JP3693191B2 - Indium oxide-based sintered body, method for producing the same, and indium oxide-based target - Google Patents

Indium oxide-based sintered body, method for producing the same, and indium oxide-based target Download PDF

Info

Publication number
JP3693191B2
JP3693191B2 JP28155995A JP28155995A JP3693191B2 JP 3693191 B2 JP3693191 B2 JP 3693191B2 JP 28155995 A JP28155995 A JP 28155995A JP 28155995 A JP28155995 A JP 28155995A JP 3693191 B2 JP3693191 B2 JP 3693191B2
Authority
JP
Japan
Prior art keywords
indium oxide
sintered body
less
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28155995A
Other languages
Japanese (ja)
Other versions
JPH09125236A (en
Inventor
英子 福島
広実 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28155995A priority Critical patent/JP3693191B2/en
Publication of JPH09125236A publication Critical patent/JPH09125236A/en
Application granted granted Critical
Publication of JP3693191B2 publication Critical patent/JP3693191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化インジウムを主成分とするインジウム酸化物系焼結体およびその製造方法ならびにインジウム酸化物系ターゲットに関し、詳しくは透明導電膜形成用のインジウム酸化物系焼結体およびその製造方法ならびにインジウム酸化物系ターゲットに関する。
【0002】
【従来の技術】
従来より透明導電膜形成用材料としてインジウム酸化物系焼結体がスパッタリング用ターゲットとして用いられている。スパッタリング用ターゲットとしては、ターゲット寿命の向上、膜特性の向上の点から高密度なITO焼結体が望まれている。
高密度なITO焼結体を製造する方法として、特開平6−48816号では比表面積20m2/g以上の酸化インジウム粉末を用い、相対密度90%以上、500mm(長さ)×170mm(幅)×10mm(厚さ)のITO焼結体を得る方法が提案されている。
また、特開平6−183731号には、BET表面積が3m2/g未満の酸化スズ粉末と、BET表面積が15〜30m2/gの酸化インジウム粉末を成形、焼結して密度90%以上、直径100φのITO焼結体を製造する方法が提案されている。
しかしながら、特開平6−48816号、特開平6−183731号に記載される方法でITO焼結体を作成した場合、焼結中に焼結体が割れたり、クラックが発生しやすく、安定して焼結体を得ることが困難であった。また、焼結体が得られたとしても、一体に形成されたインジウム酸化物系焼結体の体積が1.0×104mm3を越える大型になると、焼結体の加工、バッキングプレートとのボンディング、スパッタリング等により焼結体に割れが発生し、ITOターゲットとして安定して得るまでには至らず、実用化が困難であった。
【0003】
また、ITO焼結体の高密度化への要求とともに、ITO焼結体の大型化への要求が高まっているが、大型で一体形成された焼結体は、高密度化によりワレが発生する頻度が増加するため、実用化が困難であった。そこで、その対策として、小型焼結体を張り合わせ大型ターゲットを作製しているが、焼結体と焼結体のつなぎ目が原因でスパッタリングによりパーティクル等が発生し、膜特性が劣化するという問題が生じる。
【0004】
【発明が解決しようとする課題】
本発明は、密度が高く、かつ焼結、加工、ボンディング、スパッタリング等により焼結体にクラック、ワレ等の欠陥が発生しないインジウム酸化物系焼結体およびその製造方法ならびにインジウム酸化物系ターゲットを提供することを目的とする。
さらに本発明は、大型で一体に形成された高密度なインジウム酸化物系焼結体およびその製造方法ならびにインジウム酸化物系ターゲットを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、焼結体のクラック、ワレ等の欠陥発生の原因を鋭意検討の結果、焼結体の相対密度を90%以上と高密度化することにより、焼結体の残留応力が増大することを知見し、焼結体の残留応力を−200〜200MPaにすることによりワレを防止できることを見いだした。したがって、本発明は、Snを0.1wt%以上含有し、InおよびOからなる成形体を1350〜1600℃で燒結した後、300℃/h以下で室温まで降温することにより、相対密度90%以上であって、残留応力xが−200≦x≦200MPaとしたことを特徴とするインジウム酸化物系焼結体である。
さらに、本発明は、Snを0.1wt%以上含有し、InおよびOからなる成形体を、1350〜1600℃で燒結した後、300℃/h以下で室温まで降温することにより、相対密度90%以上であって、残留応力xが−200≦x≦200MPaであり、その体積が1.0×104mm3以上で、かつ一体に形成されてなるインジウム酸化物系焼結体をバッキングプレートにボンディングして形成したことを特徴とするインジウム酸化物系ターゲットである。
本発明のインジウム酸化物系焼結体は、その体積が1.0×10 4 mm 3 以上、1.5×10 mm 3 以下で、かつ一体に形成されてなることが望ましい。
【0006】
本発明のインジウム酸化物系焼結体は、BET表面積が3以上20m2/g未満の酸化インジウム粉末85〜100wt%と、残部がBET表面積が20m 2 /g未満である酸化スズ粉末からなる混合粉末、および/またはスズを0.1wt%以上含有するIn,SnおよびOからなるBET表面積が3以上20m2/g未満のITO複合粉末からなる原料粉末を、密度45%以上の成形体に成形後、焼結温度1350℃〜1600℃で保持した後、300℃/h以下で室温まで降温して予備焼結し、その後、不活性ガス雰囲気または酸化性雰囲気で、最高到達圧力30MPa以上、焼結温度1200℃〜1600℃で保持した後、500℃/h以下で室温まで降温する条件でHIP焼結することにより得ることができる。そして、焼結後、1600℃以下の温度で熱処理することが好ましい。
【0007】
本発明インジウム酸化物焼結体は、相対密度90%以上において、残留応力xが−200≦x≦200MPaの範囲外となると焼結体に割れ、クラックが発生するので、残留応力−200≦x≦200MPaとする。さらに、残留応力は−150≦x≦150MPaとするのが好ましい。
残留応力xを−200≦x≦200MPaとすることにより、焼結体の体積が1×104mm3以上となっても割れやクラックのない焼結体を安定して得ることができる。
本発明において、焼結体の残留応力とは、理学MSF−2Mを用いて、X線管球:Crターゲット、回折角:2θ=161゜(In23(662))、測定法:ψ0一定法、弾性定数:174GPa、管電圧:30kV、管電流:10mA、ポアソン比:0.33の測定条件で測定した場合の残留応力である。
【0008】
さらに、相対密度90%以上のインジウム酸化物系焼結体は、厚さが15mmより大きいと残留応力により割れる傾向があるので、焼結体の厚さを15mm以下とすることが好ましい。
焼結体サイズとしては、1000×1000×15mmより大きくなると、大きな残留応力が生じ焼結体が割れやすくなり、たとえ焼結ワレが生じなかったとしても、Cu,Al,ステンレス等の金属製のバッキングプレートにボンディングすると熱膨張係数の差により応力が生じ、機械的特性におとる焼結体にクラック、ワレ等の欠陥が生じるので、1.5×107mm3以下とすることが好ましい。
【0009】
インジウム酸化物系焼結体を作成するための原料粉末としては、BET表面積が3以上20m2/g未満の酸化インジウム粉末85〜100wt%と残部が酸化スズ粉末からなる混合粉末、またはスズを0.1wt%以上含有するIn,SnおよびOからなるBET表面積が3以上20m2/g未満のITO複合粉末を用い、前記混合粉末とITO複合粉末を混合して用いることもできる。
酸化インジウム粉末のBET表面積が3m2/g未満であると焼結性が低下し、相対密度が90%以上とすることが困難となるので、3m2/g以上とするのが好ましく、5m2/g以上とするのがより好ましい。20m2/g以上では、焼結による収縮率が大きく、焼結時、収縮が拘束され残留応力が発生し、焼結体にクラック、ワレ等の欠陥が生じるので、20m2/g未満とするのが好ましく、18m2/g以下とするのがより好ましい。
酸化スズ粉末のBET表面積が20m2/gを超えると酸化インジウム粉末との混合粉とした時に、酸化スズ粉末が凝集粉として存在することになり、組織の均質性が低下し、焼結体中に粗大気孔が形成するなどして相対密度が低下する。また、酸化インジウム粉末よりBET表面積が大きい酸化インジウム粉末を用いることにより、より組織が均質な焼結体を得ることが可能となる。
ITO複合粉末は、共沈法等により得たIn,Sn,OからなるITO複合粉末を用いることができる。ITO複合粉末のBET表面積は、3以上20未満m2/gとするのが好ましい。
【0010】
成形体密度が45%より小さいと、成形体強度が得られず、成形体にクラックが入ったり、成形ワレが生じたりし、欠陥のない焼結体が得られない。成形体は粉末を金型を用いて予備成形し、CIPする方法が目的とする形状の焼結体が得られやすく、等方的に圧力がかかり、均質な成形体が得られ、焼結体が均質になり残留応力も生じにくい。CIP圧力は1ton以上が好ましい。また、成形は、スリップキャスティング等の湿式法でも良い。鋳込み後の脱水時スラリーに圧力をかけ、強制的に脱水すると成形密度がより向上し好ましい。
【0012】
焼結は、焼結温度1350〜1600℃で保持した後、300℃/h以下で室温まで降温する。焼結温度が1350℃より低いと相対密度が90%未満となるので、焼結温度は1350℃以上とする。1600℃を越えると酸化物の解離により相対密度が低下するので、1600℃以下とする。降温速度が300℃/hより大きいと冷却過程で焼結体に残留応力が発生し、焼結体にクラック、ワレ等欠陥が生じる。降温速度は、200℃/h以下とするのが好ましい。また、降温速度が30℃/h未満であると、工業生産上好ましくない。したがって、200〜30℃/hの範囲で降温するのが好ましい。焼結は、不活性雰囲気、酸化性雰囲気いづれでもよいが、酸化物の解離を抑えるためには、酸化性雰囲気が好ましく、特に酸素中で焼結することが好ましい。
【0013】
焼結は、焼結温度1350℃〜1600℃で保持した後、300℃/h以下で室温まで降温する焼結条件で予備焼後、HIP焼結を行うことにより、さらに焼結密度が向上し、相対密度95%以上の焼結体が容易に得られる。
HIP条件は、最高到達圧力が300MPaより低いとHIPによる密度向上効果がほとんど望めない。焼結温度が1200℃より低いとやはり密度向上効果が望めない。1600℃より高くなると高圧、高温下による強引な境界拡散焼結により冷却過程で残留応力が生じ、焼結体が割れる。降温速度が500℃/hより大きくなると冷却過程で残留応力が生じ焼結体が割れる。HIPは、不活性雰囲気、酸化性雰囲気いづれでもよい。
また、本発明は、焼結温度1350℃〜1600℃で保持した後、300℃/h以下で室温まで降温する焼結条件で焼結後、または、焼結温度1350℃〜1600℃で保持した後、300℃/h以下で室温まで降温する焼結条件で焼結しHIP焼結後、さらに1600℃以下の温度で熱処理することにより、残留応力が解放されクラック、ワレ等の欠陥のない焼結体となる。
【0014】
本発明インジウム酸化物系焼結体は、Cu,Al,ステンレス等のバッキングプレートとボンディングすることにより、インジウム酸化物系ターゲットとして用いることができる。ターゲット化の際にも新たに残留応力が導入されるが、割れ、クラック等の欠陥を防ぐためにはインジウム酸化物ターゲットの残留応力も−200〜200MPaとすることが好ましい。
一体に形成されたインジウム酸化物系焼結体をターゲット化する際は、スパッタリングされる面やバッキングプレートとのボンディング面を加工してもよい。ただし、加工によって新たに残留応力が導入され割れ、クラック等の欠陥が発生する可能性があるため、加工に用いる砥石には#150以上のダイヤモンド砥石を用いることが望ましい。
また、ボンディングの際のメタライズ層としては、Inメタル等の低融点物質用い、メタライズ層の厚さを5μm以上、より好ましくは10μm以上にするのが好ましい。5μm以下になると焼結体とバッキングプレートとの熱膨張係数の差を緩和することができず、密着力が低下し、スパッタリング中にはがれる等の不良が発生しやすくなる。
【0015】
【発明の実施の態様】
(実施例1)
表1に記載の原料粉末を用いて、CIP圧力3tonにて成形体を作成し、酸素雰囲気中にて焼結して、インジウム酸化物系焼結体を得た。成形の成形密度、焼結条件を表1に、得られた焼結体の密度、残留応力、形状、割れ、クラック等の有無を表2に示す。
残留応力は、理学MSF−2Mを用いて、X線管球:Crターゲット、回折角:2θ=161゜(In23(662))、測定法:ψ0一定法、弾性定数:174GPa、管電圧:30kV、管電流:10mA、ポアソン比:0.33、応力定数:191MPaの測定条件にて測定した。
表1、2中No.3のインジウム酸化物系焼結体を、Inメタルを用いてバッキングプレートにボンディングし、ターゲットを作成した。得られたターゲットの残留応力を測定したところ残留応力は−50MPaであり、ターゲットに割れ、クラック等は見られなかった。
【0016】
【表1】

Figure 0003693191
【0017】
【表2】
Figure 0003693191
【発明の効果】
本発明により、大型で一体に形成された高密度なインジウム酸化物系焼結体を安定して得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indium oxide-based sintered body containing indium oxide as a main component, a manufacturing method thereof, and an indium oxide-based target, and more particularly to an indium oxide-based sintered body for forming a transparent conductive film, a manufacturing method thereof, and The present invention relates to an indium oxide target.
[0002]
[Prior art]
Conventionally, an indium oxide-based sintered body has been used as a sputtering target as a transparent conductive film forming material. As a sputtering target, a high-density ITO sintered body is desired from the viewpoint of improvement in target life and film characteristics.
As a method for producing a high-density ITO sintered body, in JP-A-6-48816, an indium oxide powder having a specific surface area of 20 m 2 / g or more is used, a relative density of 90% or more, 500 mm (length) × 170 mm (width) × A method for obtaining a 10 mm (thickness) ITO sintered body has been proposed.
Further, Japanese Unexamined Patent Publication No. 6-183731, a tin oxide powder of less than BET surface area of 3m 2 / g, BET surface area forming the indium oxide powder of 15 to 30 m 2 / g, a density of 90% or more by sintering, A method of manufacturing an ITO sintered body having a diameter of 100φ has been proposed.
However, when an ITO sintered body is prepared by the method described in JP-A-6-48816 and JP-A-6-183731, the sintered body is easily cracked or cracked during sintering, and is stable. It was difficult to obtain a sintered body. Even if a sintered body is obtained, if the volume of the integrally formed indium oxide-based sintered body exceeds 1.0 × 10 4 mm 3 , the processing of the sintered body, the backing plate, Cracking occurred in the sintered body due to bonding, sputtering, etc., and it did not come to be stably obtained as an ITO target, and it was difficult to put it to practical use.
[0003]
In addition, with the demand for higher density of the ITO sintered body, there is an increasing demand for larger ITO sintered body, but the large and integrally formed sintered body generates cracks due to higher density. Since the frequency increased, it was difficult to put it to practical use. Therefore, as a countermeasure, a large target is produced by bonding small sintered bodies. However, there is a problem that particles and the like are generated by sputtering due to the joint between the sintered bodies and the sintered bodies, and the film characteristics deteriorate. .
[0004]
[Problems to be solved by the invention]
The present invention provides an indium oxide-based sintered body that has a high density and does not generate defects such as cracks and cracks in the sintered body due to sintering, processing, bonding, sputtering, and the like, a manufacturing method thereof, and an indium oxide-based target. The purpose is to provide.
Furthermore, an object of the present invention is to provide a large-sized, high-density indium oxide-based sintered body, a manufacturing method thereof, and an indium oxide-based target.
[0005]
[Means for Solving the Problems]
As a result of earnest examination of the cause of defects such as cracks and cracks in the sintered body, the present inventors have increased the relative density of the sintered body to 90% or higher, thereby reducing the residual stress of the sintered body. As a result of finding that it increases, it was found that cracking can be prevented by setting the residual stress of the sintered body to -200 to 200 MPa. Accordingly, the present invention contains Sn least 0.1 wt%, In and O Tona Ru molded product was sintered at 1,350 to 1,600 ° C., by cooling to room temperature at below 300 ° C. / h, the relative density The indium oxide-based sintered body is characterized by being 90% or more and having a residual stress x of −200 ≦ x ≦ 200 MPa.
Furthermore, in the present invention , a sintered compact containing 0.1 wt% or more of Sn and sintered with In and O is sintered at 1350 to 1600 ° C., and then cooled to room temperature at 300 ° C./h or less to obtain a relative density of 90 be more than%, the residual stress x is -200 ≦ x ≦ 200 MPa, the backing plate with its volume 1.0 × 10 4 mm 3 or more, and an indium oxide-based sintered body comprising integrally formed It is an indium oxide target characterized by being formed by bonding to a substrate.
The indium oxide-based sintered body of the present invention preferably has a volume of 1.0 × 10 4 mm 3 or more and 1.5 × 10 7 mm 3 or less and is integrally formed.
[0006]
The indium oxide-based sintered body of the present invention is a mixture comprising 85-100 wt% indium oxide powder having a BET surface area of 3 or more and less than 20 m 2 / g, and the balance comprising tin oxide powder having a BET surface area of less than 20 m 2 / g. Molding of powder and / or raw material powder made of ITO composite powder with BET surface area of 3 or more and less than 20 m 2 / g containing 0.1 wt% or more of tin and 0.1% by weight or more into a compact with a density of 45% or more Thereafter, after holding at a sintering temperature of 1350 ° C. to 1600 ° C., the temperature is lowered to room temperature at 300 ° C./h or less and pre-sintered, and then the maximum ultimate pressure is 30 MPa or more in an inert gas atmosphere or an oxidizing atmosphere. After holding at a sintering temperature of 1200 ° C to 1600 ° C, it can be obtained by HIP sintering under conditions where the temperature is lowered to room temperature at 500 ° C / h or less . And it is preferable to heat-process at the temperature of 1600 degrees C or less after sintering.
[0007]
In the indium oxide sintered body of the present invention, when the residual stress x is outside the range of −200 ≦ x ≦ 200 MPa at a relative density of 90% or more, the sintered body is cracked and cracked, so that the residual stress −200 ≦ x ≦ 200 MPa. Further, the residual stress is preferably −150 ≦ x ≦ 150 MPa.
By setting the residual stress x to −200 ≦ x ≦ 200 MPa, it is possible to stably obtain a sintered body free from cracks and cracks even when the volume of the sintered body is 1 × 10 4 mm 3 or more.
In the present invention, the residual stress of the sintered body means that, using a scientific MSF-2M, X-ray tube: Cr target, diffraction angle: 2θ = 161 ° (In 2 O 3 (662)), measurement method: ψ 0 Residual stress when measured under the measurement conditions of constant method, elastic constant: 174 GPa, tube voltage: 30 kV, tube current: 10 mA, Poisson's ratio: 0.33.
[0008]
Furthermore, since the indium oxide sintered body having a relative density of 90% or more tends to crack due to residual stress when the thickness is greater than 15 mm, the thickness of the sintered body is preferably set to 15 mm or less.
When the sintered body size is larger than 1000 × 1000 × 15 mm, a large residual stress is generated and the sintered body is easily cracked. Even if there is no sintering crack, it is made of metal such as Cu, Al, stainless steel, etc. When bonding to the backing plate, stress is generated due to the difference in thermal expansion coefficient, and defects such as cracks and cracks occur in the sintered body having mechanical characteristics. Therefore, it is preferable that the thickness is 1.5 × 10 7 mm 3 or less.
[0009]
As a raw material powder for producing an indium oxide-based sintered body, a mixed powder composed of 85 to 100 wt% of indium oxide powder having a BET surface area of 3 or more and less than 20 m 2 / g and the balance of tin oxide powder, or tin 0 It is also possible to use an ITO composite powder having a BET surface area of 3 or more and less than 20 m 2 / g composed of In, Sn and O contained in an amount of 1 wt% or more, and the mixed powder and the ITO composite powder can be mixed and used.
BET surface area of the indium oxide powder is lowered sinterability is less than 3m 2 / g, the relative density is difficult to 90% or more, it is preferable to be 3m 2 / g or more, 5 m 2 / G or more is more preferable. If it is 20 m 2 / g or more, the shrinkage rate due to sintering is large, the shrinkage is restrained during sintering and residual stress is generated, and defects such as cracks and cracks occur in the sintered body, so it is less than 20 m 2 / g. Is more preferable, and 18 m 2 / g or less is more preferable.
If the BET surface area of the tin oxide powder exceeds 20 m 2 / g, the tin oxide powder will exist as an agglomerated powder when mixed with the indium oxide powder, and the homogeneity of the structure will be reduced, and the sintered body will The relative density decreases due to the formation of rough atmospheric pores. Further, by using an indium oxide powder having a BET surface area larger than that of the indium oxide powder, it becomes possible to obtain a sintered body having a more uniform structure.
As the ITO composite powder, an ITO composite powder made of In, Sn, and O obtained by a coprecipitation method or the like can be used. The BET surface area of the ITO composite powder is preferably 3 or more and less than 20 m 2 / g.
[0010]
If the density of the molded body is less than 45%, the molded body strength cannot be obtained, cracks are formed in the molded body, and molding cracks occur, and a sintered body having no defects cannot be obtained. The compact is preliminarily molded using a mold, and a CIP method makes it easy to obtain a sintered body of the desired shape, isotropic pressure is applied, and a homogeneous compact is obtained. Becomes uniform and residual stress hardly occurs. The CIP pressure is preferably 1 ton or more. The molding may be a wet method such as slip casting. It is preferable to apply pressure to the slurry at the time of dehydration after casting and forcibly dehydrate to improve the molding density.
[0012]
Sintering is held at a sintering temperature of 1350 to 1600 ° C., and then lowered to room temperature at 300 ° C./h or less. If the sintering temperature is lower than 1350 ° C., the relative density is less than 90%, so the sintering temperature is 1350 ° C. or higher. If the temperature exceeds 1600 ° C., the relative density decreases due to the dissociation of the oxide. If the rate of temperature decrease is higher than 300 ° C./h, residual stress is generated in the sintered body during the cooling process, and defects such as cracks and cracks occur in the sintered body. The temperature decreasing rate is preferably 200 ° C./h or less. Moreover, it is unpreferable on industrial production that the temperature-fall rate is less than 30 degrees C / h. Therefore, it is preferable to lower the temperature in the range of 200 to 30 ° C./h. Sintering may be performed in either an inert atmosphere or an oxidizing atmosphere, but in order to suppress dissociation of the oxide, an oxidizing atmosphere is preferable, and sintering is particularly preferable in oxygen.
[0013]
Sintering is maintained at a sintering temperature of 1350 ° C. to 1600 ° C., and then pre-fired under sintering conditions where the temperature is lowered to room temperature at 300 ° C./h or less, and then HIP sintering is performed, whereby the sintering density is further improved. A sintered body having a relative density of 95% or more can be easily obtained.
As for the HIP condition, when the maximum ultimate pressure is lower than 300 MPa, the density improvement effect by HIP can hardly be expected. If the sintering temperature is lower than 1200 ° C., the density improvement effect cannot be expected. When the temperature is higher than 1600 ° C., residual stress is generated in the cooling process due to aggressive boundary diffusion sintering under high pressure and high temperature, and the sintered body breaks. When the temperature lowering rate is higher than 500 ° C./h, residual stress is generated in the cooling process and the sintered body is broken. HIP may be an inert atmosphere or an oxidizing atmosphere.
Further, in the present invention, after being held at a sintering temperature of 1350 ° C. to 1600 ° C., after sintering under a sintering condition of lowering to room temperature at 300 ° C./h or less, or held at a sintering temperature of 1350 ° C. to 1600 ° C. Thereafter, sintering is performed under a sintering condition of lowering to room temperature at 300 ° C./h or lower, and after HIP sintering, further heat treatment is performed at a temperature of 1600 ° C. or lower, so that residual stress is released and there are no defects such as cracks and cracks. Become a unity.
[0014]
The indium oxide-based sintered body of the present invention can be used as an indium oxide-based target by bonding to a backing plate made of Cu, Al, stainless steel or the like. Residual stress is newly introduced also at the time of targeting, but in order to prevent defects such as cracks and cracks, it is preferable that the residual stress of the indium oxide target is also −200 to 200 MPa.
When targeting the integrally formed indium oxide-based sintered body, the surface to be sputtered or the bonding surface with the backing plate may be processed. However, since residual stress may be newly introduced by processing and defects such as cracks and cracks may occur, it is desirable to use a diamond grinding stone of # 150 or more as the grinding stone used for processing.
Further, as the metallized layer at the time of bonding, it is preferable to use a low melting point material such as In metal and to make the thickness of the metallized layer 5 μm or more, more preferably 10 μm or more. If the thickness is 5 μm or less, the difference in thermal expansion coefficient between the sintered body and the backing plate cannot be relaxed, the adhesive force is reduced, and defects such as peeling are likely to occur during sputtering.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
Using the raw material powders shown in Table 1, a molded body was prepared at a CIP pressure of 3 tons and sintered in an oxygen atmosphere to obtain an indium oxide-based sintered body. Table 1 shows the molding density and sintering conditions of the molding, and Table 2 shows the density, residual stress, shape, cracks, cracks, and the like of the obtained sintered body.
Residual stress was measured using a scientific MSF-2M, X-ray tube: Cr target, diffraction angle: 2θ = 161 ° (In 2 O 3 (662)), measurement method: ψ 0 constant method, elastic constant: 174 GPa, Measurement was performed under measurement conditions of tube voltage: 30 kV, tube current: 10 mA, Poisson's ratio: 0.33, and stress constant: 191 MPa.
In Tables 1 and 2, No. 3 was bonded to a backing plate using In metal to prepare a target. When the residual stress of the obtained target was measured, the residual stress was -50 MPa, and no cracks, cracks, etc. were found in the target.
[0016]
[Table 1]
Figure 0003693191
[0017]
[Table 2]
Figure 0003693191
【The invention's effect】
According to the present invention, a large and integrated high density indium oxide sintered body can be stably obtained.

Claims (6)

Snを0.1wt%以上含有し、InおよびOからなる成形体を1350〜1600℃で燒結した後、300℃/h以下で室温まで降温することにより、相対密度90%以上であって、残留応力xが−200≦x≦200MPaであることを特徴とするインジウム酸化物系焼結体。 Containing Sn least 0.1 wt%, In and O Tona Ru molded product was sintered at 1,350 to 1,600 ° C., by cooling to room temperature at below 300 ° C. / h, a relative density of 90% or more Residual stress x is in the range of −200 ≦ x ≦ 200 MPa. 体積が1.0×104mm3以上、1.5×10 mm 3 以下で、かつ一体に形成されてなることを特徴とする請求項1に記載のインジウム酸化物系焼結体。2. The indium oxide-based sintered body according to claim 1, wherein the indium oxide sintered body has a volume of 1.0 × 10 4 mm 3 or more and 1.5 × 10 7 mm 3 or less and is integrally formed. Snを0.1wt%以上含有し、InおよびOからなる成形体を、1350〜1600℃で燒結した後、300℃/h以下で室温まで降温することにより、相対密度90%以上であって、残留応力xが−200≦x≦200MPaであり、その体積が1.0×104mm3以上で、かつ一体に形成されてなるインジウム酸化物系焼結体をバッキングプレートにボンディングして形成したことを特徴とするインジウム酸化物系ターゲット。 A sintered compact containing 0.1 wt% or more of Sn and sintered at 1350 to 1600 ° C., and then cooled to room temperature at 300 ° C./h or less to have a relative density of 90% or more, residual stress x is -200 ≦ x ≦ 200 MPa, its volume at 1.0 × 10 4 mm 3 or more, and is formed by bonding an indium oxide-based sintered body comprising integrally formed on the backing plate An indium oxide-based target. 前記インジウム酸化物系焼結体の体積が1.0×10 4 mm 3 以上、1.5×10 mm 3 以下で、かつ一体に形成されているものであることを特徴とする請求項3に記載のインジウム酸化物系ターゲット。 4. The volume of the indium oxide-based sintered body is 1.0 × 10 4 mm 3 or more and 1.5 × 10 7 mm 3 or less, and is integrally formed. The indium oxide-based target described in 1 . BET表面積が3以上20m2/g未満の酸化インジウム粉末85〜100wt%と、残部がBET表面積が20m2/g未満である酸化スズ粉末からなる混合粉末、および/またはスズを0.1wt%以上含有するIn,SnおよびOからなるBET表面積が3以上20m2/g未満のITO複合粉末からなる原料粉末を、密度45%以上の成形体に成形後、焼結温度1350℃〜1600℃で保持した後、300℃/h以下で室温まで降温して予備焼結し、その後、不活性ガス雰囲気または酸化性雰囲気で、最高到達圧力30MPa以上、焼結温度1200℃〜1600℃で保持した後、500℃/h以下で室温まで降温する条件でHIP焼結したことを特徴とするインジウム酸化物系焼結体の製造方法。Indium oxide powder having a BET surface area of 3 or more and less than 20 m 2 / g, 85 to 100 wt%, a mixed powder consisting of a tin oxide powder having a BET surface area of less than 20 m 2 / g, and / or 0.1 wt% or more of tin The raw material powder made of ITO composite powder having a BET surface area of 3 or more and less than 20 m 2 / g comprising In, Sn, and O contained is molded into a compact having a density of 45% or more, and then held at a sintering temperature of 1350 ° C. to 1600 ° C. After that, the temperature is lowered to room temperature at 300 ° C./h or less and pre-sintered, and thereafter held in an inert gas atmosphere or an oxidizing atmosphere at a maximum ultimate pressure of 30 MPa or more and a sintering temperature of 1200 ° C. to 1600 ° C. A method for producing an indium oxide-based sintered body, wherein HIP sintering is performed under a condition that the temperature is lowered to room temperature at 500 ° C./h or less. 焼結後、1600℃以下の温度で熱処理した請求項5に記載のインジウム酸化物系焼結体の製造方法。  The method for producing an indium oxide-based sintered body according to claim 5, wherein the sintered body is heat-treated at a temperature of 1600 ° C or lower after sintering.
JP28155995A 1995-10-30 1995-10-30 Indium oxide-based sintered body, method for producing the same, and indium oxide-based target Expired - Lifetime JP3693191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28155995A JP3693191B2 (en) 1995-10-30 1995-10-30 Indium oxide-based sintered body, method for producing the same, and indium oxide-based target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28155995A JP3693191B2 (en) 1995-10-30 1995-10-30 Indium oxide-based sintered body, method for producing the same, and indium oxide-based target

Publications (2)

Publication Number Publication Date
JPH09125236A JPH09125236A (en) 1997-05-13
JP3693191B2 true JP3693191B2 (en) 2005-09-07

Family

ID=17640879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28155995A Expired - Lifetime JP3693191B2 (en) 1995-10-30 1995-10-30 Indium oxide-based sintered body, method for producing the same, and indium oxide-based target

Country Status (1)

Country Link
JP (1) JP3693191B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886106B2 (en) * 2000-07-26 2012-02-29 株式会社東芝 Sputtering target and manufacturing method thereof, and tungsten silicide film, wiring, electrode, and electronic component using the same
JP4918738B2 (en) * 2001-04-06 2012-04-18 東ソー株式会社 ITO sputtering target and manufacturing method thereof
JP4934926B2 (en) * 2001-08-10 2012-05-23 東ソー株式会社 ITO sputtering target and manufacturing method thereof
US7799312B2 (en) 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
JP4642327B2 (en) * 2003-06-03 2011-03-02 Jx日鉱日石金属株式会社 ITO sputtering target and manufacturing method thereof
JP4601539B2 (en) * 2005-11-11 2010-12-22 中国電力株式会社 Method for producing coal ash sintered body using coal ash powder as raw material
JP5437919B2 (en) * 2010-06-04 2014-03-12 三井金属鉱業株式会社 ITO sputtering target and manufacturing method thereof
CN106460161B (en) * 2014-11-07 2018-12-04 捷客斯金属株式会社 The manufacturing method of ITO sputtering target and its manufacturing method and ITO nesa coating and ITO nesa coating
JP7176879B2 (en) * 2018-08-02 2022-11-22 日東電工株式会社 heater
WO2019027048A1 (en) * 2017-08-04 2019-02-07 日東電工株式会社 Heater member, heater tape, and molded body equipped with heater member
JP7162461B2 (en) 2017-08-04 2022-10-28 日東電工株式会社 Heater member, heater tape, and molded body with heater member
TW201911965A (en) * 2017-08-04 2019-03-16 日商日東電工股份有限公司 Heater

Also Published As

Publication number Publication date
JPH09125236A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
JP5231823B2 (en) Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering
CN110438386B (en) Preparation method and application of high-entropy alloy brazing filler metal
JP3693191B2 (en) Indium oxide-based sintered body, method for producing the same, and indium oxide-based target
WO1994007812A1 (en) Sintered oxide ceramics and method of making said ceramics
KR100260337B1 (en) Sputtering cathode target for transparent coating and the same method
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
JP5292130B2 (en) Sputtering target
EP1298104A1 (en) Electrically conductive ceramic sintered compact exhibiting low thermal expansion
JPH03208865A (en) Manufacture of refractory composite article
US5352643A (en) High strength alumina and process for producing same
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
JPH0668935B2 (en) Oxide sintered body, method for producing the same, and target using the same
JP2984581B2 (en) Member composed of indium-tin oxide and method for producing the same
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPH11255523A (en) Mold for forming glass mold and its production
JP2952978B2 (en) Transparent yttria sintered body and method for producing the same
JP3551355B2 (en) Ru target and method of manufacturing the same
JP3472993B2 (en) Sputtering target for forming indium tin oxide film and method for producing the same
JP3287202B2 (en) Silicon nitride ceramic composite and method for producing the same
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JP2568521B2 (en) Composite sintered body
JP4243437B2 (en) Method for producing metal-ceramic composite material having a pore-less surface
JPH0543311A (en) Ceramics material and ceramics substrate for thin film magnetic head
JPH0987027A (en) Silicon carbide sintered compact excellent in toughness and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

EXPY Cancellation because of completion of term