JP3697725B2 - Carburized and hardened power transmission member - Google Patents

Carburized and hardened power transmission member Download PDF

Info

Publication number
JP3697725B2
JP3697725B2 JP22660394A JP22660394A JP3697725B2 JP 3697725 B2 JP3697725 B2 JP 3697725B2 JP 22660394 A JP22660394 A JP 22660394A JP 22660394 A JP22660394 A JP 22660394A JP 3697725 B2 JP3697725 B2 JP 3697725B2
Authority
JP
Japan
Prior art keywords
carburized
carburizing
power transmission
quenching
transmission member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22660394A
Other languages
Japanese (ja)
Other versions
JPH07316640A (en
Inventor
和幸 織田
幸夫 有見
章 無田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22660394A priority Critical patent/JP3697725B2/en
Publication of JPH07316640A publication Critical patent/JPH07316640A/en
Application granted granted Critical
Publication of JP3697725B2 publication Critical patent/JP3697725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えば歯車のような動力動力伝達部材に適用するのに好適な浸炭焼入れした動力伝達部材に関する。
【0002】
【従来の技術】
自動車のディファレンシャルギヤのピニオン等の歯車としては一般に肌焼き鋼(低炭素鋼)を用い、その表面にガス浸炭焼入れあるいはプラズマ浸炭焼入れ等を施した後、耐疲労強度と耐磨耗性を向上させたうえで使用している。
【0003】
また、浸炭焼入れ処理・焼戻し処理に替わる歯車等の表面効果処理法として、例えば特開平6−116628号公報に開示されているような中・高炭素鋼の高周波輪郭焼入れ方法が提案されている。この方法は、中・高炭素鋼からなる素材を加熱してオーステナイト化し、少なくとも温間域において塑性加工を行なって冷却し、次に、該素材にオーステナイト化温度以下で予加熱処理を行ない、その後、オーステナイト化温度の直上まで急速に再加熱し、該組織をオーステナイト化した後、焼入れ・焼戻し処理を施すものである。
【0004】
【発明が解決しようとする課題】
ところで、通常行われているガス浸炭焼入れあるいはプラズマ浸炭焼入れでは、浸炭時にワークが長時間高温に加熱されるため、結晶粒界にリンや硫黄等の不純物が偏析し、また炭化物が析出して粒界の強度を低下させている。
【0005】
そのため、高い曲げ応力が掛かる歯底(図1にAで示す)のエッジ部分に結晶粒界を起点として亀裂が発生しやすく、かつ亀裂の伝播も速くなり、静破壊強度および耐衝撃強度が不足するという問題があった。この問題を軽減するには、浸炭深さを浅くする方法があるが、浸炭深さを浅くすると、高い面圧が掛かる歯当たり面(図1にBで示す)においてもスポーリング強度が低下するという問題がある。
【0006】
一方、中・高炭素鋼の高周波輪郭焼入れ方法では、ワークの加熱時間が極めて短時間であるから、上記浸炭処理におけるような問題は解決されるが、中・高炭素鋼は肌焼き鋼等の低炭素鋼よりも被削性が劣るため刃具費が高価でとなり、しかも歯車の芯部が中・高炭素鋼からなるため、芯部の靭性が低いという問題がある。
【0007】
さらに、歯車においては、歯底部および歯当たり面の双方において、オーステナイト結晶粒度が微細であることが強度上望ましいが、従来の方法では、鍛造品を除いて、オーステナイト結晶粒度が#10以上の微細な結晶粒からなる炭素鋼は得られなかった。
【0008】
上述の問題に鑑み、本発明は、低炭素鋼からなる素材の非鍛造品でありながら、粒界粒度を低下させるPSまたは炭化物等の偏析を防止するとともに、オーステナイト結晶粒度が#10以上の浸炭焼入れした動力伝達部材を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係わる動力伝達部材は、非鍛造品からなり歯部が等間隔に形成された素材に浸炭焼入れを施した動力伝達部材であって、浸炭による炭素濃度の増加が見られない素材内部が低炭素鋼からなり、浸炭により炭素濃度が増加した素材表面部が浸炭処理により中・高炭素鋼と同様の炭素濃度を有し、かつJISG0551に規定されるオーステナイト結晶粒度が#10以上であることを特徴とする。
【0010】
上記動力伝達部材の好ましい態様は、歯部が等間隔に形成された素材にプラズマ浸炭後表面焼入れした動力伝達部材で、歯底部における浸炭層の残留オーステナイト量が25〜35%であり、歯当り面における浸炭層の残留オーステナイト量がそれより少ないことを特徴とする。そして、歯当り面における浸炭層の残留オーステナイト量は好ましくは5〜15%であり、また、浸炭層、特に、歯底部における浸炭層の最表面部の炭素濃度がその下の炭素濃度よりも低下せしめられていることが好ましい。
【0011】
【作用および発明の効果】
浸炭処理を施した素材では、浸炭時には炭素の粒界偏析が生じフィルム状のセメンタイトが存在して粒界強度を低下させると考えられるが、本発明に係わる浸炭焼入れした動力伝達部材は、オーステナイト結晶粒が微粒化(オーステナイト結晶粒度が#10以上)されているから、スポーリング強度を低下させることなく静破壊強度および耐衝撃強度を向上させることができる。
【0012】
歯底部の浸炭層における適量の残留オーステナイト量は、エッジ部分の耐曲げ破壊強度を向上させる効果を有し、目安として面積率で25〜35%程度残留するのが好ましい。残留オーステナイト量がこれより少ない場合、組織自体の靭性が不足するほか、母相に固溶しきれない炭化物が破壊の起点として多く存在することにもなり、逆にこれより多い場合、組織自体の強度が下がりエッジ部分が変形しやすくなるという問題が生じる。なお、残留オーステナイト量は表面焼入れ時の加熱温度および高温域での保持時間により適宜調整することができる(高温域での保持時間が長くなるほど炭化物の固溶が進み、残留オーステナイト量が多くなる)。
【0013】
一方、歯当り面の残留オーステナイト量は相対的に少ない。歯当り面の浸炭層においては、スポーリング強度を確保するため、残留オーステナイト量が少なく所定量の炭化物が粒状に分散した組織であることが好ましく、目安として面積率で5〜15%の残留オーステナイト量となるようにするとよい。残留オーステナイト量がこれより少ないということは、浸炭時に析出した炭化物がほとんど固溶せず網状のまま存在するという可能性が大きいということであり、逆にこれより多いということは、炭化物の固溶が多く析出炭化物量が減るということであり、いずれもスポーリング強度の低下の原因となる。
【0014】
なお、歯当り面と歯底部を均一に加熱する通常の表面焼入れ方法を適用した場合、本発明とは逆に、歯底部における残留オーステナイト量が歯当り面におけるよりも一般的に低くなる。つまり、歯車のような部材に浸炭処理を施す場合、単純な平面形状に近い歯当り面では浸炭層の炭素濃度が相対的に高く、歯底部のように内に入ったような形状の部位では炭素濃度が相対的に低くなり勝ちなためである。
【0015】
表面焼入れ時の加熱を、昇温から、均熱、本加熱に亘って歯底部の温度が歯当り面の温度よりも高くなるように設定するのは、歯底部の温度を相対的に長い時間高い温度に保つことになり、歯底部の浸炭層における炭化物の固溶を促進する作用を有する。
【0016】
また、通常、浸炭層の最表面部は過剰浸炭される傾向にあり、浸炭後の最表面部の炭素濃度はその下の炭素濃度より高くなっているが、表面焼入れ時の高温域での保持がある程度長い時間継続して行われると浸炭層の最表面部が脱炭され、その部分では炭素濃度の低下に伴い粒界脆化が起きにくくなる。したがって、最表面部の脱炭を進める場合は、高温域での保持時間が長くなるように加熱条件を設定する。
【0017】
そして、表面焼入れ時の加熱を、昇温から、均熱、本加熱に亘って歯底部の温度が歯当り面の温度よりも高くなるように設定する場合、歯底部の方が高い温度に長時間保持されることになり、特に歯底部浸炭層の最表面部において炭素濃度の低下が大きく、歯底部のエッジ部分の破壊強度が向上する。脱炭は例えば表面から20μmまでの最表面部の炭素濃度が共析点未満、特に0.6〜0.75%程度になるようにするとよい。
【0018】
歯底部の温度が歯当り面の温度よりも高くなるようにするための具体的加熱手段としては、表面焼入れの分やで周知の高周波誘導加熱が好ましく、その周波数および出力等を調整することにより、1本のコイルで上記部位別の加熱温度設定を容易に実現することができる。なお、高周波誘導加熱においては、部材表面は比較的短時間で所定の温度に上昇して再結晶を起こし、これに伴い結晶粒が微細化されるとともに、加熱前に結晶粒界に偏析していた不純物が粒内に固溶し、炭化物も粒内に固溶するが固溶しない分は分断され粒状になる。
【0019】
【実施例】
以下、本発明の実施例について説明する。
【0020】
<実施例1>
使用した素材は、C:0.20%,Si:0.08%,Mn:0.75%,P:0.016%,S:0.026%,Cr:1.02%,Mo:0.42%,Al:0.024%,残部Feの肌焼き鋼素材からなる非鍛造品であるが、結晶粒微細化元素としてNbを添加した方が良い。そして、実機でのバラツキ要因(歯当り状態、他部品の破損)の影響を回避するために、図3に示すような寸法を有する試験片について基礎的試験(三点曲げ試験)により評価を行なった。
【0021】
先ず上記試験片に対して、オーステナイト化温度以上の温度でのガス浸炭処理および焼入れを施す。浸炭深さはスポーリング強度を確保するため1.2mmを目標とし、表面炭素濃度は、共析点以下の0.7%(図4の条件a)と、従来の浸炭焼入れと同様の1.0%(図4の条件b)を目標とした。
【0022】
次に高周波焼入れを施すが、素材の表面および内部を焼入れ組織とし、かつ表面のオーステナイト結晶粒度を変化させるため、図5に示すようなヒートパターンを設定した。高周波処理設備は400kHzマシンと10kHzマシンとを用意し、出力と時間の調整により得られた温度測定結果を下記の表1に示す。
【0023】
【表1】

Figure 0003697725
【0024】
このようにして浸炭処理と高周波焼入れとを施された試験片に対して、図6に示す三点曲げ試験機を用いて破断荷重を測定した。試験条件を下記の表2に示す。
【0025】
【表2】
Figure 0003697725
【0026】
浸炭処理と高周波焼入れの組み合わせごとの試験片の冶金学的特性の調査結果および三点曲げ試験(N=3)における破断荷重平均値を下記の表3に示す。
【0027】
【表3】
Figure 0003697725
【0028】
(1) 基礎試験結果:オーステナイト結晶粒度と三点曲げ破断荷重との関係を図7示す。従来の浸炭焼入れ品に対して最大50%の破断荷重の向上が認められた。
【0029】
(2) 浸炭条件検討結果:表面炭素濃度を1%から、粒界脆化原因となるセメンタイトの析出しない共析点以下の0.7%とすることにより、浸炭焼入れ品の強度は約19%向上しており、同じ高周波条件においても5〜19%の強度向上が確認された。
【0030】
(3) 高周波焼入れ条件検討結果:高周波加熱最高温度とオーステナイト結晶粒度との関係を図8に示す。短時間加熱においても加熱温度の上昇にしたがって結晶粒の粗大化は避けられないが、加熱温度をオーステナイト化温度直上の温度領域に設定した場合、浸炭焼入れでは困難なオーステナイト結晶粒度が#10以上の結晶粒の微細化が可能になった。そして、この試験片は、芯部が低炭素鋼からなり、表面部が浸炭処理により中・高炭素鋼と同様の炭素濃度を有している。
【0031】
次に、図1に示すようなワークW(ピニオン)に対して浸炭処理を施した後、高周波焼入れを施す場合の方法について説明する。
【0032】
高周波焼入れは短時間急速加熱であるから、オーステナイト結晶粒が微細であるが、芯部まで硬度を必要とするものに対しては表面のみでなく全体加熱を行なうため、ワークWの表面が比較的長時間高温となり、結晶粒の成長が進み過ぎ、靭性が低下する。そこで、本実施例では、予熱工程と本加熱工程との間に、ガス(Ar,N2)による表面急冷工程を追加することにより、図9に示すように、芯部はオーステナイト化温度直上の温度を保ちつつ、表面のオーステナイト結晶粒の微細化を図っている。これによって、芯部まで焼入れされるとともに、オーステナイト結晶粒度が#10以上の表面結晶粒が得られる。そして、このワークWは、芯部が低炭素鋼からなり、表面部が浸炭処理により中・高炭素鋼と同様の炭素濃度を有している。
【0033】
図10はその場合の高周波焼入れ装置を概略的に示す図で、加熱用高周波コイル1、2の間に、図11に示すような多数の冷却用ガスの噴射ノズル3を取り付けたノズルホルダ4が、絶縁性セラミック材5、5を介して装着されている。そして、ワークWをその軸線を中心に回転させながら、図9のヒートパターンに従って高周波焼入れを行なう。
【0034】
このように、本実施例では、浸炭処理後高周波加熱によりオーステナイト化温度以上に急速加熱しているため、再結晶により新しい粒界が形成されて粒界強度が向上し、かつオーステナイト結晶粒の微粒化(オーステナイト結晶粒度が#10以上)が実現できるから、スポーリング強度を低下させることなく静破壊強度および耐衝撃強度を向上させることができる。
【0035】
<実施例2>
本実施例はプラズマ浸炭を前提とした浸炭焼入れ方法に関するものである。
【0036】
本実施例で使用したワークは、C:0.18%,Si:0.09%,Mn:0.69%,P:0.006%,S:0.021%,Cr:1.02%,Mo:0.39%,Al:0.35%,Nb:0.035%、残部Feの肌焼き鋼素材からなる、外径41mmφ、高さ17.6mm、孔径15mmのディファレンシャルギヤのピニオン(図1)であり、これをガス浸炭焼入れしたものを従来例、プラズマ浸炭後高周波焼入れしたものを実施例として、それぞれに対し静破壊試験およびスポーリング試験を行なった。
【0037】
なお、上記従来のガス浸炭焼入れは、表面炭素濃度0.9%を目標とし、(1)920℃、5時間のガス浸炭処理、(2)引き続き860℃で1時間保持後120℃の油焼入れ処理、(3)180℃で再加熱し2時間の焼戻し処理、の各工程からなる。
【0038】
一方、上記実施例では、プラズマ浸炭は、同じく表面炭素濃度0.9%を目標とし、(1)真空炉内へワークを収容し、真空中で1000℃、10分間の均熱処理、(2)真空炉内へH2ガスを導入して炉内圧を2Torrに調整し、400V,1.5Aの条件でグロー放電し、20分間のクリーンアップ処理、(3)H2ガスを抜きC38ガスを導入して炉内圧を3Torrに調整し、360V,2Aの条件でグロー放電し、50分間の浸炭処理、(4)炉内を真空とし72分間の拡散処理後、徐冷、という手順で行ない、冷却後高周波表面焼入れを施し、最後に180℃、2時間の焼戻しを施した。
【0039】
実施例の高周波焼入れは、図12に示すように、図示しないモータに接続されて回転自在な治具11と従動回転する治具12との間にワークWを挟持し、その外周位置に高周波コイル13を配置し、下記の表4に示す条件で計42秒間加熱し、加熱後は80℃のオイルを35秒間噴射して冷却した。また、ワークWの表面の温度を調べるため、ワークWの表面各部位A〜E(図13参照)に熱電対14を取り付け、その検出値をスリップリング15および固定支持部16を通じてペンレコーダに記録できるようにした。なお、ワークWの表面部位Aはピニオンギヤのヒール側歯底部(図1のAに対応)、Bはピッチ面(図1のBに対応)、Cは歯底部中央、Dはトウ側歯底部、Eは歯先である。
【0040】
【表4】
Figure 0003697725
【0041】
温度測定結果を示す図14を見ると、歯底部の最高加熱温度が高く、特にエッジ部分に高い曲げ応力が掛かるヒール側歯底部Aにおいては、ピッチ面Bに比較すると、余熱、均熱、本加熱の全体に亘り高温に加熱されている。参考までに、ヒール側歯底部Aの温度と時間との関係およびピッチ面Bの温度と時間との関係を単純化して示すと、図15のようになる。
【0042】
静破壊試験は、ワークWをディファレンシャルギヤのギヤユニット21に組み込み(図16参照)、出力軸22、23を固定し、ギヤケース24を回転させて捩じり、ワークが破壊するときのトルクを測定するもので、下記の表5に示すように、実施例では従来例に比較して高い静破壊強度(いずれも3個の平均値)が得られた。これは、実施例において、歯底部、特にヒール側歯底部Aが高温に長時間維持されることから炭化物が固溶し、その部分の残留オーステナイトの量が多く炭化物が少なくなり、エッジ部分の靭性が向上し亀裂の伝播が遅れるためと考えられ、また、後述するように最表面部の炭素濃度が低下し亀裂の起点が少なくなっていることも理由の1つと考えられる。なお、ヒール側歯底部Aにおける残留オーステナイトの面積率は平均30%、ピッチ面Bでは平均約10%であった。
【0043】
【表5】
Figure 0003697725
【0044】
スポーリング試験は、同じくワークWをディファレンシャルギヤのギヤユニットに組み込み、これをトランスミッションを介してエンジンに連結し、ユニットの一方の出力軸を固定し、トランスミッションへの入力回転数が262rpm、入力トルクが117〜123N・m、ユニットの他方の出力軸の回転数が50rpm、その出力軸トルクが459〜471N・mの条件で行なった。そして、ユニットの振動を常時検出し、振動がある基準値を超えるようになるまでの時間をからそのときのサイクル数を算出し、これをスポーリング寿命とした。表5に示すように、実施例では従来例に比較し大きいスポーリング寿命(いずれも2個の平均値)が得られている。
【0045】
また、本実施例において、歯底部Aの表面からの深さと炭素濃度との関係を調べたところ、図17(a)に示すように、表面から50μm付近までの最表面部の炭素濃度が低下している。これは、本実施例では、歯底部において炭化物の固溶を促進するため、高周波焼入れの際の加熱としては異例なほど長時間高温度に保持したことから、表面からの脱炭が進むためである。
【0046】
なお、比較例として、実施例の高周波加熱条件に代えて、周波数8.2kHz、出力40kW、加熱時間9秒の条件(この種のピニオンに通常適用されている表面焼入れ条件)で高周波加熱したものでは、高温に保持されている時間が短くなるためか、図7(b)に示すように表面からの脱炭が生じていない。
【0047】
本実施例によれば、歯車等の動力伝達部材を表面焼入れする際、歯底部の加熱温度が歯当り面の加熱温度よりも高くなるように設定することにより、歯底部においてはその靭性を高めエッジ部分の破壊強度を向上させることができ、一方、歯当り面においてはそのスポーリング強度を向上させることができる。
【0048】
また、表面焼入れ時の高温加熱をある程度長い時間継続して浸炭層の最表面部を脱炭する場合、特に高い温度に保持された歯底部において脱炭が進行しやすく、エッジ部分の破壊強度を向上させることができる。
【図面の簡単な説明】
【図1】 ディファレンシャルギヤのピニオンの断面図
【図2】 鋼の変態図
【図3】 実施例1における試験片の正面図および側面図
【図4】 同浸炭焼入れのヒートパターンを示す図
【図5】 同高周波焼入れのヒートパターンを示す図
【図6】 同三点曲げ試験機の説明図
【図7】 同オーステナイト結晶粒度と三点曲げ破断荷重との関係を示す図
【図8】 同高周波加熱温度とオーステナイト結晶粒度との関係を示す図
【図9】 図10の高周波焼入れ装置を用いた高周波焼入れのヒートパターンを示す図
【図10】 実施例1で用いられる高周波焼入れ装置を概略的に示す図
【図11】 同ノズルホルダの平面図
【図12】 実施例2で用いられる高周波焼入れ試験装置を概略的に示す図
【図13】 ディファレンシャルギヤのピニオンの各測定部位の説明図
【図14】 実施例2における高周波加熱による加熱温度と時間との関係を示すグラフ
【図15】 図14のグラフを単純化した説明図
【図16】 静破壊試験装置を概略的に示す図
【図17】 高周波焼入れ後の表面炭素濃度を表す図
【符号の説明】
1,2 加熱用高周波コイル
3 冷却用ガスの噴射ノズル
4 ノズルホルダ
5 絶縁性セラミック材
11,12 ワークを保持する治具
13 高周波コイル
14 熱電対
15 スリップリング
21 ディファレンシャルギヤのユニット
22,23 出力軸
24 ディファレンシャルギヤのギヤケース
W ワーク(ディファレンシャルギヤのピニオン)[0001]
[Industrial application fields]
The present invention relates to a carburized and hardened power transmission member suitable for application to a power transmission member such as a gear.
[0002]
[Prior art]
In general, case-hardened steel (low carbon steel) is used as a gear for pinion of a differential gear of an automobile, and its surface is subjected to gas carburizing quenching or plasma carburizing quenching to improve fatigue resistance and wear resistance. It is used above.
[0003]
Further, as a surface effect processing method for gears and the like that replaces the carburizing and quenching processing and tempering processing, for example, a high-frequency contour quenching method for medium and high carbon steel as disclosed in JP-A-6-116628 has been proposed. In this method, a material made of medium and high carbon steel is heated to be austenitized, plastically processed at least in a warm region and cooled, and then the material is preheated at or below the austenitizing temperature, and thereafter Then, after rapidly reheating to just above the austenitizing temperature to austenite the structure, quenching and tempering treatment is performed.
[0004]
[Problems to be solved by the invention]
By the way, in the usual gas carburizing quenching or plasma carburizing quenching, since the workpiece is heated to a high temperature for a long time during carburizing, impurities such as phosphorus and sulfur are segregated at the grain boundaries, and carbides are precipitated to form grains. The strength of the field is reduced.
[0005]
Therefore, cracks are likely to start from the grain boundary at the edge of the tooth bottom (shown by A in FIG. 1) where high bending stress is applied, and the crack propagation is fast, resulting in insufficient static fracture strength and impact strength. There was a problem to do. In order to alleviate this problem, there is a method of reducing the carburizing depth. However, when the carburizing depth is reduced, the spalling strength also decreases on the tooth contact surface (shown by B in FIG. 1) where high surface pressure is applied. There is a problem.
[0006]
On the other hand, in the high-frequency contour quenching method for medium and high carbon steel, the heating time of the workpiece is extremely short, so the problem as in the carburizing treatment is solved. Since the machinability is inferior to that of low carbon steel, the cost of the cutting tool is high, and the core portion of the gear is made of medium / high carbon steel, so that the toughness of the core portion is low.
[0007]
Furthermore, in a gear, it is desirable in terms of strength that the austenite crystal grain size is fine at both the root portion and the tooth contact surface, but the conventional method has a fine austenite crystal grain size of # 10 or more except for forged products. Carbon steel made of various crystal grains was not obtained.
[0008]
In view of the above problems, the present invention is a non-forged product made of low-carbon steel, but prevents segregation of PS or carbide, which lowers the grain boundary grain size, and carburizes with an austenite grain size of # 10 or more. An object is to provide a quenched power transmission member.
[0009]
[Means for Solving the Problems]
The power transmission member according to the present invention is a power transmission member obtained by carburizing and quenching a material made of a non-forged product and having tooth portions formed at equal intervals, and the inside of the material where no increase in carbon concentration due to carburization is observed. The material surface part, which is made of low carbon steel and whose carbon concentration is increased by carburizing, has the same carbon concentration as medium and high carbon steel by carburizing treatment, and the austenite grain size specified by JISG0551 is # 10 or more. It is characterized by.
[0010]
A preferred embodiment of the power transmission member is a power transmission member obtained by plasma-carburizing and then quenching the surface of a material having tooth portions formed at equal intervals. The amount of residual austenite of the carburized layer at the bottom of the tooth is 25 to 35%, and the tooth contact It is characterized in that the amount of retained austenite of the carburized layer on the surface is less than that. The amount of retained austenite of the carburized layer at the tooth contact surface is preferably 5 to 15%, and the carbon concentration in the outermost surface portion of the carburized layer, particularly the carburized layer at the bottom of the tooth, is lower than the carbon concentration below it. It is preferable to be caulked.
[0011]
[Operation and effect of the invention]
In the carburized material, it is considered that carbon grain boundary segregation occurs during carburization, and film-like cementite is present to reduce the grain boundary strength, but the carburized and quenched power transmission member according to the present invention is made of austenite crystals. Since the grains are atomized (the austenite grain size is # 10 or more), the static fracture strength and the impact resistance strength can be improved without reducing the spalling strength.
[0012]
An appropriate amount of retained austenite in the carburized layer at the bottom of the tooth has an effect of improving the bending fracture strength of the edge portion, and as a guideline, it preferably remains about 25 to 35% in terms of area ratio. If the amount of retained austenite is less than this, the toughness of the structure itself will be insufficient, and there will be many carbides that cannot be dissolved in the matrix as a starting point of fracture. There arises a problem that the strength is lowered and the edge portion is easily deformed. The amount of retained austenite can be appropriately adjusted according to the heating temperature at the time of surface quenching and the holding time in the high temperature range (the longer the holding time in the high temperature range, the more the solid solution of the carbide advances and the amount of residual austenite increases) .
[0013]
On the other hand, the amount of retained austenite on the tooth contact surface is relatively small. In the carburized layer on the tooth contact surface, in order to ensure the spalling strength, the amount of retained austenite is preferably small and a structure in which a predetermined amount of carbide is dispersed in a granular form, and as a guide, retained austenite having an area ratio of 5 to 15%. It is good to make it quantity. If the amount of retained austenite is less than this, it means that there is a high possibility that the carbides precipitated during carburizing will hardly dissolve and remain in a net form. This means that the amount of precipitated carbide is reduced, and both cause a decrease in the spalling strength.
[0014]
In addition, when a normal surface quenching method for uniformly heating the tooth contact surface and the tooth bottom portion is applied, the amount of retained austenite at the tooth bottom portion is generally lower than that at the tooth contact surface, contrary to the present invention. In other words, when carburizing a member such as a gear, the carbon concentration of the carburized layer is relatively high at the tooth contact surface that is close to a simple planar shape, and in a part that is in the shape like the bottom of the tooth. This is because the carbon concentration tends to be relatively low.
[0015]
The heating at the time of surface quenching is set so that the temperature of the bottom of the tooth becomes higher than the temperature of the tooth contact surface from the temperature rise to the soaking and the main heating. It will be kept at a high temperature and has the effect of promoting solid solution of carbides in the carburized layer at the bottom of the tooth.
[0016]
In addition, the outermost surface part of the carburized layer tends to be excessively carburized, and the carbon concentration of the outermost surface part after carburizing is higher than the carbon concentration below it, but it is maintained in the high temperature range during surface quenching. Is continued for a certain length of time, the outermost surface portion of the carburized layer is decarburized, and at that portion, grain boundary embrittlement hardly occurs as the carbon concentration decreases. Therefore, when the decarburization of the outermost surface portion is advanced, the heating condition is set so that the holding time in the high temperature region becomes long.
[0017]
When the surface quenching is set so that the temperature at the bottom of the tooth becomes higher than the temperature at the tooth contact surface from the temperature rise to the soaking and the main heating, the temperature at the bottom is longer. It will be maintained for a long time, and the carbon concentration is greatly reduced particularly at the outermost surface portion of the bottom carburized layer, and the fracture strength of the edge portion of the bottom is improved. Decarburization is preferably performed such that the carbon concentration in the outermost surface portion from the surface to 20 μm is less than the eutectoid point, particularly about 0.6 to 0.75%.
[0018]
As specific heating means for making the temperature of the tooth bottom portion higher than the temperature of the tooth contact surface, known high-frequency induction heating is preferable for the amount of surface quenching, and by adjusting its frequency and output, etc. The heating temperature setting for each part can be easily realized with one coil. In high-frequency induction heating, the surface of the member rises to a predetermined temperature in a relatively short time and causes recrystallization. As a result, the crystal grains are refined and segregated at the grain boundaries before heating. The impurities are dissolved in the grains, and the carbides are also dissolved in the grains, but the parts that are not dissolved are divided and become granular.
[0019]
【Example】
Examples of the present invention will be described below.
[0020]
<Example 1>
The materials used were C: 0.20%, Si: 0.08%, Mn: 0.75%, P: 0.016%, S: 0.026%, Cr: 1.02%, Mo: 0 .42%, Al: 0.024%, non-forged product made of case-hardened steel material with the remaining Fe, but it is better to add Nb as a grain refinement element. Then, in order to avoid the influence of variation factors (tooth contact state, damage to other parts) in the actual machine, a test piece having dimensions as shown in FIG. 3 is evaluated by a basic test (three-point bending test). It was.
[0021]
First, the test specimen is subjected to gas carburization treatment and quenching at a temperature equal to or higher than the austenitizing temperature. The carburization depth is set to 1.2 mm in order to ensure the spalling strength, and the surface carbon concentration is 0.7% below the eutectoid point (condition a in FIG. 4), which is the same as in conventional carburizing and quenching. The target was 0% (condition b in FIG. 4).
[0022]
Next, induction hardening was performed, but a heat pattern as shown in FIG. 5 was set in order to change the surface and inside of the material to a quenched structure and change the austenite grain size of the surface. Table 1 below shows the temperature measurement results obtained by adjusting the output and time by preparing a 400 kHz machine and a 10 kHz machine.
[0023]
[Table 1]
Figure 0003697725
[0024]
With respect to the test piece subjected to the carburizing treatment and induction hardening in this way, the breaking load was measured using a three-point bending tester shown in FIG. The test conditions are shown in Table 2 below.
[0025]
[Table 2]
Figure 0003697725
[0026]
Table 3 below shows the investigation results of the metallurgical characteristics of the test pieces for each combination of the carburizing treatment and the induction hardening and the average breaking load in the three-point bending test (N = 3).
[0027]
[Table 3]
Figure 0003697725
[0028]
(1) Basic test results: FIG. 7 shows the relationship between the austenite grain size and the three-point bending fracture load. An improvement in breaking load of up to 50% over the conventional carburized and quenched product was observed.
[0029]
(2) Results of carburizing condition examination: By setting the surface carbon concentration from 1% to 0.7% below the eutectoid point at which cementite that causes grain boundary embrittlement does not precipitate, the carburized and quenched product has a strength of about 19%. It was confirmed that the strength was improved by 5 to 19% even under the same high frequency conditions.
[0030]
(3) Induction quenching examination results: Fig. 8 shows the relationship between the maximum induction heating temperature and the austenite grain size. Even in short-time heating, the coarsening of crystal grains is inevitable as the heating temperature rises. However, when the heating temperature is set in the temperature range immediately above the austenitizing temperature, the austenite grain size, which is difficult to be carburized and quenched, is # 10 or more. Crystal grain refinement became possible. And as for this test piece, a core part consists of low carbon steel, and the surface part has the carbon concentration similar to medium and high carbon steel by carburizing process.
[0031]
Next, a method in the case of subjecting the workpiece W (pinion) as shown in FIG. 1 to carburizing and then induction hardening will be described.
[0032]
Since induction hardening is rapid heating for a short time, the austenite crystal grains are fine. However, the surface of the workpiece W is relatively comparative because not only the surface but also the entire surface is heated for those requiring hardness to the core. It becomes a high temperature for a long time, the crystal grain grows too much, and the toughness decreases. Therefore, in this embodiment, by adding a surface quenching step with gas (Ar, N 2 ) between the preheating step and the main heating step, the core portion is just above the austenitizing temperature as shown in FIG. While maintaining the temperature, the surface austenite crystal grains are miniaturized. Thus, surface crystal grains having an austenite grain size of # 10 or more are obtained while quenching to the core. And as for this workpiece | work W, a core part consists of low carbon steel, and the surface part has the carbon concentration similar to medium and high carbon steel by carburizing process.
[0033]
FIG. 10 is a diagram schematically showing an induction hardening apparatus in that case. A nozzle holder 4 having a number of cooling gas injection nozzles 3 as shown in FIG. The insulating ceramic materials 5 and 5 are attached. Then, induction hardening is performed according to the heat pattern of FIG. 9 while rotating the workpiece W around its axis.
[0034]
As described above, in this example, since rapid heating to the austenitizing temperature or higher by high-frequency heating after carburizing treatment, a new grain boundary is formed by recrystallization, the grain boundary strength is improved, and the fine grains of austenite crystal grains (Austenite grain size # 10 or more) can be realized, so that the static fracture strength and impact strength can be improved without lowering the spalling strength.
[0035]
<Example 2>
The present embodiment relates to a carburizing and quenching method based on plasma carburizing.
[0036]
The workpiece used in this example is C: 0.18%, Si: 0.09%, Mn: 0.69%, P: 0.006%, S: 0.021%, Cr: 1.02% , Mo: 0.39%, Al: 0.35%, Nb: 0.035%, differential gear pinion (outer diameter 41mmφ, height 17.6mm, hole diameter 15mm, made of case-hardened steel material of Fe Fig. 1). A static carburization test and a spalling test were performed on a gas carburized and quenched steel as a conventional example and a plasma carburized and induction hardened steel as an example.
[0037]
The above-mentioned conventional gas carburizing and quenching is aimed at a surface carbon concentration of 0.9%, (1) gas carburizing treatment at 920 ° C. for 5 hours, and (2) oil quenching at 120 ° C. after holding at 860 ° C. for 1 hour. It consists of the following steps: (3) reheating at 180 ° C. and tempering for 2 hours.
[0038]
On the other hand, in the above example, plasma carburization is similarly targeted for a surface carbon concentration of 0.9%, and (1) a workpiece is placed in a vacuum furnace and soaked in a vacuum at 1000 ° C. for 10 minutes, (2) H 2 gas was introduced into the vacuum furnace, the furnace pressure was adjusted to 2 Torr, glow discharge was performed under conditions of 400 V and 1.5 A, cleanup treatment for 20 minutes, (3) H 2 gas was extracted and C 3 H 8 Introduce gas, adjust furnace pressure to 3 Torr, glow discharge under conditions of 360V, 2A, carburize for 50 minutes, (4) vacuum in the furnace and diffuse for 72 minutes, followed by slow cooling After cooling, induction surface quenching was performed, and finally tempering was performed at 180 ° C. for 2 hours.
[0039]
In the induction hardening according to the embodiment, as shown in FIG. 12, a work W is sandwiched between a rotatable jig 11 connected to a motor (not shown) and a driven rotating jig 12, and a high frequency coil is provided at the outer peripheral position thereof. No. 13 was placed and heated for a total of 42 seconds under the conditions shown in Table 4 below. After heating, oil at 80 ° C. was sprayed for 35 seconds and cooled. Further, in order to check the temperature of the surface of the workpiece W, a thermocouple 14 is attached to each part A to E (see FIG. 13) of the surface of the workpiece W, and the detected value is recorded on the pen recorder through the slip ring 15 and the fixed support portion 16. I was able to do it. The surface portion A of the workpiece W is the heel side bottom of the pinion gear (corresponding to A in FIG. 1), B is the pitch surface (corresponding to B in FIG. 1), C is the center of the bottom, D is the toe side bottom, E is a tooth tip.
[0040]
[Table 4]
Figure 0003697725
[0041]
As shown in FIG. 14 showing the temperature measurement results, the maximum heating temperature of the tooth bottom part is high, and particularly in the heel side tooth bottom part A where a high bending stress is applied to the edge part, compared to the pitch surface B, residual heat, soaking, It is heated to a high temperature throughout the heating. For reference, the relationship between the temperature of the heel side tooth bottom portion A and time and the relationship between the temperature of the pitch surface B and time are shown in a simplified manner as shown in FIG.
[0042]
In the static fracture test, the workpiece W is incorporated in the differential gear unit 21 (see FIG. 16), the output shafts 22 and 23 are fixed, the gear case 24 is rotated and twisted, and the torque when the workpiece breaks is measured. Therefore, as shown in Table 5 below, in the examples, a higher static fracture strength (average value of all three) was obtained compared to the conventional example. This is because, in the example, the bottom of the tooth, particularly the heel side bottom A, is maintained at a high temperature for a long time, so that the carbide dissolves, the amount of retained austenite in that portion is large, the carbide is reduced, and the toughness of the edge portion. This is thought to be because the propagation of cracks is delayed and the propagation of cracks is delayed, and the reason is that the carbon concentration in the outermost surface portion is lowered and the starting point of cracks is reduced, as will be described later. The area ratio of retained austenite at the heel side tooth bottom A was 30% on the average, and the average for pitch surface B was about 10%.
[0043]
[Table 5]
Figure 0003697725
[0044]
In the spalling test, the work W is also incorporated into a differential gear unit, connected to the engine via the transmission, one output shaft of the unit is fixed, the input rotational speed to the transmission is 262 rpm, and the input torque is The measurement was performed under the conditions of 117 to 123 N · m, the rotation speed of the other output shaft of the unit was 50 rpm, and the output shaft torque was 459 to 471 N · m. And the vibration of the unit was always detected, the number of cycles at that time was calculated from the time until the vibration exceeded a certain reference value, and this was used as the spalling life. As shown in Table 5, in the example, compared to the conventional example, a spalling life (both average values of both) is obtained.
[0045]
Further, in this example, when the relationship between the depth from the surface of the root A and the carbon concentration was examined, as shown in FIG. 17A, the carbon concentration in the outermost surface portion from the surface to around 50 μm decreased. are doing. This is because, in this example, in order to promote solid solution of carbides at the bottom of the tooth, it was kept at a high temperature for a long time, which is unusual for heating during induction hardening, so that decarburization from the surface proceeds. is there.
[0046]
As a comparative example, instead of the high-frequency heating conditions of the examples, high-frequency heating was performed under conditions of a frequency of 8.2 kHz, an output of 40 kW, and a heating time of 9 seconds (surface quenching conditions normally applied to this kind of pinion). Then, since the time kept at high temperature is shortened, as shown in FIG. 7B, decarburization from the surface has not occurred.
[0047]
According to the present embodiment, when the power transmission member such as a gear is subjected to surface quenching, the toughness is increased at the bottom of the tooth by setting the heating temperature at the bottom of the tooth to be higher than the heating temperature of the tooth contact surface. The breaking strength of the edge portion can be improved, while the spalling strength can be improved on the tooth contact surface.
[0048]
Also, when decarburizing the outermost surface portion of the carburized layer by continuing high-temperature heating during surface quenching for a certain length of time, decarburization tends to proceed especially at the bottom of the tooth maintained at a high temperature, and the fracture strength of the edge portion is increased. Can be improved.
[Brief description of the drawings]
1 is a cross-sectional view of a differential gear pinion. FIG. 2 is a steel transformation diagram. FIG. 3 is a front view and a side view of a test piece in Example 1. FIG. 4 is a diagram showing a heat pattern of the same carburizing and quenching. 5] A diagram showing the heat pattern of the induction hardening [Fig. 6] An explanatory diagram of the same three-point bending test machine [Fig. 7] A diagram showing the relationship between the austenite grain size and the three-point bending breaking load [Fig. 8] FIG. 9 is a diagram showing a relationship between heating temperature and austenite grain size. FIG. 9 is a diagram showing a heat pattern of induction hardening using the induction hardening device of FIG. 10. FIG. 10 schematically shows an induction hardening device used in Example 1. FIG. 11 is a plan view of the nozzle holder. FIG. 12 is a diagram schematically showing an induction hardening test apparatus used in Example 2. FIG. 13 is a measurement part of a differential gear pinion. FIG. 14 is a graph showing the relationship between the heating temperature and time by high frequency heating in Example 2. FIG. 15 is a simplified illustration of the graph of FIG. 14. FIG. 16 schematically shows a static fracture test apparatus. Figure [Figure 17] Figure showing surface carbon concentration after induction hardening [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 High frequency coil for heating 3 Injection nozzle of cooling gas 4 Nozzle holder 5 Insulating ceramic material 11, 12 Jig holding work 13 High frequency coil 14 Thermocouple 15 Slip ring 21 Differential gear unit 22, 23 Output shaft 24 Differential gear gear case W Workpiece (Differential gear pinion)

Claims (5)

非鍛造品からなり歯部が等間隔に形成された素材に浸炭焼入れを施した動力伝達部材であって、浸炭による炭素濃度の増加が見られない素材内部が低炭素鋼からなり、浸炭により炭素濃度が増加した素材表面部が浸炭処理により中・高炭素鋼と同様の炭素濃度を有し、かつJISG0551に規定されるオーステナイト結晶粒度が#10以上であることを特徴とする浸炭焼入れした動力伝達部材。Non forgings made from the tooth portion is a power transmission member which has been subjected to carburizing quenching material formed at regular intervals, the material inside not seen an increase in the carbon concentration by carburization, low carbon steel, carbon by carburizing Carburized and hardened power transmission characterized in that the surface of the material with increased concentration has a carbon concentration similar to that of medium and high carbon steel by carburizing treatment and the austenite grain size specified in JISG0551 is # 10 or more. Element. 上記浸炭焼入れは、プラズマ浸炭後表面焼入れすることにより行い、歯底部における浸炭層の残留オーステナイト量が25〜35%であり、歯当り面における浸炭層の残留オーステナイト量がそれより少ないことを特徴とする請求項1に記載の浸炭焼入れした動力伝達部材。  The carburizing and quenching is performed by surface quenching after plasma carburizing, and the amount of retained austenite of the carburized layer at the root is 25 to 35%, and the amount of retained austenite of the carburized layer at the tooth contact surface is smaller than that. The carburized and hardened power transmission member according to claim 1. 歯当り面における浸炭層の残留オーステナイト量が5〜15%であることを特徴とする請求項2に記載の浸炭焼入れした動力伝達部材。  The carburized and quenched power transmission member according to claim 2, wherein the amount of retained austenite of the carburized layer on the tooth contact surface is 5 to 15%. 浸炭層は、素材の内側から最表面に向かって炭素濃度が低下する最表面部を有することを特徴とする請求項2または3に記載の浸炭焼入れした動力伝達部材。 The carburized and hardened power transmission member according to claim 2 or 3, wherein the carburized layer has an outermost surface portion in which a carbon concentration decreases from an inner side of the material toward an outermost surface . 歯底部における浸炭層は、素材の内側から最表面に向かって炭素濃度が低下する最表面部を有することを特徴とする請求項4に記載の浸炭焼入れした動力伝達部材。The carburized and hardened power transmission member according to claim 4, wherein the carburized layer in the tooth bottom portion has an outermost surface portion in which a carbon concentration decreases from the inner side of the material toward the outermost surface .
JP22660394A 1994-03-29 1994-09-21 Carburized and hardened power transmission member Expired - Fee Related JP3697725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22660394A JP3697725B2 (en) 1994-03-29 1994-09-21 Carburized and hardened power transmission member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8413594 1994-03-29
JP6-84135 1994-03-29
JP22660394A JP3697725B2 (en) 1994-03-29 1994-09-21 Carburized and hardened power transmission member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004302663A Division JP4079139B2 (en) 1994-03-29 2004-10-18 Carburizing and quenching method

Publications (2)

Publication Number Publication Date
JPH07316640A JPH07316640A (en) 1995-12-05
JP3697725B2 true JP3697725B2 (en) 2005-09-21

Family

ID=26425207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22660394A Expired - Fee Related JP3697725B2 (en) 1994-03-29 1994-09-21 Carburized and hardened power transmission member

Country Status (1)

Country Link
JP (1) JP3697725B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346469B1 (en) * 1999-12-16 2002-07-27 현대자동차주식회사 Manufacturing method of tappet shim for vehicle
WO2002053943A1 (en) * 2000-12-27 2002-07-11 Nsk Ltd. Toroidal continuously variable transmission
JP4390576B2 (en) * 2003-03-04 2009-12-24 株式会社小松製作所 Rolling member
JP4912385B2 (en) * 2003-03-04 2012-04-11 株式会社小松製作所 Manufacturing method of rolling member
JP4390526B2 (en) * 2003-03-11 2009-12-24 株式会社小松製作所 Rolling member and manufacturing method thereof
JP4643614B2 (en) * 2007-06-06 2011-03-02 高周波熱錬株式会社 Induction gear quenching method for gears
DE102010055210A1 (en) * 2010-12-20 2012-06-21 Ejot Gmbh & Co. Kg Low alloy carbon steel screw and method of making such a screw
FR2973043B1 (en) * 2011-03-22 2014-08-22 Hispano Suiza Sa METHOD FOR TREATING A PIECE SUCH AS A PINION
DE112014002237T5 (en) * 2013-06-20 2016-01-21 Aisin Aw Co., Ltd. Gear and method for its production
CN103352106A (en) * 2013-06-28 2013-10-16 安徽呈合科技有限责任公司 Surface-hardening treatment method for inner wall of low-carbon steel long cylinder
JP2016017212A (en) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 Carburizing and quenching method for steel
CN113832429B (en) * 2021-08-30 2023-10-27 东方电气(广州)重型机器有限公司 Carburizing method and carburizing device for detecting austenite grain size of ferritic steel

Also Published As

Publication number Publication date
JPH07316640A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JP3387427B2 (en) Heat treatment method for steel
JP3697725B2 (en) Carburized and hardened power transmission member
JP2012214900A (en) Method for manufacturing machine components
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP4079139B2 (en) Carburizing and quenching method
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
KR100317712B1 (en) Carburizing heat treatment method and carburizing heat transfer member
JP4102866B2 (en) Gear manufacturing method
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP4208426B2 (en) Induction hardening method and bearing parts
JP2000129347A (en) Production of high strength parts
JP7270343B2 (en) Method for manufacturing mechanical parts
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
JP6447064B2 (en) Steel parts
JPH0770646A (en) Production of gear
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JPH1018020A (en) Heat treatment for steel
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JPH0873929A (en) Machine element part and manufacture thereof
KR20230085371A (en) Method of precipitated heat treatment and power transfer member subjected to precipitated heat treatment
JP7009938B2 (en) Axle shaft
JPS6227515A (en) Method for strengthening surface

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees