JP3697905B2 - Conductive ceramics - Google Patents

Conductive ceramics Download PDF

Info

Publication number
JP3697905B2
JP3697905B2 JP21354198A JP21354198A JP3697905B2 JP 3697905 B2 JP3697905 B2 JP 3697905B2 JP 21354198 A JP21354198 A JP 21354198A JP 21354198 A JP21354198 A JP 21354198A JP 3697905 B2 JP3697905 B2 JP 3697905B2
Authority
JP
Japan
Prior art keywords
sample
air electrode
cell
powder
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21354198A
Other languages
Japanese (ja)
Other versions
JP2000034168A (en
Inventor
晃 上野
正信 相沢
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP21354198A priority Critical patent/JP3697905B2/en
Priority to AU31713/99A priority patent/AU3171399A/en
Priority to US09/673,934 priority patent/US6692855B1/en
Priority to EP99913694A priority patent/EP1081778A4/en
Priority to PCT/JP1999/002048 priority patent/WO1999054946A1/en
Publication of JP2000034168A publication Critical patent/JP2000034168A/en
Application granted granted Critical
Publication of JP3697905B2 publication Critical patent/JP3697905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導電性セラミックスに関する。特に高い発電性能を提供する固体電解質型燃料電池用の空気極支持体に関する。
【0002】
【従来の技術】
円筒型セルタイプの固体電解質型燃料電池の空気電極や空気極支持管を例にとって従来技術を説明する。固体電解質型燃料電池は、特公平1−59705等によって開示されている。固体電解質型燃料電池は、多孔質支持管−空気電極−固体電解質−燃料電極−インタ−コネクタ−で構成される円筒型セルを有する。空気極側に酸素(空気)を流し、燃料電極側にガス燃料(H2、CH4等)を流してやると、このセル内でO2-イオンが移動して化学的燃焼が起こり、空気電極と燃料電極の間に電位が生じ、発電が行われる。空気電極が支持管を兼用する形式(空気極支持管)のものもある。
【0003】
固体電解質型燃料電池の空気電極の材料として、特公平1−59705ではLaMnO3、特開平2−288159では、La1-xSrxMnO3などのペロブスカイト型酸化物セラミックスが提案された。また、Proc. of the3rdInt. Symp. on SOFC,1993においては空気電極としてLa0.90Sr0.10MnO3が紹介されている。
空気極支持管の寸法は一般的に外径10〜20mm、厚み1〜2mm、長さ1〜2mである。このような長尺のセラミックス成形体を製造する際には、一般的には押し出し成形法が用いられる。
【0004】
【発明が解決しようとする課題】
ペロブスカイト型酸化物の作製方法としては特開平7−6769に、粉砕−加圧−熱処理を繰り返す方法が紹介されている。セラミックス粉末の粉砕方法としては、衝撃式粉砕機、気流式粉砕機、ボ−ルミルなどが使用されるが、作業の簡易性から衝撃式粉砕機が使用される場合が多い。
【0005】
本方法の場合は粉砕刃や粉砕室の材質としてFeを主成分とした金属材料が使用されるため、たとえば粉砕刃、粉砕室の材質にステンレスを使用して上記のような粉砕を繰り返した場合は、合成したランタンマンガナイト粉末中に0.5〜1.0wt%程度のFe成分が混入する。ランタンマンガナイト中のFe含有量とセルの発電性能について実験を行った結果、ランタンマンガナイト中のFe成分はセルの発電性能に大きく影響を及ぼし、0.5wt%以上のFe成分はセルの発電性能を大きく低下させることがわかった。
【0006】
本発明は、上記課題を解決するためになされたもので、Fe成分の混入量を制御し、高い発電性能を有する固体電解質型燃料電池セルを提供することにある。
【0007】
【課題を解決するための手段およびその作用・効果】
上記課題を解決するために、本発明は(Ln1−X1−aMnO,Ln:La,Ce,Pr,Nd,Smの中から1種以上,M:Sr,Ca,0.1≦x≦0.5,0<a≦0.1の組成のマンガナイトを主成分とする導電性セラミックスにおいて、Fe成分の含有量が0.01wt%以上0.5wt%以下であることを特徴とする。より望ましくは、(Ln1−X1−aMnO,Ln:La,Ce,Pr,Nd,Smの中から1種以上,M:Sr,Ca,0.1≦x≦0.5,0<a≦0.1の組成のマンガナイトを主成分とする導電性セラミックスにおいて、Fe成分の含有量が0.01wt%以上0.4wt%以下であることを特徴とする。
【0008】
【発明の実施の形態】
本発明の導電性セラミックスにおいては、これを固体電解質型燃料電池用空気極支持体として使用した場合、0.2W/cm2以上の高いセル出力特性を確保するために、(Ln1-xx1-aMnO3,Ln:La,Ce,Pr,Nd,Smの中から1種以上,M:Sr,Ca,0.1≦x≦0.5,0<a≦0.1の組成のランタンマンガナイトにおいて、Fe含有量が0.5wt%以下であることが望ましく、0.4wt%以下であることがより望ましい。
【0009】
また、セル作製工程における作製歩留まり向上と発電中におけるセルの破損を防止するために、空気極支持体の圧環強度は15MPa以上であることが望ましいが、このためにFe含有量が0.01wt%以上であることが望ましい。
【0010】
【実施例】
試験セルの作製方法および試験方法
(La0.75Sr0.250.99MnO3粉末を合成し、これを原料として焼成体を作製し、圧環強度の測定を行った。また、作製した焼成体を空気極支持体として固体電解質型燃料電池セルを作製し、発電特性の評価を行った。
【0011】
ランタンマンガナイト粉末の合成方法、焼成体の作製方法を以下に示す。原料として硝酸ランタン、硝酸ストロンチウム、硝酸マンガンを秤量、混合、熱分解を行った後、1400℃で熱処理を行った。この粉末を試料A用の原料とした。
【0012】
1400℃で熱処理した粉末について、粉砕、加圧し再び熱処理を1400℃で行った。粉砕には衝撃式粉砕機を使用し、粉砕刃、粉砕室の材質はステンレスを基材としてタングステンカーバイトコーティングを行った耐摩耗仕様とした。この粉末を試料B用の原料とした。
【0013】
試料B用の原料粉末をさらに粉砕、加圧、1400℃の熱処理を繰り返して作製した粉末を試料Cとした。
【0014】
試料C用の原料粉末にFe粉を0.1wt%添加、混合し試料D用の原料とした。
【0015】
試料C用の原料粉末にFe粉を0.2wt%添加、混合し、試料E用の原料とした。
【0016】
試料Cの粉末にFe粉を1.0wt%添加、混合し、試料F用の原料とした。
【0017】
それぞれの粉末100部に、有機バインダー10部、グリセリン3部、水10部を添加した後、ミキサー中で混合し、混練機を用いて混練した。この混練物を押し出し成形機を使用して成形し、乾燥、脱脂処理を行った。続いてガス焼成炉中、1400〜1500℃で焼成して、空気極支持体を作製した。圧環強度、導電率評価用の試料形状は外径22mm、肉厚2.0mm、長さ50mmとした。発電試験用の空気極支持体の形状は外径22mm、肉厚2.0mm、長さ200mmとした。
【0018】
本実験においては原料粉末に対するFe成分の混入を抑制するために粉砕機にタングステンカーバイトのコーティングを行ったが、方法はこれに限定されるものではない。セラミックスの溶射や焼き入れによる硬化処理などを行ったものでも良い。
【0019】
作製した試料についてICP発光分光法でFe量の定量分析を行った。その結果、試料A、試料B、試料C、試料D、試料E、試料F中のFe量はそれぞれ0.007wt%,0.20wt%,0.36wt%,0.45wt%,0.55wt%,1.33wt%であった。
【0020】
作製した空気極支持体の圧環強度を以下の方法で評価を行った。
圧環強度は試験機の圧縮治具の間に試料をおき、上下から加圧して破壊させ、その時の荷重値を用いて下記の式から算出した。
【0021】
【数1】

Figure 0003697905
ここで、σrは圧環強度、Pは破壊荷重、Dは試料の外径、dは肉厚、lは試料長さを示す。
【0022】
作製した発電実験用の空気極支持体を使用して、以下の方法でセルを作製した。空気極支持体の外表面に巾7.0mm×長さ50mm×厚さ50μm(軸方向、直線状)のインターコネクター膜をスラリーコートにより製膜した。用いた材料はLa0.75Ca0.25CrO3で、1400℃で焼成を行った。
【0023】
次に空気極支持体のインターコネクター以外の表面に混合層を作製した。8mol%YSZと(La0.75Sr0.250.99MnO3との共沈粉(酸化物換算重量混合比50:50)を特開平9−86932号(本願と同一出願人)に記載したのと同様の方法で作製した。これをスラリーコート法で製膜し、1500℃で焼成した。混合層の厚みは30μmであった。
【0024】
混合層表面に電解質膜を形成した。粒径0.3μmの8mol%YSZをスラリーコート法で製膜し、1500℃で焼成した。電解質の厚みは20μmであった。
【0025】
電解質表面に燃料極を形成した。共沈法により得たNiO/YSZ粉(Ni還元後重量比60:40)をスラリーコート法で製膜し、1400℃で焼成した。燃料極の厚みは100μmであった。次に、3%H2、97%N2雰囲気、1000℃で燃料極を還元処理した。
【0026】
上記のように作製したセルについて発電試験を行った。酸化剤として空気、燃料としてH2+11%H2Oを使用して、運転温度1000℃、燃料利用率80%で評価を行った。
【0027】
(1)Fe含有量と発電特性の関係:
表1に作製した試料のFe含有量とセル出力密度と、空気極支持体圧環強度を示す。
【0028】
【表1】
Figure 0003697905
【0029】
Fe含有量が増加するとセル出力密度が低下することがわかった。SOFCの出力密度としては0.2W/cm2以上であることが望まれる。Fe含有量が0.5wt%を越えると0.2W/cm2以上の出力密度を得ることは不可能であり、Fe含有量が1.33wt%である試料Aについてはセル作製中にクラックが発生して、発電評価を行うことのできるセルを得ることが不可能であった。またFe含有量が0.4wt%以下であれば0.3W/cm2以上の高い出力密度を得ることが可能であることがわかった。
【0030】
(2)Fe含有量と空気極支持体圧環強度の関係:
Fe含有量が増加すると空気極支持体の圧環強度が増大することがわかった。SOFC用空気極支持体の圧環強度としてはセルの耐久性、セル作製中の歩留まりなどを考慮して、15MPa以上であることが望ましい。Fe含有量が0.007wt%であった試料Aについては圧環強度は2.4MPaであり、SOFC用空気極支持体には好ましくない。以上の結果からランタンマンガナイト中のFe含有量は0.01wt%以上であることが望ましい。
【0031】
作製した焼成体試料についてSEM/EDX分析を行ったが、ランタンマンガナイトからなる焼成体粒子間にFeリッチ部分を観察することはできなかった。FeはランタンマンガナイトのMnサイトに固溶することから、本発明におけるランタンマンガナイトにおけるFe含有量とは(Ln1-xx1-aMnO3中のMnサイトに固溶しているものとランタンマンガナイトの粒子間に残存している微量のFeの総和と考えられる。
【0032】
(1)、(2)からFe含有量が0.01wt%以上0.5wt%以下であることが必要だということが分かる。好ましくは、0.01wt%以上0.4wt%以下であり、より好ましくは、0.2wt%以上0.4wt%以下である。
【0033】
【発明の効果】
以上に説明した如く本発明によれば、高いセル出力密度を有するSOFC用空気極支持体に適した導電性セラミックスを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to conductive ceramics. In particular, the present invention relates to an air electrode support for a solid oxide fuel cell that provides high power generation performance.
[0002]
[Prior art]
The prior art will be described by taking an air electrode or an air electrode support tube of a cylindrical cell type solid oxide fuel cell as an example. A solid oxide fuel cell is disclosed in Japanese Patent Publication No. 1-59705. The solid oxide fuel cell has a cylindrical cell composed of a porous support tube, an air electrode, a solid electrolyte, a fuel electrode, and an interconnector. When oxygen (air) is flowed to the air electrode side and gas fuel (H 2 , CH 4, etc.) is flowed to the fuel electrode side, O 2− ions move in this cell, causing chemical combustion, and the air electrode Electric potential is generated between the fuel electrode and the fuel electrode, and electric power is generated. There is a type in which an air electrode also serves as a support tube (air electrode support tube).
[0003]
As a material for an air electrode of a solid oxide fuel cell, perovskite oxide ceramics such as LaMnO3 in Japanese Patent Publication No. 1-59705 and La 1-x Sr x MnO 3 in Japanese Patent Laid-Open No. 2-288159 have been proposed. In addition, Proc. of the3rdInt. Symp. on SOFC, 1993, La 0.90 Sr 0.10 MnO 3 is introduced as an air electrode.
The dimensions of the air electrode support tube are generally 10-20 mm in outer diameter, 1-2 mm in thickness, and 1-2 m in length. In producing such a long ceramic molded body, an extrusion molding method is generally used.
[0004]
[Problems to be solved by the invention]
As a method for producing a perovskite oxide, JP-A-7-6769 introduces a method of repeating pulverization-pressurization-heat treatment. As a method for pulverizing the ceramic powder, an impact pulverizer, an airflow pulverizer, a ball mill, or the like is used, but an impact pulverizer is often used because of the simplicity of work.
[0005]
In the case of this method, a metal material mainly composed of Fe is used as the material of the grinding blade and grinding chamber. For example, when grinding is repeated using stainless steel as the material of the grinding blade and grinding chamber. Is mixed with about 0.5 to 1.0 wt% Fe component in the synthesized lanthanum manganite powder. As a result of experiments on the Fe content in lanthanum manganite and the power generation performance of the cell, the Fe component in the lanthanum manganite has a significant effect on the power generation performance of the cell, and the Fe component of 0.5 wt% or more It was found that the performance was greatly reduced.
[0006]
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a solid oxide fuel cell having high power generation performance by controlling the mixing amount of Fe component.
[0007]
[Means for solving the problems and their functions and effects]
In order to solve the above problems, the present invention is (Ln 1-X M X) 1-a MnO 3, Ln: La, Ce, Pr, Nd, 1 or more from among Sm, M: Sr, Ca, 0 In the conductive ceramic mainly composed of manganite having the composition of 1 ≦ x ≦ 0.5 and 0 <a ≦ 0.1, the content of Fe component is 0.01 wt% or more and 0.5 wt% or less. It is characterized by. More preferably, (Ln 1-X M X ) 1-a MnO 3, Ln: La, Ce, Pr, Nd, 1 or more from among Sm, M: Sr, Ca, 0.1 ≦ x ≦ 0. In the conductive ceramic mainly composed of manganite having a composition of 5, 0 <a ≦ 0.1, the Fe component content is 0.01 wt% or more and 0.4 wt% or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the conductive ceramic of the present invention, when this is used as an air electrode support for a solid oxide fuel cell, in order to ensure a high cell output characteristic of 0.2 W / cm 2 or more, (Ln 1-x M x ) 1-a MnO 3 , Ln: One or more of La, Ce, Pr, Nd, Sm, M: Sr, Ca, 0.1 ≦ x ≦ 0.5, 0 <a ≦ 0.1 In the composition of lanthanum manganite, the Fe content is desirably 0.5 wt% or less, and more desirably 0.4 wt% or less.
[0009]
Further, in order to improve the production yield in the cell production process and prevent damage to the cell during power generation, the crushing strength of the air electrode support is preferably 15 MPa or more, and for this reason, the Fe content is 0.01 wt%. The above is desirable.
[0010]
【Example】
Test Cell Production Method and Test Method (La 0.75 Sr 0.25 ) 0.99 MnO 3 powder was synthesized, a fired body was produced using this as a raw material, and the crushing strength was measured. In addition, solid oxide fuel cells were produced using the produced fired body as an air electrode support, and the power generation characteristics were evaluated.
[0011]
A method for synthesizing lanthanum manganite powder and a method for producing a fired body are shown below. After lanthanum nitrate, strontium nitrate, and manganese nitrate were weighed, mixed, and thermally decomposed as raw materials, heat treatment was performed at 1400 ° C. This powder was used as a raw material for Sample A.
[0012]
About the powder heat-processed at 1400 degreeC, it grind | pulverized and pressurized and heat-processed again at 1400 degreeC. An impact-type pulverizer was used for pulverization, and the material of the pulverization blade and pulverization chamber was made of stainless steel as a base material and was subjected to tungsten carbide coating and was subjected to wear resistance. This powder was used as a raw material for Sample B.
[0013]
Sample C was prepared by further pulverizing, pressurizing, and heat treatment at 1400 ° C. for the raw material powder for Sample B.
[0014]
The raw material powder for sample C was added with 0.1 wt% of Fe powder and mixed to obtain a raw material for sample D.
[0015]
The raw material powder for sample C was added with 0.2 wt% of Fe powder and mixed to obtain a raw material for sample E.
[0016]
The powder of sample C was added with 1.0 wt% of Fe powder and mixed to obtain a raw material for sample F.
[0017]
After adding 10 parts of organic binder, 3 parts of glycerin and 10 parts of water to 100 parts of each powder, they were mixed in a mixer and kneaded using a kneader. This kneaded product was molded using an extrusion molding machine, and dried and degreased. Then, it baked at 1400-1500 degreeC in the gas baking furnace, and produced the air electrode support body. The sample shape for crushing strength and conductivity evaluation was an outer diameter of 22 mm, a wall thickness of 2.0 mm, and a length of 50 mm. The shape of the air electrode support for power generation test was 22 mm in outer diameter, 2.0 mm in thickness, and 200 mm in length.
[0018]
In this experiment, the tungsten carbide was coated on the pulverizer to suppress the mixing of the Fe component into the raw material powder, but the method is not limited to this. It may be one that has been subjected to hardening treatment by thermal spraying or quenching of ceramics.
[0019]
The prepared sample was quantitatively analyzed for the amount of Fe by ICP emission spectroscopy. As a result, the Fe amounts in Sample A, Sample B, Sample C, Sample D, Sample E, and Sample F were 0.007 wt%, 0.20 wt%, 0.36 wt%, 0.45 wt%, and 0.55 wt%, respectively. 1.33 wt%.
[0020]
The crushing strength of the produced air electrode support was evaluated by the following method.
The crushing strength was calculated from the following formula using a load value at that time by placing a sample between the compression jigs of the testing machine and applying pressure from above and below to break.
[0021]
[Expression 1]
Figure 0003697905
Here, σ r is the crushing strength, P is the breaking load, D is the outer diameter of the sample, d is the wall thickness, and l is the sample length.
[0022]
Using the produced air electrode support for power generation experiments, a cell was produced by the following method. An interconnector membrane of width 7.0 mm × length 50 mm × thickness 50 μm (axial direction, linear) was formed on the outer surface of the air electrode support by slurry coating. The material used was La 0.75 Ca 0.25 CrO 3 and baked at 1400 ° C.
[0023]
Next, a mixed layer was formed on the surface of the air electrode support other than the interconnector. Co-precipitated powder of 8 mol% YSZ and (La 0.75 Sr 0.25 ) 0.99 MnO 3 (oxide-mixed weight mixing ratio 50:50) is the same as described in JP-A-9-86932 (same applicant as the present application). It was produced by the method. This was formed into a film by a slurry coating method and baked at 1500 ° C. The thickness of the mixed layer was 30 μm.
[0024]
An electrolyte membrane was formed on the mixed layer surface. 8 mol% YSZ having a particle size of 0.3 μm was formed by a slurry coating method and fired at 1500 ° C. The thickness of the electrolyte was 20 μm.
[0025]
A fuel electrode was formed on the electrolyte surface. NiO / YSZ powder (weight ratio after Ni reduction 60:40) obtained by the coprecipitation method was formed into a film by a slurry coating method and fired at 1400 ° C. The thickness of the fuel electrode was 100 μm. Next, the fuel electrode was reduced at 1000 ° C. in an atmosphere of 3% H 2 and 97% N 2 .
[0026]
A power generation test was performed on the cell produced as described above. Evaluation was performed at an operating temperature of 1000 ° C. and a fuel utilization rate of 80% using air as an oxidant and H 2 + 11% H 2 O as a fuel.
[0027]
(1) Relationship between Fe content and power generation characteristics:
Table 1 shows the Fe content, cell output density, and air electrode support crumbling strength of the samples prepared.
[0028]
[Table 1]
Figure 0003697905
[0029]
It has been found that the cell output density decreases as the Fe content increases. The power density of SOFC is desired to be 0.2 W / cm 2 or more. When the Fe content exceeds 0.5 wt%, it is impossible to obtain an output density of 0.2 W / cm 2 or more. For sample A having an Fe content of 1.33 wt%, cracks were generated during cell fabrication. It was impossible to obtain a cell that could be generated and evaluated for power generation. It was also found that a high power density of 0.3 W / cm 2 or more can be obtained if the Fe content is 0.4 wt% or less.
[0030]
(2) Relationship between Fe content and air electrode support crushing strength:
It has been found that the crushing strength of the air electrode support increases as the Fe content increases. The pressure crushing strength of the SOFC air electrode support is desirably 15 MPa or more in consideration of the durability of the cell, the yield during the production of the cell, and the like. For the sample A having an Fe content of 0.007 wt%, the crushing strength is 2.4 MPa, which is not preferable for the SOFC air electrode support. From the above results, the Fe content in the lanthanum manganite is desirably 0.01 wt% or more.
[0031]
SEM / EDX analysis was performed on the produced fired body sample, but an Fe-rich portion could not be observed between the fired body particles made of lanthanum manganite. Since Fe is dissolved in Mn sites of lanthanum manganite, the Fe content in lanthanum manganite in the present invention is dissolved in Mn sites in (Ln 1-x M x ) 1-a MnO 3 . This is thought to be the sum of trace amounts of Fe remaining between the lanthanum and lanthanum manganite particles.
[0032]
It can be seen from (1) and (2) that the Fe content must be 0.01 wt% or more and 0.5 wt% or less. Preferably, it is 0.01 wt% or more and 0.4 wt% or less, More preferably, it is 0.2 wt% or more and 0.4 wt% or less.
[0033]
【The invention's effect】
As described above, according to the present invention, a conductive ceramic suitable for an SOFC air electrode support having a high cell output density can be provided.

Claims (2)

(Ln1−X1−aMnO,Ln:La,Ce,Pr,Nd,Smの中から1種以上,M:Sr,Ca,0.1≦x≦0.5,0<a≦0.1の組成のマンガナイトを主成分とする導電性セラミックスにおいて、Fe成分の含有量が0.01wt%以上0.5wt%以下であることを特徴とする導電性セラミックス。 (Ln 1-X M X) 1-a MnO 3, Ln: La, Ce, Pr, Nd, Sm 1 or more from among, M: Sr, Ca, 0.1 ≦ x ≦ 0.5,0 < A conductive ceramic comprising a manganite having a composition of a ≦ 0.1 as a main component, wherein the Fe component content is 0.01 wt% or more and 0.5 wt% or less. (Ln1−X1−aMnO,Ln:La,Ce,Pr,Nd,Smの中から1種以上,M:Sr,Ca,0.1≦x≦0.5,0<a≦0.1の組成のマンガナイトを主成分とする導電性セラミックスにおいて、Fe成分の含有量が0.01wt%以上0.4wt%以下であることを特徴とする導電性セラミックス。 (Ln 1-X M X) 1-a MnO 3, Ln: La, Ce, Pr, Nd, Sm 1 or more from among, M: Sr, Ca, 0.1 ≦ x ≦ 0.5,0 < A conductive ceramic comprising a manganite having a composition of a ≦ 0.1 as a main component, wherein the Fe component content is 0.01 wt% or more and 0.4 wt% or less.
JP21354198A 1998-04-21 1998-07-13 Conductive ceramics Expired - Lifetime JP3697905B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21354198A JP3697905B2 (en) 1998-07-13 1998-07-13 Conductive ceramics
AU31713/99A AU3171399A (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same
US09/673,934 US6692855B1 (en) 1998-04-21 1999-04-19 Solid electrolyte type fuel cell and method of producing the same
EP99913694A EP1081778A4 (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same
PCT/JP1999/002048 WO1999054946A1 (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21354198A JP3697905B2 (en) 1998-07-13 1998-07-13 Conductive ceramics

Publications (2)

Publication Number Publication Date
JP2000034168A JP2000034168A (en) 2000-02-02
JP3697905B2 true JP3697905B2 (en) 2005-09-21

Family

ID=16640909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21354198A Expired - Lifetime JP3697905B2 (en) 1998-04-21 1998-07-13 Conductive ceramics

Country Status (1)

Country Link
JP (1) JP3697905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1420470T3 (en) * 2002-05-30 2006-08-14 Sulzer Hexis Ag Process for preparing a coating paste
JP5854368B2 (en) * 2011-06-21 2016-02-09 Toto株式会社 Method for producing electrode material

Also Published As

Publication number Publication date
JP2000034168A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US8288053B2 (en) Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
Bednarz et al. High-temperature oxidation of the Crofer 22 H ferritic steel with Mn1. 45Co1. 45Fe0. 1O4 and Mn1. 5Co1. 5O4 spinel coatings under thermal cycling conditions and its properties
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
EP1453132B1 (en) Solid oxide fuel cell and production method therefor
JP2010282772A (en) Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell
Kiratzis et al. Preparation and characterization of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes
JP4334894B2 (en) Method for producing solid electrolyte
JP5196502B2 (en) Composite material suitable for use as an electrode material in SOC
JP3697905B2 (en) Conductive ceramics
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
US20210234183A1 (en) Electrolyte material for solid oxide fuel cell and method for producing precursor therefor
JPH07267748A (en) Porous sintered compact and its production
JP4201247B2 (en) Fuel electrode material for solid oxide fuel cells
Spotorno et al. LaNi0. 6Fe0. 4O3 as cathode contacting material: Effect on anode supported cell performances
Wang et al. Electron microscopy study of novel ru doped La0. 8Sr0. 2CrO3 as anode materials for Solid Oxide Fuel Cells (SOFCs)
JP2005019261A (en) Fuel electrode material for solid oxide fuel cell and fuel electrode for solid oxide fuel cell using the fuel electrode material
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP3301199B2 (en) Method for producing conductive ceramic sintered body
JP7135419B2 (en) porous sintered body
CN103137979A (en) Intermediate-temperature solid oxide fuel cell compound cathode and preparation method thereof
JP2000048638A (en) Conductive ceramic
JP2000034169A (en) Production of conductive ceramic
JP2000036307A (en) Conductive ceramics tube and manufacture thereof, and solid electrolyte fuel cell using this conductive ceramics tube
JP4462013B2 (en) Solid electrolyte for use in solid oxide fuel cells
CN116314877A (en) Symmetrical solid oxide fuel cell material and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

EXPY Cancellation because of completion of term