JP3693426B2 - Composite plate and manufacturing method thereof - Google Patents

Composite plate and manufacturing method thereof Download PDF

Info

Publication number
JP3693426B2
JP3693426B2 JP20182696A JP20182696A JP3693426B2 JP 3693426 B2 JP3693426 B2 JP 3693426B2 JP 20182696 A JP20182696 A JP 20182696A JP 20182696 A JP20182696 A JP 20182696A JP 3693426 B2 JP3693426 B2 JP 3693426B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
composite
adhesive
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20182696A
Other languages
Japanese (ja)
Other versions
JPH1044281A (en
Inventor
伸 相原
浩司郎 茂田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP20182696A priority Critical patent/JP3693426B2/en
Publication of JPH1044281A publication Critical patent/JPH1044281A/en
Application granted granted Critical
Publication of JP3693426B2 publication Critical patent/JP3693426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建具、ドア、組立ハウス等の壁、天井、床等の建築用、また一般産業用として用いられる複合板及びその製造方法に関する。
【0002】
【従来の技術】
従来、建具、ドア等に利用される複合板については、枠組みされた枠体の空間にペーパーハニカム等の軽量芯材を充填させた中間層の両面に接着剤を介してラワン材等よりなるベニヤ板が貼着されている。また、ベニヤ板の表面と枠体の側面は、紙、塩化ビニール等の表皮材を貼って装飾され、幅広く建築用、また一般産業用に用いられていることは周知である。しかしながら、この複合板は、平滑な外観、仕上げ加工、軽量性に優れた特性を有している反面、温度及び湿度変化に伴いベニヤ板及びフレームが伸縮したりする。その結果、ベニヤ板が反ってしまい、複合板の外観を損なうという問題点が存在していた。また、ベニア板はその肉厚が薄いわりには、比較的重量があるため撓みやすく、複合板製造時及び組立時に作業がし難いという問題があった。また、集中荷重がベニヤ面に作用する用途では、破壊を起こし易い問題があった。さらに、ベニヤ板の素材となるラワン材は近年その価格が、変動が大きく高騰した時は複合板の価格も上昇しコスト的に問題が生じる。ベニヤ板に替わる価格変動の少ない材料により構成される複合板が望まれている。そこで、枠体、面材を金属材料により構成し、上記問題点を解決できる複合板にあっては、高い強度と剛性を有し、反りや撓みが抑えられる反面、重量化すると共に、意匠観が乏しい欠点を有しているため、玄関ドア等の、軽量性と意匠性を犠牲にした一部用途しか普及していない。
【0003】
例えば、特開平7−96569号には、枠体とハニカム芯材からなる中間層の両面に、金属箔の両面に紙箔、樹脂シートを5層に積層した面材を貼り合わせた複合板が開示されている。しかしながら、この複合板では、荷重が局所的に作用する場合、面材の強度が十分でないため穴があいたり亀裂を生じ変形すると共に防水機能もなくなる問題がある。
【0004】
強度と耐水性を解決する方法として特開平7−233630号には、枠体とハニカムコアの芯材からなる中間層に繊維強化熱可塑性樹脂シートを両面に貼り合わせた複合板をコンクリート型枠用として開示されている。しかしながら、熱可塑性樹脂シートと接着させるには、特殊な表面処理や接着剤が必要であり、加工コストが高くなる欠点がある。また積層融着法または抄紙法により製造された繊維強化熱可塑性樹脂シートは繊維が整列していないシートための厚さを薄くすると面材としての強度や剛性が低下するため、厚くなりかつ重くなる欠点がある。
特開平6−134913号には、樹脂発泡体の芯材からなる中間層に一方向繊維強化熱可塑性樹脂シートを両面に貼り合わせた複合板が開示されている。また特開平7−88988号には、ハニカムコアの芯材からなる中間層に一方向繊維強化熱可塑性樹脂シートを両面に貼り合わせた複合板が開示されている。いずれも、接着剤によることなく繊維強化熱可塑性樹脂シートを加熱溶融し芯材と積層し冷却固化させ一体化させる熱ラミネート法により複合板が得られる。また、特開平7−32397には、繊維強化熱可塑性樹脂シートを芯材に連続して熱ラミネートさせる方法により、低コストで高品質な複合板を製造できる方法と装置が開示されている。
【0005】
しかしながら、枠体と芯材からなる中間層に、繊維強化熱可塑性樹脂シートを上記熱ラミネート法により一体化させると、枠体と芯材との境目に段差が現れてしまう問題がある。また繊維強化熱可塑性樹脂シートのガラス繊維の分布や厚みむらによる凹凸が、表面に現れる問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するためになされたものであり、その目的とするところは、軽量化及び低コストで製造ができ、湿度及び温度変化による変形を防ぎ、耐久性に優れ、平板剛性と衝撃強度に優れかつ平滑な表面性を持つ高品質な複合板及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第一の目的は、一方向に整列させた連続長繊維を重量含有率が40%以上80%以下の範囲で配合したプリプレグからなる繊維強化熱可塑性樹脂シート(3)の両面に紙シート(4)を接合させた補強プレート(5)を、枠体(1)と枠体(1)内の空間に充填した芯材(2)とからなる中間層の片面または両面に接着層(6)を介して一体化した複合板により達成される。
【0008】
また、繊維強化熱可塑性樹脂シート(3)が、繊維方向の熱膨張係数が10ー5/℃以下のプリプレグを単独又は配向角0〜90°の任意の角度で2〜4枚積層したものであることが望ましい。
また、繊維強化熱可塑性樹脂シート(3)を形成するプリプレグの繊維がガラス繊維であり、熱可塑性樹脂が、ポリオレフィン系樹脂であることが望ましい。
また、接着層(6)と接する紙シート(4)が、熱可塑性樹脂を含浸させた紙シート層(4a)と接着剤を含浸させた紙シート層(4b)との少なくとも二層からなることが望ましい。
【0009】
また、前記複合板の少なくとも一面以上に、表皮材(7)を、接着層(6)を介して一体化したことが望ましい。
望ましい一実施例に於いては、芯材(2)が、ペーパーハニカム又は樹脂発泡体である。
繊維強化熱可塑性シート(3)の厚みが0.05mm以上1mm以下の範囲にあり、紙シート(4)の厚みが0.02mm以上0.5mm以下の範囲にあり、さらに補強プレート(5)の厚みが、0.2mm以上2mm以下の範囲であることが望ましい。
【0010】
本発明の第二の目的は、
(a)繊維強化熱可塑性樹脂シート(3)を、その熱可塑性樹脂の溶融温度以上に加熱し、熱可塑性樹脂が溶融した状態で、紙シート(4)を、繊維強化熱可塑性樹脂シート(3)の両面に重ね、次いで、冷却固化して得られる補強プレート(5)を製造する熱ラミネート工程と、
(b)補強プレート(5)の表面に接着剤を塗布する塗布工程と、
(c)枠体(1)内の空間に芯材(2)を挿入した中間層を形成する組み入れ工程と、
(d)この板の両面に接着剤付き補強プレート(5)を積層し接着層(6)を介して一体化させる補強プレート接着工程を順次行う複合板製造方法あって、
前記補強プレート接着工程(d)において、繊維強化熱可塑性樹脂シート(3)を形成する熱可塑性樹脂の軟化温度より低温で接着剤を固化させる複合板の製造方法に依って達成される。
【0011】
又(a)熱ラミネート工程と、
(b)塗布工程と、
(c)組み入れ工程と、
(d)補強プレート接着工程と、
(e)この補強プレート(5)の表面に接着層(7)を介して表皮材(8)を一体化させる表皮材接着工程を順次行う複合板製造方法あって、
補強プレート接着工程(d)と表皮材接着工程(e)とにおいて、繊維強化熱可塑性樹脂シート(3)を形成する熱可塑性樹脂の軟化温度より低温で接着剤を固化させる複合板の製造方法に依って達成される。
【0012】
【発明の実施の形態】
以下、図面により本発明について詳細に説明する。
図1は本発明に係る複合板の一実施例を示す斜視図、図2は図1に示した複合板の構成を示す断面図、図3は本発明に係る複合板の一実施例を示す斜視図、図4は図3に示した複合板の構成を示す断面図、図5は本発明に係る表面に表皮材を有する複合板の構成示す断面図、図6は表面に表皮材を有する一実施例を示す断面図、図7は上記とは異なった一実施例を示す断面図、図8は枠体(1)と、その枠体(1)内の空間に充填した芯材(2)とからなる中間層の表層に、繊維強化熱可塑性樹脂シート(3)の両面に紙シート(4)を接合させた補強プレート(5)を、接着層(6)を介して接合した状態を示す一部拡大断面図、図9は図8に示した接着層(6)と接する紙シート(4)が、熱可塑性樹脂を含浸させた紙シート層(4a)と接着剤を含浸させた紙シート層(4b)とからなる状態を示す一部拡大断面図、図10は本発明に係る複合板を製造する装置の概略を示す説明図、図11は本発明に係る複合板の落錘衝撃試験に用いた装置の概略を示す説明図である。
尚、これらの図では、断面構成を詳細に示すため、その表面寸法に比して厚みを強調して示してある。
【0013】
図1と図2は、家具、建具等に好適に使用される軽量パネル空心構造(フラッシュ構造)の複合板であり、桟木(1a)と埋め木(1b)からなる枠体(1)と、その枠体(1)内の空間に充填したペーパーハニカムからなる芯材(2)とからなる中間層の表裏両面に、補強プレート(5)を接着層(6)介して一体化したものである。
【0014】
補強プレート(5)は、連続長繊維を一方向に引き揃えて整列させ、これに繊維の配合比が重量比で40%以上80%以下となるように熱可塑性樹脂を含浸させて作られるプリプレグ、即ち、シートを、単独あるいは望ましくは2ないし4枚、繊維の方向を変えて積層した繊維強化熱可塑性樹脂シート(3)の両面に、紙シート(4)を接合させたシートである。
【0015】
図3と図4は、断熱性や耐水性を要求される用途の家具、建具等に好適に使用される軽量パネル空心構造(フラッシュ構造)の複合板であり、桟木(1a)と埋め木(1b)からなる枠体(1)と、その枠体(1)内の空間に充填した樹脂発泡体からなる芯材(2)とからなる中間層の表裏両面に、補強プレート(5)を接着層(6)介して一体化したものである。
【0016】
図5は、家具、建具等に好適に使用される軽量パネル空心構造の複合板であり、複数本並べた桟木(1a)と埋め木(1b)からなる枠体(1)と、前記枠体(1)内の空間に充填した樹脂発泡体からなる芯材(2)とからなる中間層の表裏両面に、補強プレート(5)を接着層(6)介して一体化したものである。更に、枠体(1)と補強プレート(5)を覆う表皮材(7)を、接着層(6)を介して一体化したものである。
【0017】
図6は、床材や床暖房等に好適に使用される軽量パネル空心構造の複合板であり、複数本並べた桟木(1a)と埋め木(1b)からなる枠体(1)と、前記枠体(1)内の空間に充填した樹脂発泡体からなる芯材(2)とからなる中間層の表面に表面板として天然木化粧合板を接着し、中間層の裏側に補強プレート(5)を接着層(6)介して一体化したものである。
【0018】
図7は、端部が曲面構造である家具、建具等に好適に使用される軽量パネル空心構造の複合板であり、桟木(1a)と埋め木(1b)からなる枠体(1)と、前記枠体(1)内の空間に充填した樹脂発泡体からなる芯材(2)とからなる中間層の表裏両面と外側が曲面に加工された枠体(1)に、補強プレート(5)を接着層(6)介して一体化したものである。更に、補強プレート(5)を覆う表皮材(7)を、接着層(6)を介して一体化したものである。
以下、各部を構成する材料に就いて説明する。
【0019】
枠体(1)としては、木材、ベニヤ合板、針葉樹合板、集成材、LVL(単板積層材)、パーティクルボード、ファイバーボード等の木質系材料を加工した木製枠のもの、あるいは硬質ないし半硬質のウレタンフォーム、ポリスチレンフォーム、フェノール樹脂フォーム等の硬質ないし半硬質の5倍以下低発泡倍率の発泡樹脂、繊維強化熱可塑性樹脂、繊維強化熱硬化性樹脂、熱可塑性樹脂、熱硬化性樹脂等の樹脂枠のもの、あるいはアルミ押し出し材、スチール等の金属を中空に加工された金属枠のものを用いることができる。枠体(1)は、外周部を形成する桟木(1a)と桟木枠内の空間に充填した芯材(2)を縦断するように配設される埋め木(1b)とから構成される。さらに、桟木(1a)を外縁部に周設する場合は、厚みと幅は10mm以上200mm以下の範囲にすることが好ましく、10mm未満にすると接合強度が弱くなり複合板としての強度が低下し、200mmを越えると重量が増大して軽量性が失われる。また、桟木(1a)を2本以上並べて桟木(1a)の間を切断することで、枠体(1)を切断することなく簡単に複合板の形状を変更することもできる。
【0020】
また、複合板の強度をより高くするためや複合板表面に取手や棚等の器具を固定するために、埋め木(1b)を桟木(1a)の枠内に適宜箇所に配設できるし、補強が必要ない場合は埋め木(1b)をなくしてもよい。埋め木(1b)の厚みと幅は、強度と重量から桟木(1a)と同様に10mm以上200mm以下の範囲にすることが好ましい。埋め木(1b)と桟木(1a)の材料は、同一材料であってもよいし異なっていてもよい。埋め木(1b)の配置は特に限定されるものではないが、格子状、斜交状、梯子等の配列が製造し易く、また複合板の強度を向上できるので好ましい。枠体の厚みと幅は同一である必要はないが、厚みは埋め木及び桟木とも同一の厚みにする必要がある。
【0021】
芯材(2)としては、枠体(1)内の空間に充填できる軽量な材料としては、公知である軽量材料が何れも使用でき、例えば発泡ポリスチレン、ウレタンフォーム等の発泡体又はハニカムコアが好ましく、特に、価格、加工性、重量と強度点から、比重0.1以下のペーパーハニカム又は樹脂発泡体がより好ましい。 芯材の厚みは、枠体と同じ厚みにすることで、平らな複合板が得られので、10mm以上200mm以下が使用される。
【0022】
板状のハニカムコアとは、無数の筒状部が外周方向へ隣合わせに形成され、板面と平行な断面がハニカム状に構成される板状部材であって、筒状部が貫通しているものに限られず、表裏が閉塞されたものも含まれる。芯材に用いるハニカムコアは、通常の六角形が集合した断面のものに限られず、円が集合した断面のもの、三角形が集合した断面であるもの等が含まれる。これらのハニカムコアは、筒状を構成している面が、片面あるいは表裏両面に貼着される補強プレート(5)と垂直になっていればよいのであって、必ずしも一つ一つの筒状部がくっつき合っている必要はなく、ばらばらに存在していても、ブロック状に存在していても構わない。また、筒状部の大きさ、形状がばらばらであってもよいし、単に折れ曲がった帯状体が帯面の任意の点で接着し合った形状であってもよいが、強度の高い複合板を得るためには、一つ一つの筒状部の大きさ、形状が等しく、また緻密にくっつきあっていることが好ましい。さらに、一つ一つの筒状部は微細なものであってもよいし、大きなものであってもよいが、複合板の強度を高め、補強プレート(5)あるいは表面板との接着性を良好にするためには、各筒状部の底面積を小さくし、各筒状部を形成している材料の厚みを大きくすることが好ましい。ハニカムコアの材質は、アルミニウム、紙、あるいはポリプロピレン、ポリスチレン、ポリ塩化ビニル等の熱可塑性樹脂等いずれもよく、複合板の芯材(2)として十分な強度が発現できれば特に限定されないが、紙製のハニカムコア(ペーパハニカム)を用いると安価かつ軽量で十分な圧縮強度が得られるので好ましい。
【0023】
発泡体に用いられる樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、塩化ビニル樹脂、ポリウレタン、フェノール樹脂、ユリア樹脂、エポキシ樹脂、ケイ素樹脂などが使用できる。これらの樹脂を、適当な処理、例えば機械的な攪拌により起泡させる方法、反応生成ガスを利用する方法、発泡剤を使用する方法等により、細かい泡状構造をもった樹脂発泡体が得られる。発泡倍率は、10〜50倍のものが、断熱材、吸音材、衝撃緩和材として適している。
【0024】
本願発明の複合板に用いられる補強プレート(5)は、一方向に整列させた連続長繊維を重量含有率が40%以上80%以下の範囲で配合したプリプレグを単独叉は配向角0〜90°の任意の角度で2〜4枚積層した繊維強化熱塑性樹脂シート(3)の両面に紙シート(4)を接合し製造される。
【0025】
繊維強化熱可塑性樹脂シート(3)を形成するプリプレグの熱可塑性樹脂には特別な限定はなく、例えば、ポリスチレン及びその共重合樹脂、ポリ塩化ビニル、直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン、ポリエーテルイミド(商標: ULTEM)、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどが使用できるが、強度、耐磨耗性、価格や廃棄物となったときの再生の容易さなどの観点から、最も望ましい樹脂として、ポリエチレンやポリプロピレンなどの汎用ポリオレフィン系樹脂が推奨される。
【0026】
繊維強化熱可塑性樹脂シート(3)を形成するプリプレグに配合する連続長繊維としては、アラミド繊維(登録商標「ケプラー」など)などの合成樹脂繊維、天然の有機質繊維、チタン、ボロン、ステンレスなどの金属繊維、ガラス、炭素、炭化ケイ素などの無機繊維が挙げられる。但し、必ずしもこれらに限定されるものではなく、充分な強度とを有し、安価かつ大量に入手できるものであればなんでも良く、特にガラス繊維が好ましい。ガラス繊維の材質は、特に制限されず、含アルカリガラス、低アルカリガラス、無アルカリガラス等の何れでもよく、Eガラス、Cガラス、Aガラス等従来ガラス繊維として使用されている各種ガラス繊維を用いることができる。
【0027】
また、使用する連続長繊維の径が、5μm以上36μm以下の範囲にすることが好ましい。連続長繊維の径が5μm未満では、繊維が切れ易いため繊維強化熱可塑性樹脂シートを形成するプリプレグが得られず、また36μmを越えると、繊維が剛直になるために繊維の隙間に熱可塑性樹脂を含浸させにくくなり繊維の補強効果が発現しなくなる。特に、ガラス繊維では、価格、加工性と強度点から、10μm以上25μm以下がより好ましい。
【0028】
繊維強化熱可塑性樹脂シート(3)を形成するプリプレグは、特公平4−42168号公報に開示された方法により製造することが出来る。
即ち、補強用ガラス繊維のモノフィラメントを、カップリング剤、例えば、γ−メタクリロキシ−プロピルトリメトキシシランで処理して、多数本収束させたヤーンを、均一な張力を掛けて引張りながら引き揃え、溶融した熱可塑性樹脂に接触させて、熱ロールでしごきながら樹脂を一定速度で含浸することによって、一方向に整列させた連続長繊維を熱可塑性樹脂に対して一定の割合で配合させたプリプレグが得られる。
【0029】
プリプレグの連続長繊維の配合比は、重量比で40%以上80%以下範囲である。配合比が40%未満となると、繊維強化熱可塑性樹脂シートの両面に紙シートを熱融着させる時、樹脂の流動性が高くなるため連続長繊維が動き繊維が一方向に整列しない補強プレートになり好ましくない。このような補強プレートでは、必要な剛性が低下する上に繊維方向の熱膨張係数が大きくなるため、複合板の面の衝撃強度が低下し、さらに反りが発生しやすくなる。又、配合比が80%を越えると、紙シートとの接着性が低下するため、補強プレートの積層加工が困難となる。
【0030】
プリプレグの繊維方向の熱膨張係数が大きい場合も、複合板が反るので、熱膨張係数は10-5/℃以下とすることが望ましい。
このプリプレグは2層以上を重ね合わせて使用することが推奨されるが、特に複合板の片面のみに補強プレートを貼合わせるとき、繊維強化熱可塑性樹脂シートが厚くなり過ぎる場合には、複合板が反り返る現象が見られる。
【0031】
従って、プリプレグ単層の厚さは50μm以上、600μm以下とし、プリプレグを2層以上4層以下積層して得られる繊維強化熱可塑性樹脂シートの厚みは1mm以下に留めることが、低重量と反り防止の点から望ましい。
即ち、繊維強化熱可塑性樹脂シートの厚みは、1mmを越えると重量が重くなり、一方0.05mm未満では補強効果が発現しない。
又、この繊維強化熱可塑性樹脂シートの連続長繊維は、一定方向、通常は使用中曲げ応力を受けるような方向に引き揃えて整列させ、使用することが推奨される。
【0032】
連続長繊維と熱可塑性樹脂とから成る繊維強化熱可塑性樹脂シート(3)をその熱可塑性樹脂の溶融温度以上に加熱し、その表裏両面に紙シート(4)を重ね次いで、プレスローラーなどにより加圧しながら冷却することで、熱可塑性樹脂を含浸させた紙シート層(4a)を形成させて補強プレート(5)を得る。必要に応じてその表面側が所望の表皮材、特に化粧紙を用いても良い。
【0033】
紙シートに用いられる紙には特別な限定はなく、例えば、上質紙、中質紙、上更紙、更紙、グラビア用紙、印刷せんか紙、コットンペーパー、ボンド紙、アート紙、コート紙、軽量コート紙等の印刷・筆記図画用紙、重袋用クラフト紙、未晒しクラフト紙、半晒しクラフト紙、晒しクラフト紙、純白クラフト紙、純白ロール紙、Sロール紙、片艶クラフト紙、薄口模造紙等の包装用紙、ライナー紙、中しん原紙等の段ボール原紙、白板紙、黄板紙、チップボール、紙管原紙、建材原紙などが使用できる。
【0034】
繊維強化熱可塑性樹脂シートの厚みが、0.05mm〜1mm範囲のものを用いたとき、この樹脂シートの表面には最大深さ1mm程度の凹部が出来、幅は最大2mm程度あく、一方枠体と芯材との段差も組立性、施工性を確保するために1〜3mm程度の隙間と深さ1mm程度の段差が生じる。
【0035】
また、繊維強化熱可塑性樹脂シートの両面に0.01mm未満の紙シートをラミした補強プレートでは、熱可塑性樹脂が紙シートに含浸して接着面まで樹脂が覆われるため、接着が困難になるので好ましくない。繊維強化熱可塑性樹脂シートの強化繊維の分布や厚みむらによる凹凸及び枠体と芯材との境目の段差を超えて安定に接着層を形成できる紙シートの厚みは、0.02mm以上必要である。さらに、表皮材を、接着層を介して一体化してなる複合板においては、凹凸や段差等の欠陥、厚みむらのある中間層を平滑な表面になる補強プレートが要求される。その平滑性の要求には、紙シートの厚みが、少なくとも0.1mm以上あれば欠陥、厚みむらを完全に解消できる。
【0036】
また、紙シートが、0.5mm以上を越えると断熱性が増しまた発生する水蒸気が増すため繊維強化熱可塑性樹脂シートと熱ラミすることが困難になる上に、重量が重くなり実用に即しない。重量、コストから紙シートの厚みは、0.3mm以下が好ましい。即ち、紙シートの厚みは、0.02mm〜0.5mmの範囲がよい、更に云えば0.02mm〜0.3mmの範囲がよく、表面材を化粧した複合板の用途では0.1mm〜0.5mmの範囲が好ましい。この範囲の紙坪量は、紙品種にもよるが20g/m2〜300g/m2が用いられるがこれに限定されるものではない。望ましくは出来るだけ薄く軽量な紙シートであり、坪量では30g/m2〜150g/m2が良い、更に云えば60g/m2〜120g/m2が平滑性にはよく、枠体、芯材や表面材との接着強度の面から30g/m2〜100g/m2が良い。以上より、0.05mm〜1mm範囲の繊維強化熱可塑性樹脂シートと0.02mm〜0.5mmの範囲の紙シートとの厚みの中から選ぶことができ、補強プレートの厚みは、0.2mm以上2mm以下の範囲であることが望ましい。すなわち、補強プレートの厚みが0.2mm未満では、強度と剛性不足し枠体と芯材との境目に段差が生まれ表面性が悪化し、また2mm以上では補強プレートの重量が重くなり軽量性が失われるので不適切である。
【0037】
表皮材を構成する材料としては、ポリプロピレン、ポリスチレンなどの発泡又は非発泡シート、PVC、PZTシートなどの熱可塑性樹脂製品、アルミや鋼板等の金属板や金属箔、石膏ボードや軽量セメント板等の耐火性に優れた無機質板、薄葉紙やチタン紙に主として木目模様を印刷した化粧紙、各種繊維から成る織布や不織布などが挙げられる。表皮材の材料として上記熱可塑性樹脂製品または金属箔を用いるときは、表皮材の裏打ち材として紙シートを用いることが望ましい。 接着層(6)を形成させる接着剤は、紙シート(4)及び中間層の芯材(2)と枠体(1)の材質に適合する接着剤を選ぶ必要がある。接着剤としては、エポキシ樹脂、ポリエステル、シリコン樹脂、ユリア樹脂、メラミン樹脂、ユリアメラミン樹脂、フェノール樹脂、フェノリックエポキシ樹脂、レゾルシン樹脂、フェノールレゾルシン樹脂、脂環エポキシ樹脂、エポキシアスファルト、ポリエステルポリイソシアネート、フラン樹脂、ポリエチレンイミン、ポリイソシアネート等の熱硬化性樹脂接着剤、湿気硬化型ポリウレタン接着剤、2液硬化型ポリウレタン接着剤等のウレタン樹脂接着剤、セルロースアセテート、セルロースアセテートブチレート、セルロースカブレート、ニトロセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ポリ酢酸ビニル、酢酸ビニル塩化ビニル共重合体、ポリ塩化ビニル(変性も含む)、後塩素化ビニル樹脂(変性も含む)ポリビニルホフマール、ポリビニルブチラール、ポリビニルアルコール、ポリビニルエーテル、酢酸ビニルエチレン共重合体、アクリル樹脂、カルボキシル含有アクリル樹脂、メタクリル樹脂、モノマー含有メタクリル樹脂、シアノアクリレート、酢酸ビニルアクリレート共重合体、ポリスチレン、ポリアミド樹脂、熱可塑性ポリエステル、ポリエーテル等の熱可塑性樹脂接着剤、ポリビニルホフマールフェノリック、ポリビニルブチラールフェノリック、ニトリルフェノリック、ネオプレンフェノリック、ナイロンエポキシ等の複合接着剤、天然ゴム、塩化ゴム、再生ゴム、スチレンブタジエンゴム、ニトリルゴム、ネオプレンゴム、ブチルゴム、ポリイソブチレンゴム、ポリイソブチレンゴム、ポリウレタンゴム、ポリサルファイドゴム、シリコンゴム等のゴム系接着剤、ワックス、アスファルト、可溶性シリケート、エナメル類、セラミックスなどを用いることができる。
【0038】
以下、枠体(1)と芯材(2)とからなる中間層と補強プレート(5)の接着について説明する。紙シートが、熱可塑性樹脂を含浸させた紙シート層(4a)と接着剤を含浸させた紙シート層(4b)との少なくとも二層が形成されることにより、補強プレートの補強効果を発現できる。紙シートの厚みに対して、熱可塑性樹脂を含浸させた紙シート層の厚みと接着剤を含浸させた紙シート層の厚みとが、それぞれ10〜90%の範囲であることが好ましく、最良の接着強度が得られる割合はそれぞれの厚みの割合が50%と50%時であり即ち紙シート単独の中間層が0%の時である。
【0039】
以下、複合板および複合板を構成する材料の割合い、大きさについて説明する。複合板の大きさは特別な限定はないが、縦と横が300mm以上4000mm以下の大きさの平板であり、一般によく使われる標準サイズとしては、610mm×1810mm、910mm×1820mm、910mm×2420mm、1210mm×2420mm、1210mm×2730mm等があるが、住宅用途のサイディング材や野地板用途に910mm×6000mm長尺サイズもあり、即ち自由にサイズを選べる。また、複合板を構成する枠体と芯材を10mm以上200mm以下が好ましくそのため、特に限定はしないが複合板として10〜200mm範囲のものが好ましい。また枠体と芯材からなる中間層に対する芯材の容積比率が、50%〜99%が好ましい。芯材の容積比が50%未満では複合板の重量が重くなり、99%を越えると枠体で支える複合板の面剛性が低下して好ましくない。軽量性と面剛性の両方を要求される複合板用途では、芯材の容積比が60%〜95%の範囲がより好ましい。
【0040】
以下、本発明の複合板の製造方法について説明する。一般的な木質または紙類をコア材にしてその両面に合板を接着させて得られる軽量パネル空心構造すなわちフラッシュ合板の製造工程に準じた製造設備により達成できる。合板と同様に補強プレートを扱えるので、既存のフラッシュ合板の製造工程を利用できる。新規な製造設備が必要でないため、製造設備コストの点から非常に好ましい。
【0041】
枠体及び芯材とからなる中間層と補強プレートとの接着をより確実に早くする方法として、接着剤を塗布した補強プレートと中間層を重ね合わせて、加熱プレスする。加熱温度が、補強プレートに用いられている熱可塑性樹脂の軟化温度以上の場合、枠体と芯材の間で生じた圧力差のため補強プレート自体が熱変形して段差になる。中間層と補強プレート及び補強プレートと表面材との接着させる時の温度が、補強プレートに用いられている熱可塑性樹脂の軟化温度より低温で接着剤を固化させる場合は枠体と芯材の間で生じた圧力差では変形しない。この製造方法により、本発明の複合板が完成する。
【0042】
【実施例】
以下、本発明に係る複合板を具現化した実施例を、比較例と対比しながら図面に基づいて説明する。
1.複合板の製造
次の(a)枠体、(b)芯材、(c)補強プレート及び前記接着剤を用いて実施例及び比較例の複合板を作成した。
(a)枠体
試験には、枠体(1)として、木製枠としてLVL(単板積層材)、樹脂枠としてポリスチレンの低発泡樹脂あるいは金属枠として中空のアルミ押し出し材を使用した。表1に、使用した枠体の性状を示す。
(b)芯材
試験には、芯材(2)として、ポリスチレンの樹脂発泡体、ポリウレタンの樹脂発泡体またはペーパーハニカムを使用した。表2に、使用した芯材の性状を示す。
(c)補強プレート
本実施例で使用するプリプレグは、何れも前述の特公平4−42168号公報に開示されている方法で製造された。
【0043】
ガラス繊維の場合は太さ13μmのモノフィラメントの表面をγ−メタクリロキシ−プロピルトリメトキシシランで処理し、それを1800本集束して撚りのないヤーンとし、そのヤーンを均一な張力で引っ張りながら一方向に整列させて、樹脂をヤーンに絡ませて、その樹脂を熱ロールでしごきながら、ヤーンに含浸させてプリプレグを製造した。
【0044】
この様にして製造したプリプレグは、繊維と熱可塑性樹脂の密着性に優れ、繊維含有率も40〜80重量%と要求に応じて変えることができ、厚みも0.05〜0.60mmで製造することができる。これらのプリプレグは単独又は2〜4層、繊維方向を90度変えて積層し繊維強化熱可塑性樹脂シートとなり、さらに表裏両面に紙シートを同時に重ねプレスローラーにより加熱プレスと冷却プレスすることで、熱可塑性樹脂が含浸した紙シート層(4a)を形成させることで繊維強化熱可塑性樹脂シート(3)と紙シート(4)からなる補強プレート(5)が得られる。図10に補強プレート製造設備を示す。
【0045】
表3に本発明に係わる複合板の実施例及び比較例で使用するために製造した補強プレート(5)の構成を示す。表3中の補強プレートA〜Eは、繊維の配合比が40〜80容積%の範囲ものかつ紙シート(4)の厚みが0.1〜0.5mmの範囲のもの、即ち本発明に係るものであり、同Fは繊維の配合比が上記範囲外のもの、また同Gは紙シート厚みが上記範囲外のもの、即ち比較例としてテストしたものである。
【0046】
実施例1
枠体には、30mm×30mm角のLVL(枠体木質)を用いて外寸900mm×1800mm角の長方形に成るように組み、芯材には、厚み30mmの直径8mmの円柱が連結したペーパーハニカムコア(芯材PH)を枠体間に組み込み中間層とした。長さ900mm×幅1800mmの長方形の補強プレート(補強A)を2枚1組として切り出し、この2枚の片面に酢酸ビニル系エマルジョン型接着剤(水性酢ビ)を100g/m2塗布し、中間層に上下に2枚重ねて、圧締治具により枠体に対する圧力が2Kg/cm2(芯材に対する圧力は0Kg/cm2とする)で、30℃(室温)下60分間放置することで接着剤を補強Aのクラフト紙に含浸して固化させ、複合板を得た。
表4に、試験に使用した接着剤の内容と特徴を示す。
【0047】
複合板の製造には図10に示した、(a)補強プレートを製造する熱ラミネート工程、(b)補強プレートの表面に接着剤を塗布する塗布工程、(c)枠体に芯材を組み入れる工程、(d)補強プレートを接着させる治具、熱プレス等を用いる補強プレート接着工程からなる。
【0048】
一般的の熱プレスを用いる場合のプレス温度は80℃〜120℃範囲で、圧力は1〜3kg/cm2範囲で、加圧時間は30秒〜3分間範囲であった。また、圧締治具や冷プレスの場合常温で硬化させるため、加圧時間30分間〜10時間かかり熱プレスより長くなる。
【0049】
実施例2
枠体にポリスチレンの2倍発泡体(枠体PS)を使用し、芯材にポリスチレンの30倍発泡体(芯材PS)を使用し、補強プレート用接着剤にエポキシ樹脂と変性ポリアミン混合型接着剤(EP)を使用し、圧締時間を60分間にした以外は実施例1と同様にして複合板を作製した。
【0050】
実施例3
枠体に厚み2mmアルミ押出材(枠体AL)を使用し、補強プレート用接着剤にホットメルトタイプのエチレン・酢酸ビニル共重合型接着剤(EVA)を使用し、接着温度120℃と圧締時間を2分間にし複合板を得て、さらに、酢酸ビニル系エマルジョン型接着剤(水性酢ビ)を補強プレート上に100g/m2塗布後、薄用紙に木目調の印刷した化粧紙を表面材として1枚重ねて、圧締治具により2Kg/cm2 の圧力で30℃(室温)下60分間放置することで接着剤を補強Aのクラフト紙と化粧紙に含浸固化させた以外は実施例1と同様にして複合板を作製した。
【0051】
実施例4
芯材にポリウレタンの30倍発泡体(芯材PU)を使用し、補強プレート(補強A)と4.2mm厚の天然木化粧合板(化粧合板)とをビニル系エマルジョンとイソシアネート混合型接着剤(VU)を使用した以外は実施例1と同様にして複合板を作製した。
【0052】
実施例5
芯材にポリウレタンの30倍発泡体(芯材PU)を使用し、補強プレート用接着剤にビニル系エマルジョンとイソシアネート混合型接着剤(VU)を使用して、接着温度120℃と圧締時間を2分間にし複合板を得て、さらに、酢酸ビニル系エマルジョン型接着剤(水性酢ビ)を補強プレート上に100g/m2塗布後、薄用紙に木目調の印刷した化粧紙を表面材として表裏に重ねて、ホットメルトフィルムタイプ(30μm厚み)のエチレン・酢酸ビニル共重合型接着剤(EVA)を使用し、接着温度120℃と圧締時間を2分間にしアイロンタイプの圧締治具により固化させた以外は実施例1と同様にして複合板を作製した。
【0053】
実施例6
枠体に厚み2mmアルミ押出材(枠体AL)を使用し、補強プレート用接着剤に無溶剤2液混合ポリウレタン型接着剤(PU)を用いて金属のアルミ枠との接着した以外は実施例1と同様にして複合板を作製した。
【0054】
実施例7、8
枠体及び/叉は補強プレートを表5に示したとおりに換えた以外は、実施例2と同様にして複合板を作製した。
実施例9、10
枠体及び/叉は補強プレートを表5に示したとおりに換えた以外は、実施例3と同様にして複合板を作製した。
実施例11
補強プレートを表5に示したとおりに換えた以外は、実施例4と同様にして複合板を作製した。
【0055】
比較例1
繊維含有率が33%と低い条件の補強プレートを使用したことを除き実施例1と同一の条件で複合板を作製した。
比較例2
本発明に係わる補強プレートを使用せず、厚み3mmのラワン合板を用いたことを除き実施例1と同一の条件で製造し、複合板を作った。
比較例3
補強プレートの厚みが0.11mmと薄いものを使用したことを除きの実施例3と同一の条件で複合板を作製した。
【0056】
比較例4
接着剤を固化させる温度条件が140℃であり、使用した補強プレート(補強A)の熱可塑性樹脂すなはちポリプロピレンの軟化温度135℃より高い温度であったことを除き前述の実施例3と同一の条件で製造し、複合板を作った。
【0057】
比較例5
本発明に係わる補強プレートを使用せず、ジアリルフタレート樹脂を紙シートに含浸させた後高温ラジカル触媒により硬化させて得られた厚み0.4mmのDAP含浸紙を用いたことを除き前述の実施例4と同一の条件で製造し、複合板を作った。
【0058】
比較例6
接着剤を固化させる温度条件が140℃であり、使用した補強プレート(補強A)の熱可塑性樹脂すなはちポリプロピレンの軟化温度135℃より高い温度であったことを除き前述の実施例5と同一の条件で製造し、複合板を作った。
これらの比較例サンプルは、前述の実施サンプルと同一寸法、即ち外寸900mm×1800mm角の長方形の複合板を作製し、実施例と同様に試験しその性能を評価した。
【0059】
実施例及び比較例の複合板の構成を表5に示す。
2.複合板の性能評価
実施した試験の内容は以下の通りである。
表面吸水試験:JIS A1414の表面吸水試験に準じて、複合板の25cm×20cm角の表面に試験枠を水平に取り付け常に2cmの水深になるようにして、48時間後の表面吸水量(g/cm2)および裏面透水の有無を測定した。
【0060】
温度および湿度による変形試験:JIS A1414に準じて温度試験は、900mm×1800mm角の試験片の表面側(片面)を900kcal/m2hの輻射線により8時間加熱した変位量を測定し、及び同じく湿度試験は、片側湿度90%、反対側湿度40%に保ち24時間後の反り変位量(mm)を測定した。
【0061】
落錘衝撃試験:芯材だけの中間層と補強プレートからなる部分から150mm×150mmの正方形試験片を切り出して、受け台(内径44.3mm、外径50mm)上に置き、荷重(0.5kg叉は1kg)をかけた撃ち型(先端半径6.35mm)を異なる高さ(最大100cm)から落下させ、試験片を破壊貫通した重りと高さの積(最大100kg・cm)を測定した。
【0062】
表面性:表面を観察して、表面性の欄の○印は平滑な表面を形成したもの、×印は表面に凹凸や段差が現れたことを示した。
重量:900mm×1800mm角の複合板の重量(kg)を測定した。
複合板の性能試験の結果は表6に示す。
実施例1〜11いずれも、表面から吸水せず、温度および湿度による変形も全くなく、落錘衝撃能力も非常に高くかつ表面平滑性に優れた軽量複合板が得られた。
【0063】
一方、比較例1は、繊維含有率が33%と低い条件の補強プレート(補強F)ではPP樹脂が多いためガラス繊維が一方向に整列できず蛇行し熱膨張係数が2×10-5/℃まで低下した。そのため温度および湿度による変形量が大きくなり、また耐衝撃性能も低下した。
また比較例3では、厚みが0.11mmと薄い補強プレート(補強G)を使用したため補強効果が少なくなり、変形しやすく、耐衝撃性能も低い上表面性も悪化した。
【0064】
従来広く用いられている比較例2のラワン合板タイプの複合板と比較例5のDAP含浸紙タイプの複合板では、変形が大きくなる点と耐衝撃性能が低い点が欠点である。本発明に係わる補強プレートを用いた実施例1と実施例4ではその欠点を薄く軽い条件で作製した補強プレート(補強A)で解決できている。
【0065】
また、比較例4と6からわかるように、補強プレートに用いられた熱可塑性樹脂の軟化温度よりより低温で接着剤を固化させる条件が表面性に優れた複合板得られる製造方法になり得る。
【0066】
【表1】

Figure 0003693426
【0067】
【表2】
Figure 0003693426
【0068】
【表3】
Figure 0003693426
【0069】
【表4】
Figure 0003693426
【0070】
【表5】
Figure 0003693426
【0071】
【表6】
Figure 0003693426
【0072】
【発明の効果】
本発明の複合板は、従来のフラッシュ合板にものに比べてさらに軽くなり、現場での運搬、取り付け、裁断等の作業性に優れる上に、使用する原材料も少量で済むため、省エネルギーに大いに寄与できる地球に優しいパネルである。さらに、低伸度かつ高強度の補強プレートにより補強された複合板は、その表裏両面あるいは片面に剛性及び抗張力が極めて大きい繊維強化合成樹脂から成るプリプレグ積層体が形成されており、そのためこれを用いれば全体的に剛性が極めて高く、使用に際して極めて堅固な構造物を構築できる。また、本発明の一方向に整列された連続長繊維を効果的に配置した補強プレートからなる複合板により、環境による大きな変化に対しても、反りが全く発生しない夢のパネルが完成し、湿気や温度差の多い地域でも床、外壁、屋根等の用途の建築資材に広く使用できる。また表面平滑性に優れているため表面材を貼った内装用複合板に利用出来る。
【0073】
本発明の複合板は、広く普及しているフラッシュ合板製造設備により、簡単に製造できる特徴があり、特殊な接着剤や製造設備が必要であった従来の繊維強化樹脂板のフラッシュ板より非常に安価かつ省エネルギーで製造できる。
すなわち、本発明の複合板及びその製造方法によれば、高強度で、耐水性、耐蝕性に富み、吸湿による寸法変化のない高強度かつ表面平滑性な高品且つ超軽量フラッシュパネルを安価で大量に供給することができる。
【図面の簡単な説明】
【図1】本発明に係わる複合板の一実施例を示す斜視図である。
【図2】図1に示した複合板の構成を示す断面図である。
【図3】図1に示したものとは異なった一実施例を示す斜視図である。
【図4】図3に示した複合板の構成を示す断面図である。
【図5】本発明に係わる表面に表皮材を有する複合板の構成示す断面図である。
【図6】表面に表皮材を有する一実施例を示す断面図である。
【図7】表面に表皮材を有する一実施例を示す断面図である。
【図8】枠体と芯材からなる中間層の表面に、補強プレートを接着層を介して接合した状態を示す一部拡大断面図。
【図9】図8に示した補強プレートの紙シートが、熱可塑性樹脂を含浸させた紙シート層(4a)と接着剤を含浸させた紙シート層(4b)とからなる状態を示す一部拡大断面図である。
【図10】本発明に係わる複合板を製造する装置の概略を示す説明図である。
【図11】本発明に係わる複合板の落錘衝撃試験に用いた装置の概略を示す説明図である。
【符号の説明】
1・・・・・枠体
1a・・・・・桟木
1b・・・・・埋め木
2・・・・・芯材
3・・・・・繊維強化熱可塑性樹脂シート
4・・・・・紙シート
4a・・・・・熱可塑性樹脂を含浸させた紙シート層
4b・・・・・接着剤を含浸させた紙シート層
5・・・・・補強プレート
6・・・・・接着層
7・・・・・表皮材
8・・・・・合板
9・・・・・突き板(天然木薄板)
(a)・・・・・熱ラミネート工程
(b)・・・・・塗布工程
(c)・・・・・組み入れ工程
(d)・・・・・補強プレート接着工程
10・・・・・加熱ロール
11・・・・・冷却ロール
12・・・・・接着剤
13・・・・・おもり
14・・・・・撃ち型
15・・・・・受け台[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite plate used for construction of walls such as joinery, doors, and assembly houses, ceilings, floors, etc., and for general industries, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, for composite plates used for joinery, doors, etc., veneer plates made of lauan material etc. via adhesive on both sides of the intermediate layer in which the space of the framed frame is filled with a lightweight core material such as paper honeycomb Is attached. Further, it is well known that the surface of the plywood board and the side surface of the frame body are decorated with a skin material such as paper and vinyl chloride and are widely used for construction and general industries. However, this composite plate has characteristics such as a smooth appearance, finishing, and light weight, but the veneer plate and the frame expand and contract with changes in temperature and humidity. As a result, there is a problem that the veneer board is warped and the appearance of the composite board is impaired. In addition, although the veneer plate is thin, it has a relatively heavy weight, so that it is easy to bend and it is difficult to work at the time of manufacturing and assembling the composite plate. In addition, there is a problem that breakage tends to occur in applications where concentrated loads act on the veneer surface. Furthermore, the price of the lauan material, which is the material for the plywood, has been increasing in recent years. There is a demand for a composite plate made of a material with little price fluctuation, which can replace a plywood plate. Therefore, in the composite plate in which the frame body and the face material are made of a metal material and can solve the above-mentioned problems, it has high strength and rigidity, while suppressing warpage and bending, it is heavier and has a design view. Therefore, only some uses such as entrance doors, which sacrifice lightness and design, have become widespread.
[0003]
For example, Japanese Patent Application Laid-Open No. 7-96569 discloses a composite plate in which a sheet material in which five layers of paper foil and resin sheet are laminated on both surfaces of a metal foil is bonded to both surfaces of an intermediate layer composed of a frame and a honeycomb core material. It is disclosed. However, in this composite board, when the load acts locally, the strength of the face material is not sufficient, so there is a problem that a hole is formed or a crack is generated and the waterproof function is lost.
[0004]
As a method for solving strength and water resistance, Japanese Patent Application Laid-Open No. 7-233630 discloses a composite plate in which a fiber reinforced thermoplastic resin sheet is bonded on both sides to an intermediate layer composed of a frame body and a core material of a honeycomb core. It is disclosed as. However, a special surface treatment or an adhesive is required for bonding with the thermoplastic resin sheet, and there is a drawback that the processing cost is increased. In addition, fiber reinforced thermoplastic resin sheets produced by the laminating fusion method or papermaking method become thicker and heavier because the strength and rigidity of the face material decrease when the thickness for a sheet in which fibers are not aligned is reduced. There are drawbacks.
Japanese Patent Application Laid-Open No. 6-134913 discloses a composite plate in which a unidirectional fiber-reinforced thermoplastic resin sheet is bonded to both sides of an intermediate layer made of a resin foam core material. Japanese Unexamined Patent Publication No. 7-88888 discloses a composite plate in which a unidirectional fiber-reinforced thermoplastic resin sheet is bonded on both sides to an intermediate layer made of a core material of a honeycomb core. In either case, a composite plate can be obtained by a heat laminating method in which a fiber-reinforced thermoplastic resin sheet is heated and melted without being used with an adhesive, laminated with a core material, cooled and solidified, and integrated. Japanese Patent Application Laid-Open No. 7-32397 discloses a method and an apparatus that can manufacture a high-quality composite board at low cost by a method in which a fiber reinforced thermoplastic resin sheet is continuously heat laminated to a core material.
[0005]
However, when the fiber-reinforced thermoplastic resin sheet is integrated with the intermediate layer composed of the frame body and the core material by the thermal lamination method, there is a problem that a step appears at the boundary between the frame body and the core material. In addition, there is a problem that irregularities due to the distribution of glass fibers and thickness unevenness of the fiber-reinforced thermoplastic resin sheet appear on the surface.
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to reduce the weight and temperature, prevent deformation due to changes in humidity and temperature, have excellent durability, An object of the present invention is to provide a high-quality composite plate having excellent rigidity and impact strength and having a smooth surface property and a method for producing the same.
[0007]
[Means for Solving the Problems]
The first object of the present invention is to provide a paper on both sides of a fiber reinforced thermoplastic resin sheet (3) comprising a prepreg in which continuous long fibers aligned in one direction are blended in a weight content of 40% or more and 80% or less. The reinforcing plate (5) to which the sheet (4) is bonded is bonded to one or both sides of an intermediate layer composed of the frame (1) and the core (2) filled in the space in the frame (1). This is achieved by the composite plate integrated via 6).
[0008]
Further, the fiber-reinforced thermoplastic resin sheet (3) has a coefficient of thermal expansion of 10 in the fiber direction. -5 It is desirable that 2 or 4 prepregs of / ° C. or less are laminated alone or at an arbitrary angle of 0 to 90 °.
Moreover, it is desirable that the fibers of the prepreg forming the fiber-reinforced thermoplastic resin sheet (3) are glass fibers, and the thermoplastic resin is a polyolefin resin.
The paper sheet (4) in contact with the adhesive layer (6) is composed of at least two layers of a paper sheet layer (4a) impregnated with a thermoplastic resin and a paper sheet layer (4b) impregnated with an adhesive. Is desirable.
[0009]
Moreover, it is desirable that the skin material (7) is integrated on at least one surface of the composite plate via the adhesive layer (6).
In a desirable embodiment, the core material (2) is a paper honeycomb or a resin foam.
The thickness of the fiber-reinforced thermoplastic sheet (3) is in the range of 0.05 mm to 1 mm, the thickness of the paper sheet (4) is in the range of 0.02 mm to 0.5 mm, and the reinforcing plate (5) The thickness is desirably in the range of 0.2 mm or more and 2 mm or less.
[0010]
The second object of the present invention is to
(A) The fiber reinforced thermoplastic resin sheet (3) is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin, and in a state where the thermoplastic resin is melted, the paper sheet (4) is replaced with the fiber reinforced thermoplastic resin sheet (3 A heat laminating step for producing a reinforcing plate (5) obtained by stacking on both sides and then cooling and solidifying;
(B) an application step of applying an adhesive to the surface of the reinforcing plate (5);
(C) an incorporation step of forming an intermediate layer in which the core (2) is inserted into the space in the frame (1);
(D) There is a composite plate manufacturing method for sequentially performing a reinforcing plate bonding step in which reinforcing plates (5) with an adhesive are laminated on both sides of this plate and integrated through an adhesive layer (6),
In the reinforcing plate bonding step (d), this is achieved by a composite plate manufacturing method in which the adhesive is solidified at a temperature lower than the softening temperature of the thermoplastic resin forming the fiber-reinforced thermoplastic resin sheet (3).
[0011]
(A) a heat laminating step;
(B) a coating process;
(C) an incorporation step;
(D) a reinforcing plate bonding step;
(E) There is a composite plate manufacturing method for sequentially performing a skin material bonding step of integrating a skin material (8) on the surface of the reinforcing plate (5) via an adhesive layer (7),
In the reinforcing plate bonding step (d) and the skin material bonding step (e), a method for producing a composite plate in which the adhesive is solidified at a temperature lower than the softening temperature of the thermoplastic resin forming the fiber-reinforced thermoplastic resin sheet (3). Is achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
1 is a perspective view showing an embodiment of a composite plate according to the present invention, FIG. 2 is a cross-sectional view showing the configuration of the composite plate shown in FIG. 1, and FIG. 3 shows an embodiment of the composite plate according to the present invention. 4 is a cross-sectional view showing the configuration of the composite plate shown in FIG. 3, FIG. 5 is a cross-sectional view showing the configuration of the composite plate having a skin material on the surface according to the present invention, and FIG. 6 has a skin material on the surface. FIG. 7 is a sectional view showing an embodiment different from the above, and FIG. 8 is a frame (1) and a core material (2) filled in the space in the frame (1). The reinforcing plate (5) in which the paper sheet (4) is bonded to both surfaces of the fiber reinforced thermoplastic resin sheet (3) is bonded to the surface layer of the intermediate layer composed of 9 is a partially enlarged cross-sectional view, and FIG. 9 is a paper sheet layer (4a) in which a paper sheet (4) in contact with the adhesive layer (6) shown in FIG. 8 is impregnated with a thermoplastic resin. FIG. 10 is an explanatory view showing an outline of an apparatus for manufacturing a composite plate according to the present invention, and FIG. 11 shows the present invention. It is explanatory drawing which shows the outline of the apparatus used for the falling weight impact test of the composite board which concerns.
In these drawings, in order to show the cross-sectional configuration in detail, the thickness is emphasized as compared with the surface dimensions.
[0013]
1 and 2 are composite panels of a lightweight panel air core structure (flash structure) suitably used for furniture, joinery, etc., and a frame body (1) composed of a pier (1a) and a buried tree (1b), A reinforcing plate (5) is integrated via an adhesive layer (6) on both front and back surfaces of an intermediate layer made of a core material (2) made of a paper honeycomb filled in a space in the frame (1). .
[0014]
The reinforcing plate (5) is a prepreg made by aligning continuous long fibers by aligning them in one direction and impregnating them with a thermoplastic resin so that the blending ratio of the fibers is 40% or more and 80% or less. That is, it is a sheet in which a paper sheet (4) is bonded to both surfaces of a fiber reinforced thermoplastic resin sheet (3) obtained by laminating a sheet alone or desirably 2 to 4 sheets while changing the fiber direction.
[0015]
3 and 4 are composite panels of a lightweight panel air-core structure (flash structure) that is suitably used for furniture, joinery, etc. for applications requiring heat insulation and water resistance. Reinforcement plates (5) are bonded to both front and back surfaces of an intermediate layer consisting of a frame (1) made of 1b) and a core material (2) made of a resin foam filled in the space inside the frame (1). Integrated through layer (6).
[0016]
FIG. 5 is a composite panel having a lightweight panel air-core structure that is suitably used for furniture, joinery, and the like, a frame (1) composed of a plurality of piers (1a) and buried trees (1b), and the frame (1) A reinforcing plate (5) is integrated on both front and back sides of an intermediate layer made of a core material (2) made of a resin foam filled in a space through an adhesive layer (6). Furthermore, the skin material (7) covering the frame (1) and the reinforcing plate (5) is integrated through the adhesive layer (6).
[0017]
FIG. 6 is a composite panel of a lightweight panel air-core structure that is preferably used for flooring, floor heating, etc., and a frame (1) composed of a plurality of piers (1a) and buried trees (1b), A natural wood decorative plywood is bonded as a surface plate to the surface of an intermediate layer made of a resin foam core material (2) filled in a space in the frame (1), and a reinforcing plate (5) is attached to the back side of the intermediate layer. Are integrated through an adhesive layer (6).
[0018]
FIG. 7 is a composite panel of a lightweight panel air-core structure suitably used for furniture, joinery and the like whose end is a curved structure, and a frame (1) composed of a pier (1a) and a buried tree (1b), The reinforcing plate (5) is added to the frame (1) in which the front and back both sides and the outside of the intermediate layer made of the resin foam core material (2) filled in the space in the frame (1) are processed into curved surfaces. Are integrated through an adhesive layer (6). Furthermore, the skin material (7) covering the reinforcing plate (5) is integrated through the adhesive layer (6).
Hereinafter, materials constituting each part will be described.
[0019]
The frame (1) can be wood, veneer plywood, softwood plywood, laminated lumber, LVL (single veneer laminate), particleboard, fiberboard, or a wooden frame, or hard or semi-rigid Such as urethane foam, polystyrene foam, phenol resin foam, etc., hard or semi-rigid foam resin with a low foaming ratio of 5 times or less, fiber reinforced thermoplastic resin, fiber reinforced thermosetting resin, thermoplastic resin, thermosetting resin, etc. A resin frame or a metal frame obtained by processing a metal such as an aluminum extruded material or steel into a hollow shape can be used. The frame body (1) is composed of a crosspiece (1a) that forms the outer peripheral portion and a buried tree (1b) that is arranged so as to cut through the core material (2) that fills the space in the crosspiece frame. Furthermore, when the pier (1a) is provided around the outer edge, the thickness and width are preferably in the range of 10 mm or more and 200 mm or less, and if less than 10 mm, the bonding strength is weakened and the strength as a composite plate is reduced. If it exceeds 200 mm, the weight increases and the lightness is lost. Further, by arranging two or more piers (1a) and cutting between the piers (1a), the shape of the composite plate can be easily changed without cutting the frame (1).
[0020]
Moreover, in order to increase the strength of the composite board and to fix instruments such as handles and shelves on the surface of the composite board, the buried tree (1b) can be disposed in the frame of the crosspiece (1a) at appropriate places, If reinforcement is not necessary, the buried tree (1b) may be eliminated. The thickness and width of the buried tree (1b) are preferably in the range of 10 mm or more and 200 mm or less in the same manner as the pier (1a) in terms of strength and weight. The material of the buried tree (1b) and the crosspiece (1a) may be the same material or different. The arrangement of the padding (1b) is not particularly limited, but it is preferable because it is easy to manufacture an array such as a lattice, a cross, and a ladder, and the strength of the composite board can be improved. The thickness and width of the frame need not be the same, but the thickness needs to be the same for both buried trees and piers.
[0021]
As the core material (2), any known lightweight material can be used as a lightweight material that can be filled in the space in the frame (1). For example, a foam or a honeycomb core such as expanded polystyrene or urethane foam is used. In particular, a paper honeycomb or a resin foam having a specific gravity of 0.1 or less is more preferable from the viewpoint of price, workability, weight and strength. Since the flat composite plate is obtained by setting the thickness of the core material to the same thickness as that of the frame, 10 mm or more and 200 mm or less is used.
[0022]
A plate-shaped honeycomb core is a plate-shaped member in which an infinite number of cylindrical portions are formed adjacent to each other in the outer circumferential direction, and a cross section parallel to the plate surface is configured in a honeycomb shape, and the cylindrical portion passes therethrough. It is not limited to those, and includes those with obstructed front and back. The honeycomb core used for the core material is not limited to a cross section in which normal hexagons are gathered, but includes a cross section in which circles are gathered, a cross section in which triangles are gathered, and the like. These honeycomb cores may have a cylindrical surface as long as they are perpendicular to the reinforcing plate (5) attached to one side or both front and back surfaces, and each of the cylindrical cores is not necessarily one There is no need to stick to each other, and they may exist separately or in blocks. In addition, the size and shape of the cylindrical portion may be different, or the shape may be a shape in which a folded band is simply bonded at an arbitrary point on the band surface. In order to obtain it, it is preferable that the size and shape of each cylindrical portion are equal and close to each other. Furthermore, each cylindrical part may be fine or large, but it increases the strength of the composite plate and provides good adhesion to the reinforcing plate (5) or the surface plate. In order to achieve this, it is preferable to reduce the bottom area of each cylindrical portion and increase the thickness of the material forming each cylindrical portion. The material of the honeycomb core may be any material such as aluminum, paper, or a thermoplastic resin such as polypropylene, polystyrene, or polyvinyl chloride, and is not particularly limited as long as sufficient strength can be expressed as the core material (2) of the composite plate. This honeycomb core (paper honeycomb) is preferable because it is inexpensive and lightweight and provides sufficient compressive strength.
[0023]
As the resin used for the foam, polyethylene, polypropylene, polystyrene, vinyl chloride resin, polyurethane, phenol resin, urea resin, epoxy resin, silicon resin, and the like can be used. A resin foam having a fine foam structure can be obtained by a method of foaming these resins by a suitable process such as mechanical stirring, a method using a reaction product gas, a method using a foaming agent, or the like. . A foaming ratio of 10 to 50 times is suitable as a heat insulating material, a sound absorbing material, and an impact relaxation material.
[0024]
The reinforcing plate (5) used for the composite plate of the present invention is a prepreg prepared by blending continuous long fibers aligned in one direction in a weight content of 40% or more and 80% or less, or an orientation angle of 0 to 90. It is manufactured by bonding a paper sheet (4) to both surfaces of a fiber reinforced thermoplastic resin sheet (3) laminated at an arbitrary angle of 2 °.
[0025]
There is no particular limitation on the thermoplastic resin of the prepreg that forms the fiber-reinforced thermoplastic resin sheet (3). For example, polystyrene and its copolymer resin, polyvinyl chloride, linear low density polyethylene, low density polyethylene, high Density polyethylene, polypropylene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethersulfone, polysulfone, polyetherimide (trademark: ULTEM), polyetheretherketone, polyphenylenesulfide, etc. can be used, but strength, abrasion resistance, From the viewpoints of price and ease of recycling when it becomes waste, general-purpose polyolefin resins such as polyethylene and polypropylene are recommended as the most desirable resins.
[0026]
The continuous long fibers blended in the prepreg forming the fiber reinforced thermoplastic resin sheet (3) include synthetic resin fibers such as aramid fibers (registered trademark “Kepler”, etc.), natural organic fibers, titanium, boron, stainless steel, etc. Examples thereof include inorganic fibers such as metal fibers, glass, carbon, and silicon carbide. However, the material is not necessarily limited to these, and any material may be used as long as it has sufficient strength, can be obtained at low cost and in large quantities, and glass fiber is particularly preferable. The material of the glass fiber is not particularly limited and may be any of alkali-containing glass, low alkali glass, non-alkali glass, and the like, and various glass fibers conventionally used as glass fibers such as E glass, C glass, and A glass are used. be able to.
[0027]
Moreover, it is preferable that the diameter of the continuous long fiber to be used is in the range of 5 μm to 36 μm. When the diameter of the continuous long fiber is less than 5 μm, the fiber is easily cut, so that a prepreg for forming a fiber reinforced thermoplastic resin sheet cannot be obtained. When the diameter exceeds 36 μm, the fiber becomes stiff so that the thermoplastic resin is formed in the gap between the fibers. It becomes difficult to impregnate the fiber, and the reinforcing effect of the fiber is not expressed. In particular, glass fiber is more preferably 10 μm or more and 25 μm or less from the viewpoint of price, workability and strength.
[0028]
The prepreg for forming the fiber reinforced thermoplastic resin sheet (3) can be produced by the method disclosed in Japanese Patent Publication No. 4-42168.
That is, monofilaments of reinforcing glass fibers were treated with a coupling agent, for example, γ-methacryloxy-propyltrimethoxysilane, and a plurality of converged yarns were drawn and stretched while applying uniform tension and melted. By contacting the thermoplastic resin and impregnating the resin at a constant speed while squeezing with a hot roll, a prepreg in which continuous fibers aligned in one direction are blended at a constant ratio with respect to the thermoplastic resin is obtained. .
[0029]
The blending ratio of the continuous long fibers of the prepreg is in the range of 40% to 80% by weight. When the blending ratio is less than 40%, when the paper sheet is heat-sealed on both sides of the fiber reinforced thermoplastic resin sheet, the flowability of the resin increases, so that the continuous long fibers move and the fibers do not align in one direction. It is not preferable. In such a reinforcing plate, the required rigidity is lowered and the coefficient of thermal expansion in the fiber direction is increased, so that the impact strength of the surface of the composite plate is lowered and warpage is more likely to occur. On the other hand, if the blending ratio exceeds 80%, the adhesiveness with the paper sheet is lowered, so that it is difficult to laminate the reinforcing plate.
[0030]
Even when the thermal expansion coefficient in the fiber direction of the prepreg is large, the thermal expansion coefficient is 10 because the composite plate warps. -Five / ° C. or less is desirable.
It is recommended to use two or more layers of this prepreg. Especially when a reinforcing plate is bonded to only one side of the composite plate, and the fiber reinforced thermoplastic resin sheet becomes too thick, the composite plate A phenomenon of warping is seen.
[0031]
Therefore, the thickness of the prepreg single layer should be 50 μm or more and 600 μm or less, and the thickness of the fiber reinforced thermoplastic resin sheet obtained by laminating 2 or more and 4 or less prepregs should be 1 mm or less. From the point of view is desirable.
That is, if the thickness of the fiber reinforced thermoplastic resin sheet exceeds 1 mm, the weight increases, whereas if it is less than 0.05 mm, the reinforcing effect does not appear.
In addition, it is recommended that the continuous long fibers of the fiber reinforced thermoplastic resin sheet be aligned and used in a certain direction, usually in a direction that receives bending stress during use.
[0032]
A fiber reinforced thermoplastic resin sheet (3) comprising continuous long fibers and a thermoplastic resin is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin, and a paper sheet (4) is laminated on both front and back surfaces, and then added by a press roller or the like. By cooling with pressure, the paper sheet layer (4a) impregnated with the thermoplastic resin is formed to obtain the reinforcing plate (5). If necessary, a surface material whose surface side is desired, particularly decorative paper, may be used.
[0033]
There is no particular limitation on the paper used for the paper sheet, for example, high-quality paper, medium-quality paper, top-up paper, re-printing paper, gravure paper, printing paper, cotton paper, bond paper, art paper, coated paper, Lightweight coated paper, printed paper, drawing paper, heavy kraft paper, unbleached kraft paper, semi-bleached kraft paper, bleached kraft paper, pure white kraft paper, pure white roll paper, S roll paper, single gloss kraft paper, thin-mouth imitation Packaging paper such as paper, cardboard base paper such as liner paper and medium base paper, white board paper, yellow board paper, chipboard, paper tube base paper, and building material base paper can be used.
[0034]
When a fiber reinforced thermoplastic resin sheet having a thickness in the range of 0.05 mm to 1 mm is used, a concave portion having a maximum depth of about 1 mm is formed on the surface of the resin sheet, and the width is about 2 mm at the maximum. In order to ensure the assemblability and workability of the step between the core and the core material, a gap of about 1 to 3 mm and a step of about 1 mm in depth are generated.
[0035]
In addition, in a reinforcing plate in which a paper sheet of less than 0.01 mm is laminated on both sides of a fiber reinforced thermoplastic resin sheet, since the thermoplastic resin is impregnated into the paper sheet and the resin is covered up to the bonding surface, adhesion becomes difficult. It is not preferable. The thickness of the paper sheet capable of stably forming an adhesive layer beyond the unevenness due to the distribution and thickness unevenness of the reinforced fiber of the fiber reinforced thermoplastic resin sheet and the step between the border of the frame and the core is required to be 0.02 mm or more. . Further, in a composite plate in which the skin material is integrated through an adhesive layer, a reinforcing plate is required which has a smooth surface with an intermediate layer having defects such as irregularities and steps and uneven thickness. In order to meet the smoothness requirement, if the thickness of the paper sheet is at least 0.1 mm or more, defects and uneven thickness can be completely eliminated.
[0036]
Also, if the paper sheet exceeds 0.5 mm or more, the heat insulating property is increased and the generated water vapor is increased, so that it is difficult to thermally laminate with the fiber reinforced thermoplastic resin sheet, and the weight becomes heavy and not practical. . From the weight and cost, the thickness of the paper sheet is preferably 0.3 mm or less. That is, the thickness of the paper sheet is preferably in the range of 0.02 mm to 0.5 mm, more preferably in the range of 0.02 mm to 0.3 mm. A range of .5 mm is preferred. The paper basis weight in this range is 20g / m depending on the paper type. 2 ~ 300g / m 2 However, it is not limited to this. The paper sheet is preferably as thin and light as possible, and the basis weight is 30 g / m. 2 ~ 150g / m 2 Is better, more specifically 60g / m 2 ~ 120g / m 2 Is good for smoothness, and it is 30 g / m from the viewpoint of adhesion strength with the frame, core material and surface material. 2 ~ 100g / m 2 Is good. From the above, the thickness can be selected from the thickness of the fiber reinforced thermoplastic resin sheet in the range of 0.05 mm to 1 mm and the paper sheet in the range of 0.02 mm to 0.5 mm, and the thickness of the reinforcing plate is 0.2 mm or more A range of 2 mm or less is desirable. That is, when the thickness of the reinforcing plate is less than 0.2 mm, the strength and rigidity are insufficient, and a step is created at the boundary between the frame and the core material, and the surface property is deteriorated. When the thickness is 2 mm or more, the weight of the reinforcing plate is increased and the weight is reduced. It is inappropriate because it is lost.
[0037]
The materials constituting the skin material include foamed or non-foamed sheets such as polypropylene and polystyrene, thermoplastic resin products such as PVC and PZT sheets, metal plates and foils such as aluminum and steel plates, gypsum boards and lightweight cement plates Examples thereof include an inorganic board having excellent fire resistance, decorative paper obtained by printing a wood pattern on thin paper or titanium paper, and woven or non-woven fabric made of various fibers. When the thermoplastic resin product or the metal foil is used as the material for the skin material, it is desirable to use a paper sheet as the backing material for the skin material. As the adhesive for forming the adhesive layer (6), it is necessary to select an adhesive suitable for the material of the paper sheet (4) and the core material (2) and the frame body (1) of the intermediate layer. Adhesives include epoxy resin, polyester, silicone resin, urea resin, melamine resin, urea melamine resin, phenol resin, phenolic epoxy resin, resorcin resin, phenol resorcin resin, alicyclic epoxy resin, epoxy asphalt, polyester polyisocyanate, furan Thermosetting resin adhesives such as resin, polyethyleneimine, polyisocyanate, moisture curable polyurethane adhesives, urethane resin adhesives such as two-component curable polyurethane adhesives, cellulose acetate, cellulose acetate butyrate, cellulose carbrate, nitro Cellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, polyvinyl acetate, vinyl acetate vinyl chloride copolymer, polyvinyl chloride (including modification), post-chlorinated vinyl tree (Including modification) polyvinyl hofmar, polyvinyl butyral, polyvinyl alcohol, polyvinyl ether, vinyl acetate ethylene copolymer, acrylic resin, carboxyl-containing acrylic resin, methacrylic resin, monomer-containing methacrylic resin, cyanoacrylate, vinyl acetate acrylate copolymer , Polystyrene, polyamide resin, thermoplastic polyester, polyether and other thermoplastic adhesives, polyvinyl hofmar phenolic, polyvinyl butyral phenolic, nitrile phenolic, neoprene phenolic, nylon epoxy composite adhesives, natural rubber, chlorinated rubber, recycled Rubber, styrene butadiene rubber, nitrile rubber, neoprene rubber, butyl rubber, polyisobutylene rubber, polyisobutylene rubber, polyurethane rubber, poly Rufaidogomu, rubber adhesives such as silicone rubber, can be used wax, asphalt, soluble silicates, enamels, ceramics and the like.
[0038]
Hereinafter, adhesion of the intermediate layer composed of the frame body (1) and the core material (2) and the reinforcing plate (5) will be described. By forming at least two layers of the paper sheet layer (4a) impregnated with the thermoplastic resin and the paper sheet layer (4b) impregnated with the adhesive, the paper sheet can exhibit the reinforcing effect of the reinforcing plate. . The thickness of the paper sheet layer impregnated with the thermoplastic resin and the thickness of the paper sheet layer impregnated with the adhesive are preferably in the range of 10 to 90% with respect to the thickness of the paper sheet, respectively. The ratios at which the adhesive strength can be obtained are when the thickness ratios are 50% and 50%, that is, when the intermediate layer of the paper sheet alone is 0%.
[0039]
Hereinafter, the ratio and size of the composite plate and the material constituting the composite plate will be described. The size of the composite plate is not particularly limited, but it is a flat plate having a size of 300 mm to 4000 mm in length and width, and commonly used standard sizes are 610 mm × 1810 mm, 910 mm × 1820 mm, 910 mm × 2420 mm, There are 1210 mm x 2420 mm, 1210 mm x 2730 mm, etc., but there are also 910 mm x 6000 mm long sizes for siding materials for home use and field board use, that is, the size can be freely selected. Further, the frame and the core constituting the composite plate are preferably 10 mm or more and 200 mm or less. Therefore, the composite plate is preferably in the range of 10 to 200 mm, although not particularly limited. The volume ratio of the core material to the intermediate layer made of the frame body and the core material is preferably 50% to 99%. If the volume ratio of the core material is less than 50%, the weight of the composite plate becomes heavy, and if it exceeds 99%, the surface rigidity of the composite plate supported by the frame is lowered, which is not preferable. For composite plate applications that require both light weight and surface rigidity, the volume ratio of the core material is more preferably in the range of 60% to 95%.
[0040]
Hereinafter, the manufacturing method of the composite board of this invention is demonstrated. This can be achieved by a manufacturing facility in accordance with a manufacturing process of a lightweight panel air-core structure, that is, a flash plywood, which is obtained by using general wood or paper as a core material and bonding plywood on both sides thereof. Since the reinforcing plate can be handled in the same manner as the plywood, the existing manufacturing process of the flash plywood can be used. Since no new manufacturing equipment is required, it is very preferable from the viewpoint of manufacturing equipment costs.
[0041]
As a method for more reliably and quickly bonding the intermediate layer composed of the frame body and the core material and the reinforcing plate, the reinforcing plate coated with the adhesive and the intermediate layer are overlapped and heated and pressed. When the heating temperature is equal to or higher than the softening temperature of the thermoplastic resin used for the reinforcing plate, the reinforcing plate itself is thermally deformed to form a step due to a pressure difference generated between the frame body and the core material. When the adhesive is solidified at a temperature lower than the softening temperature of the thermoplastic resin used for the reinforcing plate when the intermediate layer and the reinforcing plate and the reinforcing plate and the surface material are bonded, the space between the frame and the core material It does not deform with the pressure difference generated in By this manufacturing method, the composite plate of the present invention is completed.
[0042]
【Example】
Hereinafter, an embodiment embodying a composite plate according to the present invention will be described based on the drawings while being compared with a comparative example.
1. Manufacture of composite board
Using the following (a) frame, (b) core material, (c) reinforcing plate and the adhesive, composite plates of Examples and Comparative Examples were prepared.
(A) Frame
In the test, as the frame body (1), LVL (single plate laminated material) was used as a wooden frame, a low foamed polystyrene resin as a resin frame, or a hollow aluminum extruded material as a metal frame. Table 1 shows the properties of the frames used.
(B) Core material
In the test, polystyrene resin foam, polyurethane resin foam or paper honeycomb was used as the core material (2). Table 2 shows the properties of the core material used.
(C) Reinforcing plate
All of the prepregs used in this example were manufactured by the method disclosed in the aforementioned Japanese Patent Publication No. 4-42168.
[0043]
In the case of glass fiber, the surface of a monofilament having a thickness of 13 μm is treated with γ-methacryloxy-propyltrimethoxysilane, and 1800 pieces thereof are bundled to form a twist-free yarn, and the yarn is unidirectionally pulled with a uniform tension. The resin was entangled with the yarn, and the resin was impregnated with a hot roll while impregnating the yarn to produce a prepreg.
[0044]
The prepreg produced in this way is excellent in the adhesion between the fiber and the thermoplastic resin, the fiber content can be changed to 40 to 80% by weight, and the thickness is also 0.05 to 0.60 mm. can do. These prepregs are single or 2 to 4 layers, laminated by changing the fiber direction by 90 degrees to become a fiber reinforced thermoplastic resin sheet, and paper sheets are simultaneously laminated on both the front and back surfaces and heated and cooled by a press roller. By forming the paper sheet layer (4a) impregnated with the plastic resin, the reinforcing plate (5) composed of the fiber reinforced thermoplastic resin sheet (3) and the paper sheet (4) is obtained. FIG. 10 shows a reinforcing plate manufacturing facility.
[0045]
Table 3 shows the structure of the reinforcing plate (5) manufactured for use in the examples and comparative examples of the composite plate according to the present invention. Reinforcing plates A to E in Table 3 have a fiber mixing ratio of 40 to 80% by volume and a paper sheet (4) having a thickness of 0.1 to 0.5 mm, that is, according to the present invention. F is a fiber having a fiber mixing ratio outside the above range, and G is a paper sheet having a thickness outside the above range, that is, tested as a comparative example.
[0046]
Example 1
A paper honeycomb in which a 30 mm x 30 mm square LVL (frame body wood) is used to form a rectangular shape with an outer dimension of 900 mm x 1800 mm square, and a 30 mm thick cylinder with a diameter of 8 mm is connected to the core. A core (core material PH) was incorporated between the frames to form an intermediate layer. A rectangular reinforcing plate (reinforcement A) of 900 mm in length and 1800 mm in width is cut out as a pair, and vinyl acetate emulsion adhesive (aqueous vinyl acetate) is 100 g / m on one side of these two sheets. 2 Apply two layers on top and bottom of the intermediate layer, and leave it at 30 ° C (room temperature) for 60 minutes at a pressure of 2 kg / cm2 (the pressure on the core is 0 kg / cm2) with a clamping jig. Thus, the kraft paper of reinforcement A was impregnated and solidified to obtain a composite plate.
Table 4 shows the contents and characteristics of the adhesive used in the test.
[0047]
In the production of the composite plate, as shown in FIG. 10, (a) a heat laminating step for producing a reinforcing plate, (b) an applying step for applying an adhesive to the surface of the reinforcing plate, and (c) a core material is incorporated into the frame. And (d) a reinforcing plate bonding process using a jig for bonding the reinforcing plate, a hot press, and the like.
[0048]
When using a general hot press, the press temperature is in the range of 80 ° C to 120 ° C and the pressure is 1 to 3 kg / cm 2 The pressurization time ranged from 30 seconds to 3 minutes. Further, in the case of a pressing jig or a cold press, it takes 30 minutes to 10 hours for the pressurization time to be cured at room temperature, which is longer than the hot press.
[0049]
Example 2
Polystyrene double foam (frame PS) is used for the frame, polystyrene 30 times foam (core PS) is used for the core, and epoxy resin and modified polyamine mixed adhesive is used for the reinforcing plate adhesive. A composite plate was produced in the same manner as in Example 1 except that the agent (EP) was used and the pressing time was 60 minutes.
[0050]
Example 3
2mm thick extruded aluminum (frame body AL) is used for the frame, hot-melt type ethylene / vinyl acetate copolymer adhesive (EVA) is used for the adhesive for the reinforcing plate, and the adhesive temperature is 120 ° C. Time is 2 minutes to obtain a composite plate, and further vinyl acetate emulsion adhesive (aqueous vinyl acetate) is applied to the reinforcing plate at 100 g / m 2 After application, one piece of decorative paper printed with wood grain on a thin sheet is layered as a surface material, and the adhesive is reinforced by allowing it to stand at 30 ° C (room temperature) for 60 minutes at a pressure of 2 kg / cm² with a clamping jig. A composite board was produced in the same manner as in Example 1 except that the kraft paper and decorative paper were impregnated and solidified.
[0051]
Example 4
Polyurethane 30-fold foam (core material PU) is used as the core material, and a reinforcing plate (reinforcement A) and a 4.2 mm thick natural wood decorative plywood (decorative plywood) are combined with a vinyl emulsion and an isocyanate mixed adhesive ( A composite plate was produced in the same manner as in Example 1 except that VU) was used.
[0052]
Example 5
Using polyurethane 30-fold foam (core PU) as the core material, vinyl emulsion and isocyanate mixed adhesive (VU) as the adhesive for the reinforcing plate, and bonding temperature of 120 ° C and pressing time A composite plate was obtained in 2 minutes, and a vinyl acetate emulsion adhesive (aqueous vinyl acetate) was further applied to the reinforcing plate at 100 g / m. 2 After application, decorative paper printed with wood grain on thin paper is layered on both sides as a surface material, and a hot-melt film type (30 μm thick) ethylene / vinyl acetate copolymer adhesive (EVA) is used, with an adhesion temperature of 120 A composite plate was produced in the same manner as in Example 1 except that the temperature was set at 2 ° C. and the pressing time was 2 minutes, and solidified by an iron type pressing jig.
[0053]
Example 6
An example except that a 2 mm thick aluminum extruded material (frame body AL) is used for the frame, and a non-solvent two-component polyurethane adhesive (PU) is used as the adhesive for the reinforcing plate and is adhered to the metal aluminum frame. A composite plate was produced in the same manner as in Example 1.
[0054]
Examples 7 and 8
A composite plate was produced in the same manner as in Example 2 except that the frame and / or the reinforcing plate was changed as shown in Table 5.
Examples 9, 10
A composite plate was produced in the same manner as in Example 3 except that the frame and / or the reinforcing plate was changed as shown in Table 5.
Example 11
A composite plate was produced in the same manner as in Example 4 except that the reinforcing plate was changed as shown in Table 5.
[0055]
Comparative Example 1
A composite plate was produced under the same conditions as in Example 1 except that a reinforcing plate having a low fiber content of 33% was used.
Comparative Example 2
A composite plate was manufactured by using the same conditions as in Example 1 except that the reinforcing plate according to the present invention was not used and a Lauan plywood with a thickness of 3 mm was used.
Comparative Example 3
A composite plate was produced under the same conditions as in Example 3 except that a reinforcing plate having a thin thickness of 0.11 mm was used.
[0056]
Comparative Example 4
Same as Example 3 except that the temperature condition for solidifying the adhesive is 140 ° C. and the temperature of the thermoplastic resin used for the reinforcing plate (reinforcement A) is higher than the softening temperature of polypropylene, ie, 135 ° C. The composite board was made under the conditions described above.
[0057]
Comparative Example 5
The embodiment described above, except that a DAP-impregnated paper having a thickness of 0.4 mm obtained by impregnating a paper sheet with diallyl phthalate resin and then curing with a high-temperature radical catalyst was used without using the reinforcing plate according to the present invention. 4 was produced under the same conditions as in No. 4 to make a composite plate.
[0058]
Comparative Example 6
Same as Example 5 except that the temperature condition for solidifying the adhesive is 140 ° C. and the temperature of the thermoplastic resin used for the reinforcing plate (reinforcement A) is higher than the softening temperature of polypropylene, ie, 135 ° C. The composite board was made under the conditions described above.
For these comparative example samples, rectangular composite plates having the same dimensions as the above-described implementation samples, that is, outer dimensions of 900 mm × 1800 mm square, were produced and tested in the same manner as in the examples to evaluate their performance.
[0059]
Table 5 shows the structures of the composite plates of Examples and Comparative Examples.
2. Performance evaluation of composite board
The contents of the test conducted are as follows.
Surface water absorption test: According to the surface water absorption test of JIS A1414, a test frame is horizontally mounted on the surface of a 25 cm × 20 cm square of the composite plate so that the water depth is always 2 cm, and the surface water absorption after 48 hours (g / cm 2 ) And back surface water permeability.
[0060]
Deformation test by temperature and humidity: The temperature test is performed in accordance with JIS A1414. 2 The amount of displacement heated for 8 hours by the radiation of h was measured, and the humidity test also measured the amount of warp displacement (mm) after 24 hours while maintaining the humidity on one side at 90% and the humidity on the other side.
[0061]
Drop weight impact test: A 150 mm × 150 mm square test piece was cut out from a portion consisting of an intermediate layer consisting only of a core material and a reinforcing plate, placed on a cradle (inner diameter 44.3 mm, outer diameter 50 mm), and loaded (0.5 kg). Further, a shooting die (tip radius 6.35 mm) with a weight of 1 kg) was dropped from different heights (maximum 100 cm), and the product of the weight penetrating and breaking through the test piece (maximum 100 kg · cm) was measured.
[0062]
Surface property: When the surface was observed, ○ mark in the surface property column showed that a smooth surface was formed, and × mark showed that irregularities and steps appeared on the surface.
Weight: The weight (kg) of a composite plate of 900 mm × 1800 mm square was measured.
The results of the performance test of the composite plate are shown in Table 6.
In each of Examples 1 to 11, a lightweight composite plate that did not absorb water from the surface, had no deformation due to temperature and humidity, had a very high falling weight impact capability and excellent surface smoothness was obtained.
[0063]
On the other hand, in Comparative Example 1, the reinforcing plate (reinforcing F) having a low fiber content of 33% has a large amount of PP resin, so that the glass fibers cannot be aligned in one direction, meandering and having a thermal expansion coefficient of 2 × 10 -Five / ° C. Therefore, the amount of deformation due to temperature and humidity increased, and the impact resistance performance also decreased.
Further, in Comparative Example 3, since a thin reinforcing plate (reinforcement G) having a thickness of 0.11 mm was used, the reinforcing effect was reduced, the surface was easily deformed, and the upper surface property was deteriorated with low impact resistance.
[0064]
The Lauan plywood type composite board of Comparative Example 2 and the DAP-impregnated paper type composite board of Comparative Example 5 that have been widely used in the past are disadvantageous in that deformation is large and impact resistance is low. In the first and fourth embodiments using the reinforcing plate according to the present invention, the drawback can be solved by a reinforcing plate (reinforcement A) manufactured under a thin and light condition.
[0065]
Further, as can be seen from Comparative Examples 4 and 6, the conditions for solidifying the adhesive at a temperature lower than the softening temperature of the thermoplastic resin used for the reinforcing plate can be a manufacturing method for obtaining a composite plate having excellent surface properties.
[0066]
[Table 1]
Figure 0003693426
[0067]
[Table 2]
Figure 0003693426
[0068]
[Table 3]
Figure 0003693426
[0069]
[Table 4]
Figure 0003693426
[0070]
[Table 5]
Figure 0003693426
[0071]
[Table 6]
Figure 0003693426
[0072]
【The invention's effect】
The composite board of the present invention is even lighter than conventional flash plywood, and is excellent in workability such as on-site transportation, attachment, and cutting, and also uses a small amount of raw materials, greatly contributing to energy saving. It can be an earth friendly panel. Furthermore, a composite plate reinforced with a low-strength and high-strength reinforcing plate has a prepreg laminate made of fiber-reinforced synthetic resin with extremely high rigidity and tensile strength on both the front and back sides or one side. The overall rigidity is extremely high, and a very rigid structure can be constructed in use. In addition, a composite plate comprising a reinforcing plate in which continuous long fibers aligned in one direction of the present invention are effectively arranged completes a dream panel that does not warp at all even in response to a large environmental change. It can be widely used for building materials such as floors, outer walls, and roofs even in areas with large temperature differences. Moreover, since it is excellent in surface smoothness, it can be used for the composite board for interior which stuck the surface material.
[0073]
The composite board of the present invention has a feature that it can be easily manufactured by the widely used flash plywood manufacturing equipment, which is much more than the conventional fiber reinforced resin board flash board that required special adhesive and manufacturing equipment. It can be manufactured at low cost and energy saving.
That is, according to the composite plate and the manufacturing method thereof of the present invention, a high-strength, ultra-lightweight flash panel with high strength, water resistance, corrosion resistance, high strength without dimensional change due to moisture absorption and surface smoothness is inexpensive. Large quantities can be supplied.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a composite plate according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration of the composite plate shown in FIG.
FIG. 3 is a perspective view showing an embodiment different from that shown in FIG. 1;
4 is a cross-sectional view showing a configuration of the composite plate shown in FIG. 3. FIG.
FIG. 5 is a cross-sectional view showing a configuration of a composite plate having a skin material on the surface according to the present invention.
FIG. 6 is a cross-sectional view showing an embodiment having a skin material on the surface.
FIG. 7 is a cross-sectional view showing an embodiment having a skin material on the surface.
FIG. 8 is a partially enlarged cross-sectional view showing a state in which a reinforcing plate is bonded to the surface of an intermediate layer composed of a frame body and a core member via an adhesive layer.
9 is a partial view showing a state in which the paper sheet of the reinforcing plate shown in FIG. 8 includes a paper sheet layer (4a) impregnated with a thermoplastic resin and a paper sheet layer (4b) impregnated with an adhesive. It is an expanded sectional view.
FIG. 10 is an explanatory view showing an outline of an apparatus for producing a composite plate according to the present invention.
FIG. 11 is an explanatory view showing an outline of an apparatus used for a falling weight impact test of a composite plate according to the present invention.
[Explanation of symbols]
1 Frame
1a ... pier
1b ... buried wood
2. Core material
3. Fiber reinforced thermoplastic resin sheet
4 ... Paper sheet
4a: Paper sheet layer impregnated with thermoplastic resin
4b: Paper sheet layer impregnated with adhesive
5. Reinforcement plate
6: Adhesive layer
7 ... Skin material
8 Plywood
9 ... Veneer (natural wood sheet)
(A) ... Thermal lamination process
(B) Application process
(C) ... incorporation process
(D) Reinforcing plate adhesion process
10 ... Heating roll
11 ... Cooling roll
12 ... Adhesive
13 ... Weight
14 ... Shooting type
15 ... cradle

Claims (9)

一方向に整列させた連続長繊維を重量含有率が40%以上80%以下の範囲で配合したプリプレグからなる繊維強化熱可塑性樹脂シート(3)の両面に紙シート(4)を接合させた補強プレート(5)を、枠体(1)と枠体(1)内の空間に充填した芯材(2)とからなる中間層の片面または両面に接着層(6)を介して一体化した複合板。Reinforcement in which a paper sheet (4) is bonded to both sides of a fiber reinforced thermoplastic resin sheet (3) made of a prepreg composed of continuous long fibers aligned in one direction and having a weight content of 40% to 80%. A composite in which a plate (5) is integrated on one or both sides of an intermediate layer comprising a frame (1) and a core material (2) filled in a space in the frame (1) via an adhesive layer (6). Board. 繊維強化熱可塑性樹脂シート(3)が、繊維方向の熱膨張係数が10 5/℃以下のプリプレグを単独又は配向角0〜90°の任意の角度で2〜4枚積層したものであることを特徴とする請求項1記載の複合板。Fiber-reinforced thermoplastic resin sheet (3), it is intended that the thermal expansion coefficient of the fiber direction are laminated 2-4 sheets of 10 @ 5 / ° C. or less of the prepreg at any angle alone or orientation angle 0 to 90 ° The composite board according to claim 1. 繊維強化熱可塑性樹脂シート(3)を形成するプリプレグの繊維がガラス繊維であり、熱可塑性樹脂がポリオレフィン系樹脂であることを特徴とする請求項1または請求項2記載の複合板。The composite plate according to claim 1 or 2, wherein the fibers of the prepreg forming the fiber-reinforced thermoplastic resin sheet (3) are glass fibers, and the thermoplastic resin is a polyolefin resin. 接着層(6)と接する紙シート(4)が、熱可塑性樹脂を含浸させた紙シート層(4a)と接着剤を含浸させた紙シート層(4b)との少なくとも二層からなることを特徴とする請求項1記載の複合板。The paper sheet (4) in contact with the adhesive layer (6) is composed of at least two layers of a paper sheet layer (4a) impregnated with a thermoplastic resin and a paper sheet layer (4b) impregnated with an adhesive. The composite plate according to claim 1. 複合板の少なくとも一面以上に、表皮材(7)を、接着層(6)を介して一体化したことを特徴とする請求項1記載の複合板。The composite board according to claim 1, wherein a skin material (7) is integrated on at least one surface of the composite board via an adhesive layer (6). 芯材(2)が、ペーパーハニカム又は樹脂発泡体であることを特徴とする請求項1記載の複合板。The composite board according to claim 1, wherein the core material (2) is a paper honeycomb or a resin foam. 繊維強化熱可塑性シート(3)の厚みが0.05mm以上1mm以下の範囲にあり、紙シート(4)の厚みが0.02mm以上0.5mm以下の範囲にあり、さらに補強プレート(5)の厚みが、0.2mm以上2mm以下の範囲であることを特徴とする請求項1記載の複合板。The thickness of the fiber-reinforced thermoplastic sheet (3) is in the range of 0.05 mm to 1 mm, the thickness of the paper sheet (4) is in the range of 0.02 mm to 0.5 mm, and the reinforcing plate (5) The composite plate according to claim 1, wherein the thickness is in a range of 0.2 mm to 2 mm. 一方向に整列させた連続長繊維を重量含有率が40%以上80%以下の範囲で配合したプリプレグからなる繊維強化熱可塑性樹脂シート(3)をその熱可塑性樹脂の溶融温度以上に加熱し、熱可塑性樹脂が溶融した状態で紙シート(4)を繊維強化熱可塑性樹脂シート(3)の両面に重ね、次いで冷却固化する補強プレート(5)を製造する熱ラミネート工程(a)と、補強プレート(5)の表面に接着剤を塗布する塗布工程(b)と、枠体(1)内の空間に芯材(2)を挿入した中間層を形成する組み入れ工程(c)と、この中間層の両面に接着剤付き補強プレート(5)を積層し、繊維強化熱可塑性樹脂シート(3)を形成する熱可塑性樹脂の軟化温度より低温で接着剤を固化させた接着層(6)を介して一体化させる補強プレート接着工程(d)を順次行う複合板の製造方法。Heating a fiber reinforced thermoplastic resin sheet (3) comprising a prepreg in which continuous long fibers aligned in one direction are blended in a range of 40% to 80% in weight content to a temperature equal to or higher than the melting temperature of the thermoplastic resin; A heat laminating step (a) for producing a reinforcing plate (5) for superposing the paper sheet (4) on both sides of the fiber reinforced thermoplastic resin sheet (3) in the melted state of the thermoplastic resin and then solidifying by cooling; An application step (b) for applying an adhesive to the surface of (5), an incorporation step (c) for forming an intermediate layer in which the core material (2) is inserted into the space in the frame (1), and the intermediate layer A reinforcing plate (5) with an adhesive is laminated on both sides of an adhesive layer, and the adhesive is solidified at a temperature lower than the softening temperature of the thermoplastic resin forming the fiber-reinforced thermoplastic resin sheet (3). Reinforcing plate bonding to be integrated Method of manufacturing a composite plate which performs extent (d) is successively. 請求項8の複合板の製造方法において、さらに補強プレート(5)の表面に、繊維強化熱可塑性樹脂シート(3)を形成する熱可塑性樹脂の軟化温度より低温で接着剤を固化させた接着層(6)を介して表皮材(7)を一体化させる表皮材接着工程(e)を行う複合板の製造方法。9. The method for producing a composite plate according to claim 8, wherein the adhesive is further solidified on the surface of the reinforcing plate (5) at a temperature lower than the softening temperature of the thermoplastic resin forming the fiber-reinforced thermoplastic resin sheet (3). The manufacturing method of the composite board which performs the skin material adhesion | attachment process (e) which unifies a skin material (7) through (6).
JP20182696A 1996-07-31 1996-07-31 Composite plate and manufacturing method thereof Expired - Lifetime JP3693426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20182696A JP3693426B2 (en) 1996-07-31 1996-07-31 Composite plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20182696A JP3693426B2 (en) 1996-07-31 1996-07-31 Composite plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1044281A JPH1044281A (en) 1998-02-17
JP3693426B2 true JP3693426B2 (en) 2005-09-07

Family

ID=16447544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20182696A Expired - Lifetime JP3693426B2 (en) 1996-07-31 1996-07-31 Composite plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3693426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031192A (en) * 2018-09-13 2020-03-24 (주)대한솔루션 Roof damping pad for vehicle
TWI800470B (en) * 2022-11-01 2023-04-21 錫成股份有限公司 Method of manufacturing composite plate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585917B2 (en) * 2004-10-25 2010-11-24 大成建設株式会社 Sound absorbing plate and installation method thereof
JP2006123283A (en) * 2004-10-27 2006-05-18 Sekisui Chem Co Ltd Decorative sheet-laminated foam and top plate using it
JP2006194860A (en) * 2004-12-16 2006-07-27 Konica Minolta Medical & Graphic Inc Radiological image conversion panel and method of manufacturing radiological image conversion panel
JP2006198866A (en) * 2005-01-20 2006-08-03 Mitsubishi Rayon Co Ltd Core material for sandwich structural material and manufacturing method of sandwich structural material
JP2006316512A (en) * 2005-05-13 2006-11-24 Yamanaka Sangyo Kk Core material constituting fittings and fusuma (sliding door) using core material constituting fittings
JP4709803B2 (en) * 2007-05-22 2011-06-29 カナフレックスコーポレーション株式会社 Underground box
JP5001078B2 (en) * 2007-07-06 2012-08-15 東邦テナックス株式会社 Method for molding FRP molded product having foam core
KR101002629B1 (en) * 2008-04-29 2010-12-21 한국건설기술연구원 Attachment method of core material for interial of panel
JP4745429B2 (en) * 2009-07-24 2011-08-10 株式会社イノアックコーポレーション Sound absorption panel
JP4860730B2 (en) * 2009-07-24 2012-01-25 株式会社イノアックコーポレーション Lightweight honeycomb panel
JP2011069055A (en) * 2009-09-24 2011-04-07 Shizutee:Kk Flush panel
WO2011137562A1 (en) * 2010-05-06 2011-11-10 嘉峰国际企业有限公司 Improved combined structure of decorative sheet and honeycomb plate
CN102501388A (en) * 2011-10-21 2012-06-20 成都彩虹环保科技有限公司 Manufacturing device of composite material
CN103419413A (en) * 2012-05-21 2013-12-04 富比利实业股份有限公司 One-step formed core-type structure body and production method thereof
CN103818606B (en) * 2013-12-26 2016-02-17 余姚中国塑料城塑料研究院有限公司 The manufacture method of light plastic packing case
JP6320352B2 (en) * 2015-08-18 2018-05-09 天昇電気工業株式会社 Shelf board structure
JP6365798B1 (en) * 2016-09-21 2018-08-01 住友ベークライト株式会社 Composite molded body and method for producing composite molded body
KR102006809B1 (en) * 2017-05-30 2019-08-05 (주)동성화인텍 Fiber-reinforced composiite pannel and manufacturing method thereof
CN109795202A (en) * 2017-11-16 2019-05-24 连云港神鹰碳纤维自行车股份有限公司 A kind of preparation method of Furniture panel
CN109795513A (en) * 2017-11-17 2019-05-24 上海杰事杰新材料(集团)股份有限公司 A kind of articulated car composite floor board and preparation method thereof
CN108839395B (en) * 2018-07-03 2024-01-23 南京工业大学 Toothed plate reinforced composite plate and production process thereof
CN109368122A (en) * 2018-11-26 2019-02-22 爱西贝特传输***(云南)有限公司 A kind of Environment-friendlywear-resistant wear-resistant type tobacco leaf production conveyer belt and its preparation process
FR3089854B1 (en) * 2018-12-18 2022-02-04 Saint Gobain Performance Plastics France METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH
JP7328674B2 (en) * 2019-05-22 2023-08-17 コバヤシ産業株式会社 Top board
CN114786939A (en) * 2019-12-27 2022-07-22 三井化学株式会社 Laminate and method for producing same
CN117693423A (en) * 2021-10-26 2024-03-12 东丽株式会社 Sandwich structure, method for manufacturing the same, and electronic device case

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031192A (en) * 2018-09-13 2020-03-24 (주)대한솔루션 Roof damping pad for vehicle
KR102108255B1 (en) * 2018-09-13 2020-05-08 (주)대한솔루션 Roof damping pad for vehicle
TWI800470B (en) * 2022-11-01 2023-04-21 錫成股份有限公司 Method of manufacturing composite plate

Also Published As

Publication number Publication date
JPH1044281A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3693426B2 (en) Composite plate and manufacturing method thereof
EP3530840B1 (en) Panel suitable for assembling a waterproof floor or wall covering, method of producing a panel
CA2106676C (en) Multi-functional exterior structural foam sheathing panel
EP0748279B1 (en) Reinforcement panel having a cellulose surface material adhered thereto, a method for reinforcing a wood structure and the resulting reinforced structure
US8114501B2 (en) Fiber reinforced core panel having natural contour
US6711872B2 (en) Lightweight panel construction
US5518796A (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a foaming fiber-filled adhesive
EP2079865B1 (en) Polymer-based composite structural sheathing board and wall and/or ceiling system
EP0144340B1 (en) Acoustical structure and method of manufacturing it
FI73626B (en) ETT FOER FRAMSTAELLNING AV LAMINAT LAEMPLIGT SKUMKOMPOSITMATERAL, DESS FRAMSTAELLNING OCH ANVAENDNING.
US20070256379A1 (en) Composite panels
US20110300386A1 (en) Composite Hybrid Sheathing Panel
KR0164926B1 (en) High-strength composite sheet and its manufacture
US20170021596A1 (en) Fiber Reinforced Core
JP2017100326A (en) Decorative panel
JP2017105158A (en) Decorative panel and method for manufacturing decorative panel
JPH07304134A (en) High-strength composite sheet and its manufacture
JP6671049B2 (en) Surface decorative panel, decorative panel provided with the same, and panel manufacturing method
JPH06122178A (en) Carbon fiber reinforced laminated wood material
JP2018052001A (en) Surface decorative panel, decorative panel having the same and surface decorative panel manufacturing method
JP3044803B2 (en) Carbon fiber reinforced glulam
JP3911090B2 (en) Tatami floor components and tatami mats using the same
JP2012236386A (en) Laminated lumber and method of manufacturing the same
JPH08174514A (en) Woody panel
JP2018001514A (en) Surface decorative panel, decorative panel with the same and production method of panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5