ程度の電流が流れる大きさ、723および724はそれぞれその約2倍、733および734はそれぞれ更にその約2倍の電流が流れる大きさとする。
711、721、731、712、722および732については、それぞれ713、723、733、714、724および734と同程度もしくはそれ以上の電流が流れる大きさとするが、後述するように713、723、733、714、724および734に流す電流は通常のMOS素子に流れる電流より絞ることになるので、711、721、731、712、722および732には通常のMOS素子を使えば充分な大きさになる。
【0024】
図7の回路の661、671(または/および)681にパルスが加わると、そのパルスが加わっている間だけNMOS素子711、721(または/および)731が導通状態となって750の電圧が下がり、これが容量素子701、702と抵抗素子703、704が構成するローパスフィルタによって平滑化され、制御信号155の電圧を下げる。その時の制御信号155の電圧の変化量は、そのパルス幅と、NMOS素子713、723(または/および)733に流れる電流値と、容量素子701および702の容量値によって決まる。
NMOS素子733に流れる電流はNMOS素子723に流れる電流の約2倍、NMOS素子723に流れる電流はNMOS素子713に流れる電流の約2倍であるから、制御信号155の電圧の変化量は661、671、681に加わる信号が表わす2進数の数値に比例した大きさとなり、NMOS素子713に流れる電流によって決まる制御信号155の電圧の変化量が制御の最小単位に相当する。
662、672(または/および)682に補数を表わすパルスが加わった場合も同様である。また、NMOS素子713に流れる電流とPMOS素子714に流れる電流がほぼ同じであるから、制御信号155の電圧を上昇させる時の制御の最小単位と下降させる時の制御の最小単位もほぼ等しくなる。
【0025】
なお、制御信号155の電圧を例えば0.1mV単位で制御しようとした場合、仮に図6のゲート回路群603および604が発生するパルスの幅を約1ns、容量素子701および702の容量値の和を約100pF程度とすると、NMOS素子713に流れる電流は約10μA程度に絞らなければならない。
しかしながら、仮にゲート長が0.5μmのMOS素子を製作するプロセスを使った場合、通常のNMOS素子ではゲート幅を約1μmに絞っても100μA程度以上の電流が流れるので、通常のNMOS素子よりゲート長を長くして電流を絞ることも必要である。NMOS素子723、733およびPMOS素子714、724、734についても同様である。
【0026】
図8は、波形鈍化回路106の具体的な回路構成の一実施例を示した図である。
図8において、801および803はNMOS素子、802および804はPMOS素子、821および822は容量素子、811および812は抵抗素子である。
また、760および761にはマイナス側の電源、770および771にはプラス側の電源を加えるが、図7の場合と同様に、761および771に加える電源は、他の論理回路等の動作により発生するノイズの影響を受けにくいような方法で、特に安定な電源を加えるのが望ましい。
【0027】
図8の回路は、位相比較回路101の出力151に対応して同じ論理値の信号862と反転信号861を電圧制御発振器107に送る回路であるが、この回路は、電圧制御発振器107に加える信号が急峻に変化するのを防ぐことと、他の論理回路等の動作によって760または770の電源が揺れた時に電圧制御発振器107に加える信号861および862の揺れを低減することを目的として設けた回路である。
ただし、この回路は、位相比較回路101の出力151の変化をなるべく早く電圧制御発振器107に伝える必要があるので、容量素子821または822と抵抗素子811または812が構成するローパスフィルタの時定数は図7のチャージポンプ回路の場合に較べてかなり短くする必要がある。
また、861および862の信号の電圧変動による影響は、図7の155の信号の電圧変動による影響よりはるかに小さいので、場合によっては容量素子821および822と抵抗素子811および812が構成するローパスフィルタは省略して850および851の信号を電圧制御発振器107に直接加える構成も有り得る。
【0028】
図9は、電圧制御発振器107の具体的な回路構成の一実施例を示した図である。
図9において901〜905、920〜925、941、942および944はNMOS素子、911〜915、930〜935、940、943および945はPMOS素子である。
また、図7や図8と同様に761にはマイナス側の電源、771にはプラス側の電源を加えるが、これらの電源は他の論理回路等の動作により発生するノイズの影響を受けにくいような方法で、特に安定な電源を加えるのが望ましい。
図9の回路は、NMOS素子901〜905とPMOS素子911〜915が構成するリングオシレータが発振し、その出力157を次段の分周回路108に加えるようになっている。
このリングオシレータの発振周波数はNMOS素子921〜925とPMOS素子931〜935に流れる電流によって制御されるが、その電流はNMOS素子941および942とPMOS素子940および943によって制御され、更にその電流は155に加えられる制御電圧によって制御される。
すなわち、155に加えられる制御電圧が下がると、PMOS素子940に流れる電流が増加し、NMOS素子941に同じ電流が流れるまで950の電圧が上昇してNMOS素子921〜925に流し得る電流が増加する。
更にこの時、NMOS素子942に流れる電流も増加し、PMOS素子943に同じ電流が流れるまで951の電圧が下降してPMOS素子931〜935に流し得る電流も増加する。
NMOS素子921〜925に流し得る電流とPMOS素子931〜935に流し得る電流が増加すると、NMOS素子901〜905とPMOS素子911〜915が構成するリングオシレータの発振周波数が高くなる。
逆に155に加えられる制御電圧が上がると、NMOS素子901〜905とPMOS素子911〜915が構成するリングオシレータの発振周波数は低くなる。
また、861に加えられる信号がハイレベルになり、862に加えられる信号がローレベルになると、NMOS素子944とPMOS素子945が導通して、NMOS素子921とPMOS素子931に流れる電流にはそれぞれNMOS素子920とPMOS素子930に流れる電流が加勢され、NMOS素子901〜905とPMOS素子911〜915が構成するリングオシレータの発振周波数は若干高くなる。
従って、861および862に加えられる信号(すなわち、位相比較回路101の出力151によって決まる信号)によってもリングオシレータの発振周波数を制御できる。
なおその時の制御の強さは、NMOS素子921〜925の大きさとNMOS素子920の大きさの比やPMOS素子931〜935の大きさとPMOS素子930の大きさの比によって決まるが、図2の説明で前述したように、この制御の強さは制御パルス発生回路104による制御の最小単位の2倍以上(望ましくは数倍以上)になるように設定しておくのが望ましい。
ただし、この制御による発振周波数の変化分が安定後のジッタの大きさを決めるので、これが目標とするジッタの大きさを超えないように設定しなければならない。従って、制御パルス発生回路104による制御の最小単位は、可能な限り小さくすることが望ましい。
【0029】
図10は、分周回路108の具体的な回路構成の一実施例を示した図である。
図10において、1001〜1005および1011〜1014はレベルセンス型のフリップフロップ、1021〜1024はエッジトリガ型のフリップフロップ、1031〜1042はゲート回路である。
図10の回路は、電圧制御発振器107の出力157をバッファ用のゲート回路1040で受け、これを分周した信号1051〜1053を出力するようになっている。
この内、1051は157に入力される信号を2分周した信号、1052はその反転信号、1053は更にそれを4分周(すなわち、157に入力される信号を8分周)した信号である。バッファ用のゲート回路1040で受けた信号は、更に他のバッファ用のゲート回路1041または1042を介して各フリップフロップのクロック信号1071または1072として供給されるようになっているが、フリップフロップ1011〜1014および1021〜1024には全て同じ相の信号が供給され、フリップフロップ1001〜1005にはこれとは逆の相の信号が供給される。
そして、フリップフロップ1001および1011の間で2分周、フリップフロップ1002、1003および1012の間で更に2分周、フリップフロップ1013、1004、1005および1014の間で更に2分周が行なわれ、フリップフロップ1021〜1024によってクロック信号1072に同期して出力される。
図10の分周回路は、フリップフロップ1001〜1005と逆相のクロックで動くフリップフロップ1011〜1014の間が、ファンイン数2以下のゲート回路を必ず1段介して接続されているので、フリップフロップ1001〜1005に加えるクロック信号1071とフリップフロップ1011〜1014に加えるクロック信号1072を丁度半周期ずらせた状態にしたときが最も動作マージンが広くなり、従ってこれらのフリップフロップに加えるクロック信号の配線設計が容易である。
【0030】
図11は、図7〜9のチャージポンプ回路や波形鈍化回路、電圧制御発振器等に使用する安定な電源761や771について、その具体的な供給方法の一実施例を示した図である。
図11において、1101は本発明のPLL回路を搭載するLSIチップ、1102はそのLSIチップを搭載するLSIパッケージ、1103はそのLSIパッケージを含む多数のLSIパッケージやその他の部品を搭載する配線基板を示す。
また、1111〜1115は電源電圧の揺れを抑えるために設けた容量素子(いわゆるパスコン)、1121〜1132は配線に伴って必然的に生じる誘導性素子(いわゆる寄生インダクタンス)、1141〜1144は配線に伴って必然的に生じる抵抗性素子(いわゆる配線抵抗)である。
外部から供給される電源は、1160にマイナス側を受け、1170にプラス側を受ける。LSIチップ1101の内部に設ける図7〜図9の回路の電源は、760、770、761および771から供給する。
LSIチップ1101の内部の他の回路の電源は、760および770から供給する。配線基板1103内の他のLSIチップやその他の部品の電源は、1161および1171から同じような回路を介して供給する。
【0031】
760および770から電源供給を受ける回路は多数あるため、回路動作に伴う電源電流値の変動が大きくなる。更に、入力信号に応じて種々の動作をするため、更に大きな電源電流値の変動が突発的に生じる場合がある。
この電流値の変動に起因して、寄生インダクタンス1123、1124、1127、1128等に発生する起電力等が電源電圧変動となって、760および770から電源供給を受ける回路に影響を及ぼす。
これに対し、761および771から電源供給を受ける回路は図7〜9の回路のみであり、これらの回路に流れる電源電流は微小でかつ時間変化が非常に小さい。
すなわち、図7〜9の回路の中では図9の電圧制御発振器が761および771から供給される電源電流の殆どを消費するが、この回路に流れる電流は、時間変化の殆ど無い定常電流が流れる部分(PMOS素子940およびNMOS素子941からなる部分とPMOS素子943およびNMOS素子942からなる部分)と、常に1つの電流パスしか切り替わらずかつ常にいずれか1つの電流パスが切り替わるリングオシレータの部分(PMOS素子911〜915およびNMOS素子901〜905からなる部分)のみであるため、電源電流値の時間変動は非常に小さくなる。
従って、図11に示すように760および770に供給する電源と761および771に供給する電源を配線基板1103上で分離してLSIパッケージ1102には別々に供給することにより、配線基板1103上のパスコン1113を761および771に供給する電源専用に設けることができる。
LSIチップ内のパスコン1111や1112はその容量値を大きくすることが難しいため、配線基板1103上のパスコン1113を761および771に供給する電源専用に設けることにより安定な電源を供給することができる。
【0032】
以上、本発明の一実施例について述べたが、この他にも種々の構成方法が有り得る。
例えば、図12はチャージポンプ回路105の他の実施例を示した回路図である。
図12において、1201は抵抗素子、1202および1203はNMOS素子、1204はPMOS素子である。また、701〜734はそれぞれ図7の701〜734と同じ目的の容量素子、抵抗素子、NMOS素子およびPMOS素子であり、155、661〜682、760〜771はそれぞれ図7の155、661〜682、760〜771と同じ信号および電源である。
図12において、抵抗素子1201およびNMOS素子1202はNMOS素子713、723、733および1203のゲート端子に加える制御電圧を作る回路を構成し、NMOS素子1203およびPMOS素子1204はPMOS素子714、724、734のゲート端子に加える制御電圧を作る回路を構成する。
NMOS素子713、723および733のゲート幅の比を1:2:4とし、PMOS素子714、724、734および1204のゲート幅の比をNMOS素子713、723、733および1203のゲート幅の比と一致させておけば、NMOS素子713とPMOS素子714に流れる電流はほぼ等しくなり、NMOS素子723およびPMOS素子724に流れる電流はその約2倍、NMOS素子733およびPMOS素子734に流れる電流は更にその約2倍となる。また、図12の回路を使えば、NMOS素子1202のゲート幅をNMOS素子713のゲート幅よりかなり大きくし抵抗素子1201の抵抗値を大きくすることによってNMOS素子713に流れる電流を絞ることができるので、図7の場合のようにゲート長の長い特殊なMOS素子を使用しなくても微小な電流を得ることができる。
あるいは、図12の回路においてNMOS素子713、723、733および1203とPMOS素子714、724、734および1204にゲート長の長いMOS素子を使用すれば、更に電流を絞って非常に細かい制御をすることも可能となる。
【0033】
また、図4にはカウンタ回路102の実施例として4ビットのカウンタ回路を示したが、本発明に使用可能なカウンタ回路は4ビットカウンタに限定されるわけではない。
このカウンタ回路のビット数を削減すると、記憶できる計数値の上限が小さくなるため位相調整の動作を開始してから収束するまでの時間は長くなるが、カウンタ回路102のほか制御パルス発生回路104やチャージポンプ回路105を構成する素子の数を削減することができる。
図13A、図13Bには、カウンタ回路102として2ビットカウンタを使った場合の各信号の時間変化の概念を、図2と同じ初期状態から始めた場合について示す。なお、この図示は1枚の図には入らないため、前半部分の図13Aと後半部分の図13Bに分けて示す。
この図に示すように、カウンタ回路が最大カウント値に達すると位相比較回路101の比較結果が反転してもチャージポンプ回路105の出力電圧が充分には引き戻されなくなるが、時間をかければ少しずつは安定後の電圧に近づくことがわかる。なお、図13Bに示すようにチャージポンプ回路105の出力電圧の制御の最小単位に相当する電圧分の振動が収まらない場合もあるが、これは制御の最小単位を細かくすることによりその影響を低減できる。
【0034】
図14および図15は、カウンタ回路102のビット数を更に削減して位相比較回路101の比較結果が反転したか否かを検出するのみの回路に変えた場合の102の回路と制御パルス発生回路104の具体的な回路構成の一実施例を示した図である。
この回路を使えば、位相比較回路101が同一の比較結果を出力している間はチャージポンプ回路105の出力電圧は制御の最小単位に相当する分だけ変化するが、比較結果が反転した時には変化しない。従って、チャージポンプ回路105の出力電圧が安定するまでには時間がかかるが、回路を構成する素子の数は削減できる。
【0035】
また、図9に示した電圧制御発振器107の実施例では、位相比較回路101による直前の比較結果によって発振周波数を制御する部分として、NMOS素子920および944によってNMOS素子901に流れる電流を増減する回路とPMOS素子930および945によってPMOS素子911に流れる電流を増減する回路があるが、いずれか一方のみとする構成も有り得る。
更に、電圧制御発振器107の動作を安定化させるために他の回路とは別系統の電源761および771を供給することを前提に説明を進めたが、別系統で供給することは必須ではなく、他の回路と共通の電源760および770を供給するような構成も有り得る。
【0036】
周波数比較回路の他の実施例を図16に示す。
図16において、550および560は周波数比較の対象となる2つの入力信号、553は入力信号550の方が周波数が高いと検知した時にパルスを出力する信号、563は入力信号560の方が周波数が高いと検知した時にパルスを出力する信号である。
また、503および513はそれぞれNOR回路であり、この2つのNOR回路は550および560を入力とし551および561を出力とするS−R型のフリップフロップ1600を構成する。
504および514はそれぞれ550または560の信号の立ち上がりに同期して551または561の信号を取り込むエッジトリガ型のフリップフロップである。
【0037】
フリップフロップ504、514の出力側の丸印はリセット出力(セット出力の反転出力)であることを示す。他の図においても同様である。
図16の回路は、入力信号550の立ち上がりエッジと入力信号560の立ち上がりエッジが交互に現われるか否かを検知するように構成されている。
【0038】
図16の回路の動作の一例を図17に示す。
図17において、550〜563は図16の同じ符号で示す信号の電圧の変化を表わす。
図17に示すように、入力信号550と560が略一定の周波数で繰り返すほぼ同じ時間幅のパルスである場合、そのパルスが交互に現われている間は、入力信号550が立ち上がる直前には551の信号はハイレベルで561の信号はローレベルであり、入力信号560が立ち上がる直前には551の信号はローレベルで561の信号はハイレベルである。
従ってこの間は、553と563の信号は共にローレベルである。
【0039】
ところが、図17に示すように例えば入力信号550の方が入力信号560より周波数が高い場合、何サイクルかの間には入力信号550のパルスが2回連続して現われるサイクルが必ず存在する。
その2回目のパルスが立ち上がる直前には551の信号はローレベルで561の信号はハイレベルとなっている。
従って、2回目のパルスの次のサイクルには553の信号はハイレベルとなる。
逆に入力信号550の方が入力信号560より周波数が低い場合には、入力信号560のパルスが2回連続して現われるサイクルが存在し、その2回目のパルスの次のサイクルには563の信号がハイレベルとなる。
553と563の信号が長時間に渡って共にローレベルを保つ場合は、入力信号550と560の周波数がほぼ等しい場合である。これにより入力信号550と560の周波数を比較することができる。
【0040】
本発明による周波数比較回路の他の実施例を図18に示す。
図18において、503および513はそれぞれNAND回路であり、この2つのNAND回路がS−R型のフリップフロップ1600を構成する。
504および514はそれぞれ550または560の信号の立ち下がりに同期して551または561の信号を取り込むエッジトリガ型のフリップフロップである。
図18の回路は図16の回路と相補な関係にあり、図18の回路の場合、550および560と551および561の信号に対しては図16の場合と極性が逆の同じ動作をする。
ただし、553および563の信号については図16の場合と同じ極性で動作し、入力信号550と560の周波数がほぼ等しい場合には共にローレベルを保ち、異なる場合には周波数の高い方に対応する側にハイレベルのパルスが現われるように構成されている。
【0041】
本発明による周波数比較回路の他の実施例を図19に示す。
図19において、501は奇数段のインバータ回路群、502はNOR回路である。これらの回路は入力信号150の立ち下がりエッジに起動されてインバータ回路群501の遅延時間に相当する時間幅のパルスを出力するエッジ検出回路1900を構成する。
同様に、511は奇数段のインバータ回路群、512はNOR回路であり、これらの回路は入力信号160の立ち下がりエッジに起動されてインバータ回路群511の遅延時間に相当する時間幅のパルスを出力するエッジ検出回路1910を構成する。
図19の回路の右半分は図16の回路と同じ構成である。
【0042】
図16の実施例では、550および560に入力されるパルス信号の時間幅がほぼ等しい時には問題無いが、2つの入力信号の周波数が近い場合にその時間幅が異なると、正確に比較されない場合が有り得る。
図19の実施例はこの問題を解消した構成の例であり、150もしくは160に極端に時間幅の短いパルス信号が入力されない限り、それぞれの信号の立ち下がりエッジに起動されてほぼ等しい時間幅のパルス信号が550もしくは560の信号として現われる。
従って、150および160に入力される信号の時間幅が異なる場合でも、その立ち下がりエッジのみに基づいて正確な周波数比較をすることができる。
【0043】
本発明による周波数比較回路の他の実施例を図20に示す。
図20の回路は図19の回路と相補な関係にあり、502および512はそれぞれNAND回路、図20の回路の右半分は図18の回路と同じ構成であり、インバータ回路群は図19と同じである。
図20の回路を使えば、150および160に入力される信号の立ち上がりエッジのみに基づいて正確な周波数比較をすることができる。
【0044】
本発明による周波数比較回路の他の実施例を図21に示す。
図21の回路は、図20の回路にインバータ回路500を付加した構成であり、150に入力される信号の立ち下がりエッジと160に入力される信号の立ち上がりエッジが交互に現われるか否かを検知することにより周波数を比較するような構成になっている。
これにより、比較対象となる2つの信号の周波数と位相がほぼ一致している時に周波数が一致していないことを示す信号が誤って出力されることはなくなる。すなわち、周波数比較回路をPLL回路等の制御に使う場合、比較対象となる2つの信号は定常状態において位相がほぼ一致するため、150および160に入力される信号はほぼ同時に現われることになる。
すると、位相比較回路が例えば両方の信号の立ち上がりエッジ同士の早遅関係を比較するように構成され、これが一致するようにPLL回路が構成されている場合、周波数比較回路を両方の信号の立ち上がりエッジが交互に現われるか否かを検知するように構成すると、定常状態においては両方の信号はほぼ同時に立ち上がるため、たとえ周波数が一致してもわずかなノイズによっていずれかの信号が2回連続して立ち上がり、周波数が一致していないことを示す信号が出力される恐れがある。
図21の実施例はこれを解決した構成である。
すなわち、2つの信号の立ち上がりエッジが同時に現われる時には一方の信号の立ち上がりエッジと他方の信号の立ち下がりエッジは必ず交互に現われるため、2つの信号の周波数と位相が一致している時に周波数が一致していないことを示す信号が誤って出力されることはなくなる。
【0045】
前述の図5の実施例は、図19の回路にインバータ回路500を付加した構成であり、150に入力される信号の立ち上がりエッジと160に入力される信号の立ち下がりエッジが交互に現われるか否かによって周波数を比較するような構成になっている。
この構成でも、図21と同様に比較対象となる2つの信号の周波数と位相がほぼ一致している時に周波数が一致していないことを示す信号が誤って出力されることはなくなる。
なお、位相比較回路が一方の信号の立ち上がりエッジと他方の信号の立ち下がりエッジの早遅関係を比較するように構成されている場合は、周波数比較回路は図16〜20のように両方の信号の同じ側のエッジが交互に現われるか否かを観測するように構成しても良いことは言うまでもない。
【0046】
本発明による周波数比較回路の他の実施例を図22に示す。
図22の回路は、図19の回路にインバータ回路2200および2210を付加した構成である。
フリップフロップ504および514の動作速度が遅い(具体的にはホールドタイムが長い)場合には、550もしくは560の信号が立ち上がってから551もしくは561の信号が立ち下がるまでの間にフリップフロップ504もしくは514の状態が確定しない恐れがある。
この場合には図22に示すようにインバータ回路2200および2210等をフリップフロップ504および514の前に付加して551および561の信号を遅らせ、フリップフロップの状態が確定してから入力が変化するように構成する。
図19以外の周波数比較回路についても、必要に応じてこのようにフリップフロップ504および514の前にインバータ回路等を付加する。
【0047】
本発明によるPLL回路の他の実施例を図23に示す。
図23において、制御パルス発生回路2304、チャージポンプ回路2305、電圧制御発振器2307は、図1の制御パルス発生回路104、チャージポンプ回路105、電圧制御発振器107とはそれぞれその内部構成は異なるが、位相比較回路101、周波数比較回路103および回路の右側半分の分周回路108以降の回路は図1の対応する回路と同じでよい。
また、制御パルス発生回路2304、チャージポンプ回路2305、電圧制御発振器2307の構成については、それぞれ図24〜26に示す。
図23の実施例と図1の実施例の主な違いは、制御パルス発生回路2304における制御方法を変更しカウンタ回路102を不要とした点である。
また、図23の実施例では電圧制御発振器2307として155の制御電圧が高くなるほど発振周波数が高くなる回路を使用する例を示した。
【0048】
図23の実施例に使う制御パルス発生回路2304の構成を図24に示す。
図24において、2400〜2403はエッジトリガ型のフリップフロップ、2410はNOR回路、2411はインバータ回路、2413は排他的NOR回路、2414はNAND回路、2412および2415はOR−NAND型の複合ゲート回路、2416および2417はAND−NOR型の複合ゲート回路、その他の構成要素は図6の回路の構成要素と同じである。
【0049】
次に図24の制御パルス発生回路の動作を説明する。
周波数比較回路の出力153がリファレンス信号とフィードバック信号の周波数が異なることを示している間は、位相比較回路の出力151の状態にかかわらず、図24の制御パルス発生回路の出力154にはフィードバック信号の周波数をリファレンス信号の周波数に近づけるようなパルスが出力されるように構成されている。
例えば、リファレンス信号の周波数よりフィードバック信号の周波数の方が低いことを示す信号553がハイレベルになると次のサイクルではフリップフロップ616の出力がハイレベルとなり、チャージポンプ回路の出力電圧を上げる信号662にパルスが出力される。
その時にはフリップフロップ2403はNOR回路2410を介してリセットされているため、その出力2450はローレベルとなりフリップフロップ615の出力もローレベルとなって、チャージポンプ回路の出力電圧を下げる信号661はローレベルに固定される。
逆にリファレンス信号の周波数よりフィードバック信号の周波数の方が高いことを示す信号563がハイレベルになると、チャージポンプ回路の出力電圧を下げる信号661にパルスが出力され、662はハイレベルに固定される。
【0050】
また、その後リファレンス信号とフィードバック信号の周波数が異なることを示す信号153が両方ともローレベルになると、その直後にはチャージポンプ回路の出力電圧を変化させる信号154は出力されないが、その状態で位相比較回路の出力151が2回以上反転するとフィードバック信号の位相をリファレンス信号の位相に近づけるようなパルスが出力されるように構成されている。
すなわち、周波数が異なることを示す信号153のいずれか(すなわち553もしくは563)がハイレベルの間はフリップフロップ2402および2403は共にリセットされているが、その後153が両方ともローレベルになると、フリップフロップ2402および2403のリセットが解除されるとともに、フリップフロップ2400には位相比較回路の出力151が記憶され、フリップフロップ2401には1サイクル前の位相比較回路の出力151が記憶される状態となる。
従って、同じ比較結果が続いている間はフリップフロップ2400および2401には同じ内容が記憶されているため、排他的NOR回路2413の出力はハイレベルとなってフリップフロップ2402および2403の出力は保持される。
【0051】
ところが位相比較回路の出力151が反転すると、その1サイクル後にはフリップフロップ2400および2401には異なる内容が記憶された状態になり、排他的NOR回路2413の出力がローレベルとなってフリップフロップ2402の出力はローレベルになる。
更にその後もう一度位相比較回路の出力151が反転すると、その1サイクル後には再び排他的NOR回路2413の出力がローレベルとなり、フリップフロップ2403から複合ゲート回路2416および2417に出力される信号2450がハイレベルとなる。
以後は、位相比較回路の出力151がハイレベル(すなわち、リファレンス信号よりフィードバック信号の位相のほうが早い)の状態が連続するとフリップフロップ2400および2401の記憶内容がローレベルとなってチャージポンプ回路の出力電圧を下げる信号661にパルスが出力され、位相比較回路の出力151がローレベルの状態が連続するとチャージポンプ回路の出力電圧を上げる信号662にパルスが出力されるようになる。
また、この時に位相比較回路の出力151が毎サイクル反転するような状態が続くと、フリップフロップ2400および2401の出力が常に異なるため複合ゲート回路2416および2417の出力は共にハイレベルとなり、661および662はそれぞれローレベルおよびハイレベルに固定される。
ただし、上記のいずれかの段階で1回でも553もしくは563の信号がハイレベル(すなわち、周波数比較回路がリファレンス信号とフィードバック信号の周波数が異なることを検知した状態)になると、フリップフロップ2402および2403がリセットされた状態に戻る。
【0052】
周波数が異なることを示す信号153が出力されなくなった後、位相比較回路の出力151が2回以上反転するまでチャージポンプ回路の出力電圧を変化させない理由は次の通りである。
周波数比較回路を図5や図21に示したようにリファレンス信号とフィードバック信号の互いに反対側のエッジが交互に現われるか否かを検知するように構成した場合、周波数が異なることを示す信号がハイレベルになった時は位相がほぼ半サイクルずれた時でもある。
一方、リファレンス信号とフィードバック信号の周波数がある程度近付くと、周波数が異なることを示す信号は何サイクルか毎にしか出力されなくなる。
すると、周波数が異なることを示す信号がローレベルになった直後は位相がほぼ半サイクルずれた状態の直後でもあり、その時には周波数の低い側の信号の方が位相が早いことになる。
従って、この時の位相比較結果に基づいてチャージポンプ回路の出力電圧を制御すると、かえって周波数を遠ざけるような制御がかかることになる。
しかしながら、周波数比較結果がローレベルに固定されたまま位相比較結果のみが反転した時は、位相がほぼ一致している状態で早遅関係が逆転したと考えられる。
従って、その後は必ず周波数の高い側が早くなり、その時から位相比較結果に基づいてチャージポンプ回路の制御を開始すれば、必ず周波数を近づけるような制御がかかる。
なお、リファレンス信号とフィードバック信号の周波数の差が10%前後の時には、周波数比較結果がハイレベルからローレベルになった直後に位相比較結果が反転することもある。
すると、周波数が異なることを示す信号がローレベルになった直後に(すなわち位相ががほぼ半サイクルずれた状態で)位相比較結果が1回反転することになる。
従って、位相がほぼ一致している状態で早遅関係が逆転した時点と確実に保証できるのは、位相比較結果が2回以上反転した後である。
従って、位相比較回路の出力が2回反転してからチャージポンプ回路の出力電圧の制御を開始する。
【0053】
また、リファレンス信号とフィードバック信号の周波数がほぼ一致している時には、何サイクルかに渡って一方の立ち上がりエッジと他方の立ち下がりエッジがほぼ同時に現われることもあり、その時には周波数が異なることを示す信号が連続してハイレベルになることもある。
また、多くの場合はその間に位相比較結果が反転する。
その場合には、周波数が異なることを示す信号がローレベルになった後に最初に位相比較結果が反転した時点ですでに位相がほぼ一致しているため、2回反転するのを待ってからチャージポンプ回路の制御を開始すると収束するまでに長い時間がかかることになる。
これを防ぐため、図24の回路では周波数が異なることを示す信号153のいずれかがハイレベルの間はフリップフロップ2400はその前の記憶内容を保持するように構成し、周波数が異なることを示す信号153のいずれかがハイレベルの間に位相比較結果が反転した場合には、周波数が異なることを示す信号153がローレベルになるまで反転する前の比較結果を保持するように構成した。
これにより、周波数が異なることを示す信号がハイレベルの間に反転した分が1回目としてカウントされ、最初に位相比較結果がほぼ一致した時からチャージポンプ回路の制御が開始され効率良く収束することになる。
【0054】
図25は、チャージポンプ回路2305の具体的な回路構成の一実施例を示した図である。
図25において、2501はNMOS素子、2502はPMOS素子、2500は抵抗素子、2503および2504は容量素子、その他の素子は図7の素子と同じである。
図25の回路では、PMOS素子2502および抵抗素子2500およびNMOS素子2501には常に一定の電流が流れ、その時にNMOS素子2501のゲート電極にかかる電圧とPMOS素子2502のゲート電極にかかる電圧がそれぞれNMOS素子713とPMOS素子714のゲート電極にかかる。
従って、抵抗素子2500の抵抗値を大きな値(例えば数KΩ〜数百KΩ)に設定し、NMOS素子2501やPMOS素子2502のゲート幅をNMOS素子713やPMOS素子714のゲート幅よりはるかに大きく(例えば数倍〜数百倍)なるように設定すれば、NMOS素子713やPMOS素子714に流れ得る電流を1μA程度に絞ることができる。
この状態で662もしくは661の信号として時間幅が1ns程度以下のパルスが現われ、その間だけPMOS素子712もしくはNMOS素子711が導通すると、その間にPMOS素子712を介して容量素子701へ流入しもしくは容量素子701からNMOS素子711を介して流出する電荷量は1fC程度以下に抑えることができる。
従って、容量素子701の容量値を10〜100pF程度に設定しておけば、750のノードの電圧変化は100μV程度以下に抑えることができる。
この電圧が抵抗素子704および容量素子702によるローパスフィルタで平滑化され、155の制御電圧として電圧制御発振器2307に加えられる。
抵抗素子704および容量素子702によるローパスフィルタの時定数は、定常状態における電圧制御発振器2307の発振周期と同じ程度にしておけば、この制御によって電圧制御発振器2307の動作が不安定になることはない。
【0055】
図26は、電圧制御発振器2307の具体的な回路構成の一実施例を示した図である。
図26の電圧制御発振器は、図9の電圧制御発振器の一部を抜き出した構成であり、155の制御電圧をNMOS素子921〜925や942のゲート電極に直接加えるような構成になっている。
また図26の電圧制御発振器では、位相比較回路101の出力151により発振周波数を直接制御する部分は、PMOS素子930および945による部分のみとしNMOS素子による部分を除いた構成になっている。
この回路は、155の制御電圧が高くなると、NMOS素子921〜925に流れ得る電流が増加するとともに、PMOS素子931〜935のゲート電極951の電圧が低くなってPMOS素子931〜935に流れ得る電流も増加する。
すると、NMOS素子901〜905やPMOS素子911〜915に流れる電流が増加してスイッチングに要する時間が短縮され発振周波数が高くなる。
すなわち、155の制御電圧が高くなるほど発振周波数が高くなる。
【0056】
さらにこの回路は、151の信号がハイレベルからローレベルになるとPMOS素子945が導通し、PMOS素子930に流れる電流がPMOS素子911に流れる電流に加算されてその分だけ発振周波数が高くなる。
155の制御電圧の変化によって発振周波数を変化させる制御はチャージポンプ回路を介して行われるため位相比較結果や周波数比較結果が現われてから制御の効果が出るまでにある程度の時間がかかるのに対し、位相比較回路の出力である151の信号による直接制御は比較結果が現われた直後から発振周波数が変化する。
従って、151の信号を変化させることによる高速な発振周波数の制御の大きさがチャージポンプ回路の1パルス当たりに対する発振周波数の変化の大きさの少なくとも2倍以上(望ましくは数倍以上)になるように設計しておけば、155の制御電圧の変化による発振周波数の制御は定常状態においては平滑化されることになる。
【0057】
図27は、電圧制御発振器2307の他の実施例を示した図である。
図27において、2700は容量素子、2701はNMOS素子、2702はPMOS素子、2704はインバータ回路である。また、他の素子は図26の素子と同じである。
この回路は、155の制御電圧による発振周波数の制御動作は図26と同様である。
一方、この回路の151の信号による発振周波数の制御は、NMOS素子902およびPMOS素子912が駆動する負荷の重さを変えることによって行なう。
すなわち、151の信号がローレベルからハイレベルになるとNMOS素子2701およびPMOS素子2702は導通し容量素子2700による容量がNMOS素子902およびPMOS素子912が駆動する負荷に加算され、その分だけ発振周波数が低くなる。
このように、電圧制御発振器内の一部のMOS素子が駆動する負荷の重さを変えることによって発振周波数を制御することもできる。
【0058】
図28は、電圧制御発振器2307の他の実施例を示した図である。
図28において、2801は抵抗素子、2802は容量素子であり、他の素子は図26と同じである。
この回路は、図26の回路において電源電圧が急に変化した時に発振周波数が急に変化するのを抑えることを目的としている。
すなわち、図26の回路において761と771の間の電源電圧が変化するとPMOS素子943およびNMOS素子942を流れる電流が若干変化する。
すると、PMOS素子943のゲートソース間電圧(すなわち951のノードと771の電源の間の電圧)も若干変化する。
この電圧はPMOS素子930〜935のゲートソース間電圧でもあり、従ってPMOS素子930〜935に流れ得る電流も変化する。
これが、電源電圧変動による発振周波数変動の原因となる。
【0059】
図28の回路は、抵抗素子2801と容量素子2802が構成するローパスフィルタによってPMOS素子930〜935のゲートソース間電圧の変化を平滑化し、PMOS素子930〜935に流れ得る電流を急には変化させないような構成になっている。
このように構成すれば、761と771の間の電源電圧が急に変化しても発振周波数が急に変化することは抑制され、発振周波数が徐々に変化していく間に位相比較回路の出力に基づく制御がかかり、発振周波数の変化を補正することが可能である。
【0060】
図29は、電圧制御発振器2307の他の実施例を示した図である。
この回路は、図27の回路に抵抗素子2801および容量素子2802を付加した構成であり、図28の実施例と同様に、電源電圧が急に変化した時に発振周波数が急に変化するのを抑えた構成である。
図30は、電圧制御発振器2307の電源電圧を安定させるための電源供給方法について、他の実施例を示した図である。
この図において、3001は容量素子、3011および3021は抵抗素子、他の構成要素は図11の構成要素と同じである。
本発明のPLL回路のように、761および771から供給される電源電流の直流成分が小さい場合、図30に示すように抵抗素子3011および3021を介して電源を供給しても、その抵抗素子による電圧降下を小さくすることができる。
また、761および771から供給される電源電流の交流成分の内の周期の長い成分が本発明のPLL回路のように小さい場合には、抵抗素子3011および3021と容量素子3001が構成するローパスフィルタによる平滑化が行われ易い。
よって、本発明のPLL回路では、図30のような回路によって電圧制御発振器2307の電源電圧を安定させることが容易である。
【0061】
【発明の効果】
以上述べたように、本発明によれば突発的なノイズ等によって位相比較回路が誤った信号を出力しても、大きな位相差が発生することはない。
更に、本発明によれば位相比較回路はどちらの信号が早いかを示す信号を必ず出力するので、不感領域によるジッタは発生しない。
更に、本発明によれば1回の制御に対する発振周波数の変化量はあらかじめ設計時に決めることができるので、ジッタの大きさを設計時に予測しかつ必要なまで低減することが可能である。
更に、本発明によれば周波数比較回路は、比較対象である2つの信号の内の同じ側が2回連続して現われると直ちに比較結果を出力するので、従来の周波数比較回路より短い時間で比較結果を出力することができる。
更に、本発明によれば周波数比較回路は、従来のカウンタを含む周波数比較回路より少ない素子数で構成することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の全体構成を示すブロック図である。
【図2】図1の実施例の動作を示すグラフである。
【図3】図1の実施例の一構成要素である位相比較回路の詳細を示す回路図である。
【図4】図1の実施例の一構成要素であるカウンタ回路の詳細を示す回路図である。
【図5】図1の実施例の一構成要素である周波数比較回路の詳細を示す回路図である。
【図6】図1の実施例の一構成要素である制御パルス発生回路の詳細を示す回路図である。
【図7】図1の実施例の一構成要素であるチャージポンプ回路の詳細を示す回路図である。
【図8】図1の実施例の一構成要素である波形鈍化回路の詳細を示す回路図である。
【図9】図1の実施例の一構成要素である電圧制御発振器の詳細を示す回路図である。
【図10】図1の実施例の一構成要素である分周回路の詳細を示す回路図である。
【図11】図9の電圧制御発振器等への電源供給方法の一実施例を示す回路図である。
【図12】図7のチャージポンプ回路の他の実施例の詳細を示す回路図である。
【図13A】図2の他の実施例の動作を示すグラフの一部である。
【図13B】図2の他の実施例の動作を示すグラフの図13Aに続く部分である。
【図14】他の実施例において、図4のカウンタ回路の代わりとして使う反転検出回路の詳細を示す回路図である。
【図15】図6の制御パルス発生回路の他の実施例の詳細を示す回路図である。
【図16】周波数比較回路の他の実施例の詳細を示す回路図である。
【図17】図16の実施例の動作を示すグラフである。
【図18】周波数比較回路のさらに他の実施例の詳細を示す回路図である。
【図19】周波数比較回路のさらに他の実施例の詳細を示す回路図である。
【図20】周波数比較回路のさらに他の実施例の詳細を示す回路図である。
【図21】周波数比較回路のさらに他の実施例の詳細を示す回路図である。
【図22】周波数比較回路のさらに他の実施例の詳細を示す回路図である。
【図23】PLL回路の他の実施例の全体構成を示すブロック図である。
【図24】図23の実施例の一構成要素である制御パルス発生回路の詳細を示す回路図である。
【図25】図23の実施例の一構成要素であるチャージポンプ回路の詳細を示す回路図である。
【図26】図23の実施例の一構成要素である電圧制御発振器の詳細を示す回路図である。
【図27】図26の電圧制御発振器の他の実施例の詳細を示す回路図である。
【図28】図26の電圧制御発振器のさらに他の実施例の詳細を示す回路図である。
【図29】図26の電圧制御発振器のさらに他の実施例の詳細を示す回路図である。
【図30】図11の電源供給方法の他の実施例を示す回路図である。
【符号の説明】
101 位相比較回路
102 カウンタ回路
103 周波数比較回路
104 制御パルス発生回路
105 チャージポンプ回路
106 波形鈍化回路
107 電圧制御発振器
108 分周回路
109 バッファ回路
150 リファレンス信号
159 クロック信号
160 フィードバック信号
1600 S−R型のフリップフロップ
1900、1910 エッジ検出回路
2304 制御パルス発生回路
2305 チャージポンプ回路
2307 電圧制御発振器

Claims (6)

  1. 電圧制御発振器と、該電圧制御発振器の出力からフィードバックされる信号と外部から加えられるリファレンス信号の位相を比較する位相比較回路と、その位相比較回路の比較結果に基づいて出力電圧を増減するチャージポンプ回路とを備え、該チャージポンプ回路の出力電圧を前記電圧制御発振器に加えることにより前記リファレンス信号と位相の一致するクロック信号を発生させるPLL回路において、
    前記位相比較回路が連続して同一の比較結果を出力しているか否かを判定する回路を備え、その判定結果が同一の比較結果を出力しているとき前記チャージポンプ回路の出力電圧を一定値づつ前記比較結果に応じて増減するように構成されたことを特徴とするPLL回路。
  2. 請求項1記載のPLL回路において、
    前記位相比較回路が連続して同一の比較結果を出力した回数を計数するカウンタ回路を備え、前記比較結果が反転したとき、前記チャージポンプ回路の出力電圧を新たな比較結果に応じて前記計数結果に比例して増減するように構成されたことを特徴とするPLL回路。
  3. 請求項1記載のPLL回路において、
    前記位相比較回路の他に、前記フィードバックされる信号と前記リファレンス信号の周波数を比較する周波数比較回路を備え、該周波数比較回路が周波数に差があることを検出した時には、前記位相比較回路の比較結果や前記判定する回路の判定結果に拘わらず、前記フィードバックされる信号の周波数を前記リファレンス信号の周波数に近付けるように、前記チャージポンプ回路の出力電圧を増減させるよう構成されたことを特徴とするPLL回路。
  4. 請求項3記載のPLL回路において、
    前記周波数比較回路は、前記フィードバックされる信号と前記リファレンス信号の内のいずれか一方の信号の位相比較される側のエッジ(立ち上がりエッジまたは立ち下がりエッジの内、前記位相比較回路において位相を比較される側のエッジ)と、他方の信号の位相比較されない側のエッジ(前記位相比較回路において位相を比較されない側のエッジ)が交互に現われるか否かを検知し、いずれか一方の信号が2回以上連続して現われた時にその2回以上連続して現われた信号の周波数の方が高いことを示す信号を出力するよう構成されたことを特徴とするPLL回路。
  5. 請求項1乃至請求項4のいずれかの請求項記載のPLL回路において、
    前記PLL回路は1個の半導体集積回路チップの中に構成され、前記半導体集積回路チップの中には少なくとも2組以上の電源供給回路を備え、前記電源供給回路の中の1組は、前記電圧制御発振器と前記電圧制御発振器に直接信号を出力する回路にのみ電源供給を行なうよう構成したことを特徴とするPLL回路。
  6. アナログの制御電圧とデジタルの制御信号によって発振周波数を制御される電圧制御発振器と、
    前記電圧制御発振器から直接もしくは分周回路等を介して出力されるフィードバック信号と外部から加えられるリファレンス信号の位相を比較する位相比較回路と、
    前記フィードバック信号と前記リファレンス信号の周波数を比較する周波数比較回路と、
    前記位相比較回路の比較結果および前記周波数比較回路の比較結果に基づいて制御パルスを発生する制御パルス発生回路と、
    前記制御パルスによって出力電圧を制御されるチャージポンプ回路とを備え、
    前記チャージポンプ回路の出力電圧を前記電圧制御発振器に前記アナログの制御電圧として加え、
    前記位相比較回路の比較結果を前記電圧制御発振器に前記デジタルの制御信号として加えることによって、前記フィードバック信号と前記リファレンス信号の周波数および位相を一致させるように構成されたPLL回路であって、
    前記パルス発生回路が、
    前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知した時には、前記位相比較回路の比較結果にかかわらず前記フィードバック信号の周波数を前記リファレンス信号の周波数に近付かせる制御パルスを発生し、
    前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知しなくなった後、前記位相比較回路の比較結果が所定回数以上反転するまでの間は、前記フィードバック信号の周波数を変更するような制御パルスは発生せず、
    前記周波数比較回路が前記フィードバック信号と前記リファレンス信号の周波数に差のあることを検知しなくなった後、前記位相比較回路の比較結果が所定回数以上反転した後は、前記フィードバック信号の位相が前記リファレンス信号の位相に近付くように前記フィードバック信号の周波数を変更する制御パルスを発生するように構成されたことを特徴とするPLL回路。
JP18277396A 1995-07-04 1996-06-24 Pll回路および周波数比較回路 Expired - Fee Related JP3698282B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18277396A JP3698282B2 (ja) 1995-07-04 1996-06-24 Pll回路および周波数比較回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19109795 1995-07-04
JP7-191097 1995-07-04
JP18277396A JP3698282B2 (ja) 1995-07-04 1996-06-24 Pll回路および周波数比較回路

Publications (2)

Publication Number Publication Date
JPH0974352A JPH0974352A (ja) 1997-03-18
JP3698282B2 true JP3698282B2 (ja) 2005-09-21

Family

ID=26501446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18277396A Expired - Fee Related JP3698282B2 (ja) 1995-07-04 1996-06-24 Pll回路および周波数比較回路

Country Status (1)

Country Link
JP (1) JP3698282B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970845B2 (ja) 1997-09-03 1999-11-02 日本電気株式会社 ディジタルdll回路
JP2001257567A (ja) 2000-03-08 2001-09-21 Hitachi Ltd 電圧制御発振器およびpll回路および半導体集積回路装置

Also Published As

Publication number Publication date
JPH0974352A (ja) 1997-03-18

Similar Documents

Publication Publication Date Title
US6768387B1 (en) Voltage controlled oscillator and PLL circuit using the same
JP3591841B2 (ja) 広い周波数範囲を持つcmos電圧制御発振器
US6844762B2 (en) Capacitive charge pump
US7212051B1 (en) Control signal generation for a low jitter switched-capacitor frequency synthesizer
US5736872A (en) Low voltage high speed phase frequency detector
US6711229B1 (en) Method of synchronizing phase-locked loop, phase-locked loop and semiconductor provided with same
KR0139136B1 (ko) 클록 신호 발생 회로
US7659760B2 (en) PLL circuit and semiconductor integrated device
US20080101521A1 (en) Clock and data recovery circuit
JPH1098380A (ja) Pll回路
JP4463807B2 (ja) スイッチトキャパシタフィルタ及びフィードバックシステム
US20070229131A1 (en) CML circuit and clock distribution circuit
KR950010208B1 (ko) 신호지연회로 및 클록신호발생회로
JPH0888565A (ja) 無抵抗器型の電圧制御発振器
JPH10224212A (ja) フェイズロックループ回路
JP2000134092A (ja) 位相同期ループ回路および電圧制御型発振器
KR20120012386A (ko) 락 검출 회로 및 이를 포함하는 위상 동기 루프
JP3698282B2 (ja) Pll回路および周波数比較回路
US6091271A (en) Frequency doubling method and apparatus
US10541694B2 (en) Injection-locked phase lock loop circuit
US9548748B1 (en) Digital phase locked loop (PLL) system and method with phase tracing
CN109787618B (zh) 压控振荡器与锁相回路
JP3392278B2 (ja) 発振器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees