JP3694732B2 - Manufacturing method of high hardness and high chromium cast iron powder alloy - Google Patents

Manufacturing method of high hardness and high chromium cast iron powder alloy Download PDF

Info

Publication number
JP3694732B2
JP3694732B2 JP2000143932A JP2000143932A JP3694732B2 JP 3694732 B2 JP3694732 B2 JP 3694732B2 JP 2000143932 A JP2000143932 A JP 2000143932A JP 2000143932 A JP2000143932 A JP 2000143932A JP 3694732 B2 JP3694732 B2 JP 3694732B2
Authority
JP
Japan
Prior art keywords
cast iron
powder
alloy
chromium
powder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000143932A
Other languages
Japanese (ja)
Other versions
JP2001329301A (en
Inventor
富雄 佐藤
満 坂本
茂 秋山
晃 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000143932A priority Critical patent/JP3694732B2/en
Priority to US09/735,518 priority patent/US20020094297A1/en
Priority to DE10064056A priority patent/DE10064056B9/en
Priority to KR10-2000-0087132A priority patent/KR100400989B1/en
Publication of JP2001329301A publication Critical patent/JP2001329301A/en
Application granted granted Critical
Publication of JP3694732B2 publication Critical patent/JP3694732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

【0001】
【発明の属する技術分野】
本発明は、各種破砕機、粉砕機などにおける耐摩耗部材や、火力発電、製鉄プラント、セメント産業を始めとする種々な分野における耐摩耗、耐熱、耐食部品などの材料として好適に用いられる高硬度高クロム鋳鉄粉末合金を効率よく製造する方法に関するものである。
【0002】
【従来の技術】
高クロム鋳鉄は、高硬度の炭化物を多量に含有するために、耐摩耗性及び耐熱性に優れている上、鉄基地中にクロムを多量に固溶していることから、室温はもとより、高温での耐食性にも優れるなどの特徴を有している。高クロム鋳鉄は、このような特徴を有し、かつ比較的安価であることから、実用材料として、例えば火力発電やセメントプラントなどにおける保護管、石炭粉砕装置、ノズル、インペラなどに広く用いられている。
【0003】
このような工業的用途において、生産性や経済性をより高度化するためには、メンテナンスインターバルの長期化、さらにはメンテナンスフリー化が求められるが、従来の製造方法による高クロム鋳鉄では、耐摩耗性や耐熱性、耐食性などが必ずしも十分ではなく、その要望に答えることができないのが実状である。
【0004】
耐摩耗性を向上させるためには、含有炭素量を鉄−クロム−炭素の三元系合金における共晶線以上に増加させ、晶出する高硬度のM73型炭化物量を多くすることが有効な手段であるが、このような過共晶組成の合金では、一般に粗大な炭化物が、その熱流方向すなわち凝固方向に沿って不均質に晶出する顕著な異方性を有するため、該合金の著しい脆化を始めとする機械的性質の低下は免れず、過共晶組成の高クロム鋳鉄は、これまでほとんど実用に供されていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、従来の高クロム鋳鉄よりも飛躍的に優れた耐摩耗性、耐熱性及び耐食性を兼備する高クロム鋳鉄部材を与えることができ、メンテナンスインターバルの長期化、さらにはメンテナンスフリー化を可能とする高硬度高クロム鋳鉄粉末合金の新規な製造方法を提供することを目的としてなされたものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、凝固に際して従来慣用されている鋳造法の十万倍から百万倍、あるいは1千万倍という桁違いの速度で急速に凝固して粉末とし、かつ大気中においてプラズマ焼結することにより、炭素含有量が、鉄−クロム−炭素三元系合金における共晶線以下の亜共晶合金はもとより、炭素含有量が共晶線以上の過共晶合金においても、鉄基地や晶出炭化物が従来の鋳造材とは比較にならないほど桁違いに微細、均質化され、慣用の鋳造材よりも格段に硬度の高い高クロム鋳鉄粉末合金が得られ、その目的を達成しうることを見出し、この知見に基づいて本発明を完成するに至った。
【0007】
すなわち、本発明は、クロム11〜30質量%と炭素2.2〜5.0質量%を含み、残部が実質上鉄からなる高クロム鋳鉄急冷凝固合金粉末を、遠心噴霧により104℃/秒以上の冷却速度で調製したのち、大気中、成形圧力10〜50MPa、焼結温度1000〜1200℃において圧縮成形及び放電プラズマ焼結を行うことを特徴とする高硬度高クロム鋳鉄粉末合金の製造方法を提供するものである。
【0008】
【発明の実施の形態】
本発明方法においては、まず、クロム11〜30質量%と炭素2.2〜5.0質量%を含み、残部が実質上鉄からなる鉄−クロム−炭素三元系の急冷凝固合金粉末を、遠心噴霧により104℃/秒以上、通常は105℃/秒に達する冷却速度で製造する。この冷却速度が104℃/秒未満では所望の物性を有する鋳鉄粉末合金が得られず、本発明の目的が達せられない。
【0009】
この場合、急冷凝固法としては、遠心噴霧法を用いることが必要である。急冷凝固法として、例えば単ロール法や双ロール法なども知られているが、これらの方法では急冷凝固薄帯が得られ、この薄帯は固化成形に際して嵩張るので不便であり、粉砕などの余分の工程が必要となる。その上、粉砕に伴う粉砕機からの合金へのコンタミネーションの問題も包含することになる。
【0010】
したがって、本発明においては、急冷凝固材の形態としては、粉末のものが用いられる。また、遠心噴霧法は、(1)粉末の冷却速度が大きい、(2)噴霧媒を用いないため、粉末内部へのガストラップが少ない、(3)粉末表面の酸化が少なく、かつサテライトフリーの球状粉末の製造が可能である、(4)溶湯の噴霧条件と冷却条件を独立に制御できる、などの他の粉末製造法にはない利点を有しているため、本発明においては、急冷凝固粉末の調製に際して、この遠心噴霧法を用いることが必要である
【0011】
次に、このようにして調製された高クロム鋳鉄急冷凝固粉末を、大気中において放電プラズマ焼結することにより、粉末合金を得る。この放電プラズマ焼結においては成形圧力10〜50MPa、焼結温度1000〜1200℃の条件が採用され、そして、焼結は数分間の短時間で終了する。該放電プラズマ焼結法においては、まず粉末粒子間にプラズマ放電を発生させ、その衝撃で、粒子表面に熱やひずみのエネルギーを蓄積させて該粒子表面を活性化させ、その表面に吸着しているガスや汚れ、さらには数nmのオーダーの酸化皮膜の一部を破壊して清浄な粒子表面を現出させる。その後に通電によるジュール熱を発生させ、粉末粒子同士の焼結、結合を促進させることができるので、本発明方法における非平衡状態にある粉末の固化成形にはプラズマ焼結法を用いることが必要である。
【0012】
このようにして得られた高クロム鋳鉄粉末合金においては、その組織は顕著に微細、均質化されたものであり、しかも従来慣用の鋳造材のような異方性は全く示さない。したがって、この高クロム鋳鉄粉末合金は、組織微細化による強化も行われ、慣用の鋳造材を大幅に上回る硬度を有し、耐摩耗性にも優れる。
【0013】
前述の本発明方法により得られた粉末合金においては、クロムは鉄基地に固溶し、鉄基地の耐食性を増すと共に、初晶炭化物(Fe,Cr)73を形成する重要な元素として作用する。しかし、その含有量が11質量%未満ではそれらの効果が十分に発揮されないし、逆に30質量%を超えると硬さが低下する。したがって、本発明においては、合金中のクロムの含有量は11〜30質量%の範囲で選定される。
【0014】
一方、炭素は、クロムと炭化物を生成する重要な元素である。しかし、その含有量が2.2質量%未満では晶出する炭化物量が少なく、十分な硬さ及び耐摩耗性が発揮されないし、逆に5.0質量%を超えると生成炭化物量が多くなりすぎて、靭性が著しく阻害される。したがって、本発明においては、合金中の炭素の含有量は2.2〜5.0質量%の範囲で選定される。この範囲内で炭素含有量が少ないと亜共晶の高クロム鋳鉄となり、炭素含有量が多いと過共晶の高クロム鋳鉄となる。
【0015】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
【0016】
実施例
Fe−25.3Cr−2.60Cの化学組成を有する亜共晶の高クロム鋳鉄の急冷凝固粉末を、遠心噴霧法により、105〜104℃/秒の冷却速度にて調製した。
次いで、この粉末を粒径177μm以下に分級後、32MPaの成形圧力を作用させた状態で、パルス状の電圧を印加し1140℃にて3分間保持して圧縮成形及びプラズマ焼結を行うことにより、亜共晶粉末合金製造した。
図1(a)に、上記亜共晶粉末合金ミクロ組織の顕微鏡写真図を示す。このから分かるように鉄基地及び炭化物が極めて微細化された均質な組織を呈している。
この亜共晶粉末合金の室温におけるロックウェル硬さHRCを図2に示す。この図から分かるように亜共晶粉末合金のロックウェル硬さは63HRCまで向上している
【0017】
実施例2
Fe−24.4Cr−4.74Cの化学組成を有する過共晶の高クロム鋳鉄の急冷凝固粉末を、遠心噴霧法により、10 5 〜10 4 ℃/秒の冷却速度にて調製した。
次いで、この粉末を粒径177μm以下に分級後、32MPaの成形圧力を作用させた状態で、パルス状の電圧を印加し、1100℃の温度で3分間保持して圧縮成形及びプラズマ焼結を行うことにより、過共晶粉末合金を製造した。
図1(b)に、上記過共晶粉末合金のミクロ組織の顕微鏡写真図を示す。この図から分かるように、過共晶粉末合金においても、鉄基地及び炭化物が極めて微細化された均質な組織を呈している。
この過共晶粉末合金の室温におけるロックウェル硬さHRCを図2に示す。この図から分かるように過共晶粉末合金のロックウェル硬さは68HRCまで向上している。
【0018】
比較例
金型鋳造により実施例と全く同じ化学組成を有するFe−25.3Cr−2.60Cの亜共晶金型鋳造材作製した。
この鋳造材は金型鋳造されているため、一般に広く用いられている砂型鋳造材よりも凝固速度が速く、機械的性質も改善されている。
図1(c)に、上記の亜共晶金型鋳造材ミクロ組織の顕微鏡写真図を示す。このから、鋳造材の組織は、亜共晶鋳造材においては、初晶オーステナイト(γ相)が粗大なデンドライト状に晶出し、その間隙にγ相/炭化物の粗大な共晶が存在したものであることが分かる。また、この亜共晶鋳造材はその凝固方向(熱流方向)に組織が発達した著しい異方性を呈している。
図2に、これらの鋳造材のロックウェル硬さHRCを示す。亜共晶鋳造材のロックウェル硬さ50HRCであった。この値は、実施例における亜共晶粉末合金の63HRC比べて、著しく低いことが分かる。
このように、通常の砂型鋳造よりも、凝固速度が速く、したがって機械的性質が改善された金型鋳造により製造した亜共晶組成の鉄−クロム−炭素合金の場合においてさえも、その硬度は本発明の場合よりも著しく低くなっている。
【0019】
比較例2
実施例2と全く同じ化学組成を有するFe−24.4Cr−4.74Cの過共晶金型鋳造材を作製した。
この鋳造材は金型鋳造されているため、一般に広く用いられている砂型鋳造材よりも凝固速度が速く、機械的性質も改善されている。
図1(d)に、上記の過共晶金型鋳造材のミクロ組織の顕微鏡写真図を示す。この図から、鋳造材の組織は、過共晶鋳造材においては、粗大に晶出した初晶炭化物とγ相/炭化物共晶からなっていることが分かる。また、この鋳造材は、その凝固方向(熱流方向)に組織が発達した著しい異方性を呈している。
図2に、この鋳造材のロックウェル硬さHRCを示す。この図から分かるように、過共晶鋳造材のロックウェル硬さは57HRCにすぎなかった。この値は、 実施例2における過共晶粉末合金の68HRCに比べて、著しく低いことが分かる。
このように、通常の砂型鋳造よりも、凝固速度が速く、したがって機械的性質が改善された金型鋳造により製造した過共晶組成の鉄−クロム−炭素合金の場合においてさえも、その硬度は本発明の場合よりも著しく低くなっている。
【0020】
【発明の効果】
本発明方法によれば、従来、組織の微細、均質化が不可能であった高クロム鋳鉄において、組織の微細、均質化を達成することができ、その結果、同一組成であるにもかかわらず、高い硬度を有する粉末合金を容易に製造することができる。これにより、高クロム鋳鉄の用途がさらに拡大すると共に、メンテナンスインターバルの長期化、さらにはメンテナンスフリー化が可能となり、その工業的価値は極めて高いものである。
【図面の簡単な説明】
【図1】 実施例及び比較例により、それぞれ製造された高クロム鋳鉄の粉末合金及び鋳造材のミクロ組織を示す顕微鏡写真図。
【図2】 実施例及び比較例により、それぞれ製造された高クロム鋳鉄の粉末合金及び鋳造材の室温におけるロックウェル硬さHRCを示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a high hardness suitably used as a material for wear-resistant members in various crushers, pulverizers, etc., and in various fields including thermal power generation, iron-making plant, cement industry, etc. The present invention relates to a method for efficiently producing a high chromium cast iron powder alloy.
[0002]
[Prior art]
High-chromium cast iron contains a large amount of high-hardness carbides, so it has excellent wear resistance and heat resistance, and has a high solid solution of chromium in the iron base. It has features such as excellent corrosion resistance. High chrome cast iron has such characteristics and is relatively inexpensive, so it is widely used as a practical material, for example, in protective pipes, coal pulverizers, nozzles, impellers, etc. in thermal power generation and cement plants. Yes.
[0003]
In such industrial applications, in order to further improve productivity and economy, it is necessary to lengthen the maintenance interval and to make it maintenance-free. Actually, the properties, heat resistance, corrosion resistance, etc. are not always sufficient, and the demands cannot be met.
[0004]
In order to improve wear resistance, increase the amount of carbon contained in the iron-chromium-carbon ternary alloy beyond the eutectic line and increase the amount of M 7 C 3 type carbide with high hardness to be crystallized. However, in such a hypereutectic alloy, coarse carbides generally have a significant anisotropy that crystallizes inhomogeneously along the heat flow direction, that is, the solidification direction. The deterioration of mechanical properties such as remarkable embrittlement of the alloy is inevitable, and high chromium cast iron with a hypereutectic composition has not been practically used so far.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention can provide a high-chromium cast iron member having both wear resistance, heat resistance, and corrosion resistance that is dramatically superior to conventional high-chromium cast iron, and has a long maintenance interval. The object of the present invention is to provide a novel method for producing a high-hardness, high-chromium cast iron powder alloy that can be made maintenance-free.
[0006]
[Means for Solving the Problems]
The present inventors have found that the result of object intensive studies in order to achieve, upon solidification, a million times from hundred thousand times the casting method, which is conventionally customary or in orders of magnitude of the rate of 10 million times By rapidly solidifying into powder and plasma sintering in the atmosphere, the carbon content is not only the hypoeutectic alloy below the eutectic line in the iron-chromium-carbon ternary alloy, but also the carbon content. Even in hypereutectic alloys above eutectic wire, the iron base and crystallized carbides are remarkably finer and more homogenous than conventional castings, and are much harder than conventional castings. A chromium cast iron powder alloy was obtained, and it was found that the object could be achieved, and the present invention was completed based on this finding.
[0007]
That is, the present invention provides a high chromium cast iron rapidly solidified alloy powder containing 11 to 30% by mass of chromium and 2.2 to 5.0% by mass of carbon, with the balance being substantially iron, by centrifugal spraying at 10 4 ° C / second. A method for producing a high-hardness, high-chromium cast iron powder alloy characterized by performing compression molding and discharge plasma sintering at a molding pressure of 10-50 MPa and a sintering temperature of 1000-1200 ° C. after preparation at the above cooling rate Is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, first, an iron-chromium-carbon ternary rapidly solidified alloy powder containing 11 to 30% by mass of chromium and 2.2 to 5.0% by mass of carbon, with the balance being substantially iron. Manufactured by centrifugal spraying at a cooling rate of 10 4 ° C / second or more, usually 10 5 ° C / second. If the cooling rate is less than 10 4 ° C / second, a cast iron powder alloy having desired physical properties cannot be obtained, and the object of the present invention cannot be achieved.
[0009]
In this case, it is necessary to use the centrifugal spray method as the rapid solidification method. As the rapid solidification method, for example, a single roll method or a twin roll method is also known. However, these methods provide a rapid solidification strip, which is inconvenient because it is bulky during solidification molding, and is not convenient for grinding, etc. This process is required. In addition, the problem of contamination from the pulverizer to the alloy accompanying pulverization is also included.
[0010]
Therefore, in the present invention, the rapidly solidified material is in the form of powder. In addition, the centrifugal spraying method is (1) the powder cooling rate is large, (2) no spray medium is used, so there are few gas traps inside the powder, (3) little oxidation of the powder surface, and satellite free. The present invention has advantages not available in other powder production methods, such as the ability to produce spherical powders, and (4) the ability to independently control the spraying and cooling conditions of the molten metal. In preparing the powder, it is necessary to use this centrifugal spray method.
[0011]
Next, the high chromium cast iron rapidly solidified powder thus prepared is subjected to discharge plasma sintering in the atmosphere to obtain a powder alloy. In this discharge plasma sintering, conditions of a molding pressure of 10 to 50 MPa and a sintering temperature of 1000 to 1200 ° C. are adopted, and the sintering is completed in a short time of several minutes. In the spark plasma sintering method, first, a plasma discharge is generated between powder particles, and by the impact, heat and strain energy are accumulated on the particle surface to activate the particle surface and adsorb on the surface. It destroys the gas, dirt, and part of the oxide film on the order of several nanometers to reveal a clean particle surface. Then, Joule heat is generated by energization, and sintering and bonding of powder particles can be promoted. Therefore, it is necessary to use a plasma sintering method for solidification molding of powder in a non-equilibrium state in the method of the present invention. It is.
[0012]
In the high chromium cast iron powder alloy thus obtained, the structure is remarkably fine and homogenized, and does not show any anisotropy as in a conventional cast material. Therefore, the high chromium cast iron powder alloy is strengthened by refining the structure, has a hardness significantly higher than that of a conventional cast material, and is excellent in wear resistance.
[0013]
In the powder alloy obtained by the above-described method of the present invention, chromium dissolves in the iron matrix, increases the corrosion resistance of the iron matrix, and acts as an important element for forming primary crystal carbide (Fe, Cr) 7 C 3. To do. However, if the content is less than 11% by mass, those effects are not sufficiently exhibited. Conversely, if the content exceeds 30% by mass, the hardness decreases. Therefore, in the present invention, the chromium content in the alloy is selected in the range of 11 to 30% by mass.
[0014]
On the other hand, carbon is an important element that produces chromium and carbide. However, if the content is less than 2.2% by mass, the amount of carbide to be crystallized is small, and sufficient hardness and wear resistance are not exhibited. Conversely, if the content exceeds 5.0% by mass, the amount of generated carbide increases. Too much toughness is significantly impaired. Therefore, in the present invention, the carbon content in the alloy is selected in the range of 2.2 to 5.0 mass%. When the carbon content is low within this range, hypoeutectic high chromium cast iron is obtained, and when the carbon content is high, hypereutectic high chromium cast iron is obtained.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
[0016]
Example 1
The rapidly solidified powder of the high chromium cast iron hypoeutectic having a chemical composition of Fe-25.3Cr-2.60C, by centrifugal atomization, were prepared at a cooling rate of 10 5 ~10 4 ℃ / sec.
Then, after the classification of the powder of particle diameter of below 177 .mu.m, in a state in which the action of molding pressure of 32 MPa, a pulsed voltage is applied, by performing the compression molding and plasma sintering was held for 3 minutes at 1140 ° C. Thus, a hypoeutectic powder alloy was produced.
FIG. 1 (a) shows a micrograph of the microstructure of the hypoeutectic powder alloy. As can be seen from this figure , the iron matrix and carbides have a very fine and homogeneous structure.
The Rockwell hardness HRC of this hypoeutectic powder alloy at room temperature is shown in FIG. As can be seen from this figure, the Rockwell hardness of the hypoeutectic powder alloy is improved to 63 HRC.
[0017]
Example 2
A hyper-eutectic high chromium cast iron rapidly solidified powder having a chemical composition of Fe-24.4Cr-4.74C was prepared by a centrifugal spray method at a cooling rate of 10 5 to 10 4 ° C / second.
Next, after classifying the powder to a particle size of 177 μm or less, a pulsed voltage is applied in a state where a molding pressure of 32 MPa is applied, and the powder is held at a temperature of 1100 ° C. for 3 minutes to perform compression molding and plasma sintering. Thus, a hypereutectic powder alloy was produced.
FIG. 1 (b) shows a micrograph of the microstructure of the hypereutectic powder alloy. As can be seen from this figure, even in the hypereutectic powder alloy, the iron matrix and carbides have a very fine structure.
The Rockwell hardness HRC of this hypereutectic powder alloy at room temperature is shown in FIG. As can be seen from this figure, the Rockwell hardness of the hypereutectic powder alloy is improved to 68 HRC.
[0018]
Comparative Example 1
By a die casting to prepare a hypo Akirakin casting material Fe-25.3Cr-2.60C having exactly the same chemical composition as in Example 1.
Since this cast material is die-cast, the solidification rate is faster than that of a widely used sand cast material, and the mechanical properties are improved.
FIG. 1 (c) shows a micrograph of the microstructure of the hypoeutectic mold casting. From this figure , the structure of the cast material is that in the hypoeutectic cast material, primary austenite (γ phase) crystallizes in a coarse dendrite shape, and a coarse eutectic of γ phase / carbide exists in the gap. It turns out that it is. Further, the hypoeutectic cast material, tissue and has a significant anisotropy developed to the solidification direction (heat flow direction).
FIG. 2 shows the Rockwell hardness HRC of these cast materials. The Rockwell hardness of the hypoeutectic cast material was 50 HRC . This value is compared to 63HRC hypoeutectic powder alloy in Example 1, it can be seen significantly lower.
Thus, even in the case of hypoeutectic iron-chromium-carbon alloys produced by mold casting, which has a faster solidification rate and therefore improved mechanical properties than conventional sand mold casting, its hardness is It is significantly lower than in the case of the present invention.
[0019]
Comparative Example 2
A hypereutectic die cast material of Fe-24.4Cr-4.74C having exactly the same chemical composition as in Example 2 was produced.
Since this cast material is die-cast, the solidification rate is faster than that of a widely used sand cast material, and the mechanical properties are improved.
FIG. 1 (d) shows a micrograph of the microstructure of the hypereutectic mold casting. From this figure, it can be seen that the structure of the cast material is composed of coarsely crystallized primary crystal carbide and γ phase / carbide eutectic in the hypereutectic cast material. Further, this cast material exhibits a remarkable anisotropy in which the structure is developed in the solidification direction (heat flow direction).
FIG. 2 shows the Rockwell hardness HRC of this cast material. As can be seen from this figure, the Rockwell hardness of the hypereutectic cast material was only 57 HRC. It can be seen that this value is significantly lower than the 68 HRC of the hypereutectic powder alloy in Example 2.
Thus, even in the case of a hypereutectic iron-chromium-carbon alloy produced by mold casting, which has a faster solidification rate and thus improved mechanical properties than conventional sand mold casting, its hardness is It is significantly lower than in the case of the present invention.
[0020]
【The invention's effect】
According to the method of the present invention, it is possible to achieve the fine structure and homogenization of the structure in the high chromium cast iron, which has been impossible in the past. Therefore, a powder alloy having high hardness can be easily produced. As a result, the use of high-chromium cast iron is further expanded, the maintenance interval can be extended and maintenance-free can be achieved, and the industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a photomicrograph showing the microstructure of a high chromium cast iron powder alloy and a cast material produced according to examples and comparative examples, respectively.
FIG. 2 is a view showing Rockwell hardness HRC at room temperature of a high chromium cast iron powder alloy and a cast material, respectively, manufactured according to Examples and Comparative Examples.

Claims (1)

クロム11〜30質量%と炭素2.2〜5.0質量%を含み、残部が実質上鉄からなる高クロム鋳鉄急冷凝固合金粉末を、遠心噴霧により104℃/秒以上の冷却速度で調製したのち、大気中、成形圧力10〜50MPa、焼結温度1000〜1200℃において圧縮成形及び放電プラズマ焼結を行うことを特徴とする高硬度高クロム鋳鉄粉末合金の製造方法。A high-chromium cast iron rapidly solidified alloy powder containing 11-30 mass% chromium and 2.2-5.0 mass% carbon and the balance being substantially iron is prepared by centrifugal spraying at a cooling rate of 10 4 ° C / second or more. After that, compression molding and discharge plasma sintering are performed in the atmosphere at a molding pressure of 10 to 50 MPa and a sintering temperature of 1000 to 1200 ° C.
JP2000143932A 2000-05-16 2000-05-16 Manufacturing method of high hardness and high chromium cast iron powder alloy Expired - Lifetime JP3694732B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000143932A JP3694732B2 (en) 2000-05-16 2000-05-16 Manufacturing method of high hardness and high chromium cast iron powder alloy
US09/735,518 US20020094297A1 (en) 2000-05-16 2000-12-14 Method for the preparation of a sintered body of high-hardness high-chromium cast iron
DE10064056A DE10064056B9 (en) 2000-05-16 2000-12-21 A process for producing a sintered body of high-hardness, high-chromium-content cast iron
KR10-2000-0087132A KR100400989B1 (en) 2000-05-16 2000-12-30 Method for the preparation of a sintered body of high-hardness high-chromium cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143932A JP3694732B2 (en) 2000-05-16 2000-05-16 Manufacturing method of high hardness and high chromium cast iron powder alloy

Publications (2)

Publication Number Publication Date
JP2001329301A JP2001329301A (en) 2001-11-27
JP3694732B2 true JP3694732B2 (en) 2005-09-14

Family

ID=18650676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143932A Expired - Lifetime JP3694732B2 (en) 2000-05-16 2000-05-16 Manufacturing method of high hardness and high chromium cast iron powder alloy

Country Status (4)

Country Link
US (1) US20020094297A1 (en)
JP (1) JP3694732B2 (en)
KR (1) KR100400989B1 (en)
DE (1) DE10064056B9 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507251A (en) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. Centrifugal spraying of iron alloys
BR112020011171A2 (en) * 2017-12-04 2020-11-17 Weir Minerals Australia Limited corrosion resistant and white cast iron
KR20190134043A (en) 2018-05-24 2019-12-04 무진정밀(주) High chromium cast iron with excellent abrasion resistance and corrosion resistance and parts containing the same used for wet type exhaust gas desulfurization equipment of thermoelectric power plant
WO2020021122A1 (en) 2018-07-27 2020-01-30 Innomaq 21, S.L. Method for the obtaining cost effective powder
CN115029606B (en) * 2022-06-14 2022-11-04 西安稀有金属材料研究院有限公司 Powder metallurgy preparation method of double-reinforcement-phase high-chromium cast iron wear-resistant composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346089A1 (en) * 1983-12-21 1985-07-18 Dr. Weusthoff GmbH, 4000 Düsseldorf METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS
SE9402672D0 (en) * 1994-08-10 1994-08-10 Hoeganaes Ab Chromium containing materials having high tensile strength

Also Published As

Publication number Publication date
DE10064056B9 (en) 2005-12-15
KR100400989B1 (en) 2003-10-10
DE10064056A1 (en) 2001-11-29
KR20010105145A (en) 2001-11-28
JP2001329301A (en) 2001-11-27
DE10064056B4 (en) 2004-04-08
US20020094297A1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
US4469514A (en) Sintered high speed tool steel alloy composition
CN1929991B (en) High-abrasive material
JP3694732B2 (en) Manufacturing method of high hardness and high chromium cast iron powder alloy
US4576642A (en) Alloy composition and process
SE454059B (en) SET TO MANUFACTURE POWDER PARTICLES FOR FINE CORN MATERIAL ALLOYS
US4851193A (en) High temperature aluminum-base alloy
JPS63241148A (en) Production of semi-manufactured product from aluminum base alloy
AU628374B2 (en) Friction actuated extrusion of rapidly solidified high temperature al-base alloys
JP2821269B2 (en) “Silicon alloy, method for producing silicon alloy, and method for producing consolidated product from silicon alloy”
JP2003027109A (en) Method for producing oxide dispersion type alloy
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JP2002004015A (en) Iron-based amorphous spherical grain
JP2005076083A (en) Method for manufacturing iron-based amorphous spherical particle, and iron-based amorphous spherical type particle thereof
US5000781A (en) Aluminum-transistion metal alloys having high strength at elevated temperatures
JPH0347946A (en) Manufacture of boron-containing austenitic stainless steel having excellent hot workability as well as cold ductility and toughness
JPS6160807A (en) Production of metallic powder having narrow width of grain size
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JPH01242749A (en) Heat-resistant aluminum alloy
JPS5947346A (en) Production of high alloy powder and sintered alloy and sintered alloy
JPS6036601A (en) High alloy steel powder and manufacture
WO2023100920A1 (en) 3d printing alloy powder material comprising oxide nanoparticles, and 3d printed body
JP2917999B2 (en) Method for producing high-strength aluminum alloy compact
JPH0196350A (en) Corrosion-resistant and wear-resistant sintered alloy and its manufacture
JPS613870A (en) Wear resistant parts and its production

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3694732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term