JP5292130B2 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
JP5292130B2
JP5292130B2 JP2009047035A JP2009047035A JP5292130B2 JP 5292130 B2 JP5292130 B2 JP 5292130B2 JP 2009047035 A JP2009047035 A JP 2009047035A JP 2009047035 A JP2009047035 A JP 2009047035A JP 5292130 B2 JP5292130 B2 JP 5292130B2
Authority
JP
Japan
Prior art keywords
zinc oxide
sputtering target
sintered body
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009047035A
Other languages
Japanese (ja)
Other versions
JP2010202896A (en
Inventor
紀子 齊藤
知之 小倉
昇 宮田
真仁 井口
佳孝 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2009047035A priority Critical patent/JP5292130B2/en
Publication of JP2010202896A publication Critical patent/JP2010202896A/en
Application granted granted Critical
Publication of JP5292130B2 publication Critical patent/JP5292130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target allowing uniform formation of a film and hardly causing abnormal discharge. <P>SOLUTION: The sputtering target comprises a zinc oxide sintered compact, containing Ga by 0.03 to 0.75 atom% and no compound oxide detected by X-ray diffraction. The target contains one or more of Zr, Si and Al by 100 atom ppm or lower in total. The surface of the zinc oxide sintered compact shows a color difference &Delta;E*ab of 0.7 or less. The sputtering target is sintered under the condition that no compound oxide is detected by X-ray diffraction. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、太陽電池、タッチパネル等の透明電極に用いられる透明導電膜をスパッタリング法で形成するためのスパッタリングターゲットに関するものである。 The present invention relates to a sputtering target for forming a transparent conductive film used for transparent electrodes such as solar cells and touch panels by a sputtering method.

近年、低コストで高い透明性、導電性および化学的安定性を有する酸化亜鉛透明導電膜が注目されている。酸化亜鉛系の透明導電膜の形成方法としては、緻密で膜質の良い膜が得られやすい、スパッタリング法が最も適しており、スパッタリングターゲット材料に用いられる酸化亜鉛焼結体が種々検討されている。 In recent years, a zinc oxide transparent conductive film having high transparency, conductivity and chemical stability at low cost has attracted attention. As a method for forming a zinc oxide-based transparent conductive film, a sputtering method is most suitable, in which a dense and good film quality can be easily obtained, and various zinc oxide sintered bodies used for sputtering target materials have been studied.

例えば、特許文献1ではGaが添加されたターゲットであってGaの添加量がZnO
中のZnに対して5原子%以下であるターゲットが記載されている。そして、Gaの添加量については、0.02原子%以上2原子%以下、さらに好ましくは0.7原子% 以上1.7原子%以下とされている。
For example, in Patent Document 1, it is a target to which Ga is added, and the added amount of Ga is ZnO.
The target which is 5 atomic% or less with respect to Zn in the inside is described. And about the addition amount of Ga, it is 0.02 atomic% or more and 2 atomic% or less, More preferably, it is 0.7 atomic% or more and 1.7 atomic% or less.

特開2007−258537号公報JP 2007-258537 A

しかしながら、Gaの添加量を調整した酸化亜鉛焼結体をスパッタリングターゲットとして用いた場合、成膜が均一にできないことがあった。また、酸化亜鉛焼結体中に大きな気孔が生じて局所的な異常放電が頻発する場合があった。 However, when a zinc oxide sintered body with an added amount of Ga adjusted is used as a sputtering target, film formation may not be uniform. In addition, large pores are generated in the zinc oxide sintered body, and local abnormal discharge often occurs.

本発明は、これらの問題に鑑みてなされたものであり、均一に成膜でき、異常放電が生じ難いスパッタリングターゲット及びその製造方法を提供するものである。 The present invention has been made in view of these problems, and provides a sputtering target that can form a uniform film and hardly cause abnormal discharge, and a method for manufacturing the sputtering target.

本発明は、これらの問題を解決するため、酸化亜鉛焼結体からなり、酸素を除く原子について算出される原子%を単位として、Gaを0.03〜0.75原子%含み、複合酸化物がX線回折で検出されず、酸素を除く原子について算出される原子ppmを単位として、ZrおよびSiのうち1以上を合計で3〜100原子ppmの範囲で含み、かつ、酸化亜鉛焼結体表面の色差ΔE*abが0.7以下であることを特徴とするスパッタリングターゲットを提供する。 In order to solve these problems, the present invention is composed of a zinc oxide sintered body, containing 0.03 to 0.75 atomic% of Ga in terms of atomic% calculated for atoms excluding oxygen, and a composite oxide Is not detected by X-ray diffraction , and includes one or more of Zr and Si in the range of 3 to 100 atomic ppm in total, in units of atomic ppm calculated for atoms excluding oxygen, and a zinc oxide sintered body Provided is a sputtering target having a surface color difference ΔE * ab of 0.7 or less .

均一に成膜でき、異常放電が生じ難いスパッタリングターゲットを提供することができる。 It is possible to provide a sputtering target that can form a film uniformly and hardly cause abnormal discharge.

本発明のスパッタリングターゲットは、酸化亜鉛焼結体からなり、Gaを0.03〜0.75原子%含む。通常、Gaを添加して酸化亜鉛焼結体を作製すると、亜鉛とGaの複合酸化物が生成する。しかしながら、複合酸化物が生成すると、気孔が生じ異常放電も起き易くなる。また、色ムラも生じ易いので好ましくない。Gaの添加量を上記範囲とすることによって、複合酸化物の生成及び色ムラを抑制できるので、異常放電を防ぎ、成膜の均一性を高めることができる。さらにGaの適切量が酸化亜鉛に固溶するのでスパッタリングターゲットの体積抵抗率の制御も容易になる。なお、Gaの含有量を示す原子%は、酸素を除く原子について算出したものである。 The sputtering target of this invention consists of a zinc oxide sintered compact, and contains 0.03-0.75 atomic% of Ga. Usually, when a zinc oxide sintered body is produced by adding Ga, a composite oxide of zinc and Ga is generated. However, when the composite oxide is generated, pores are generated and abnormal discharge is likely to occur. Also, color unevenness is likely to occur, which is not preferable. By setting the amount of Ga to be in the above range, generation of complex oxide and color unevenness can be suppressed, so that abnormal discharge can be prevented and film formation uniformity can be improved. Furthermore, since an appropriate amount of Ga is dissolved in zinc oxide, the volume resistivity of the sputtering target can be easily controlled. The atomic% indicating the Ga content is calculated for atoms excluding oxygen.

上述のように、本発明では、亜鉛とGaの複合酸化物の生成を抑えているので、X線回折で複合酸化物が検出されない。複合酸化物の生成は、反応により局所的な収縮を生じ、焼結体中に気孔を形成する。そして気孔は異常放電を招く。また、気孔が形成されると、その部分の結晶粒子が脱落しやすくなるため好ましくない。 As described above, in the present invention, since the formation of a complex oxide of zinc and Ga is suppressed, the complex oxide is not detected by X-ray diffraction. The formation of the composite oxide causes local shrinkage due to the reaction and forms pores in the sintered body. The pores cause abnormal discharge. In addition, formation of pores is not preferable because the crystal grains in the portion are easily dropped.

また、スパッタリングターゲットを構成する酸化亜鉛焼結体は、Zr、Si及びAlのうち1以上を含む。これにより、色ムラが抑制される。これらの含有量は、100原子ppm以下とすることが好ましく、3〜100原子ppmとすることがより好ましい。この範囲に調整することで特性に影響を与えることなく色ムラを抑えることができる。なお、Zr、Si及びAlの含有量を示す原子ppmは、酸素を除く原子について算出したものである。 Moreover, the zinc oxide sintered compact which comprises a sputtering target contains 1 or more among Zr, Si, and Al. Thereby, color unevenness is suppressed. The content thereof is preferably 100 atomic ppm or less, and more preferably 3 to 100 atomic ppm. By adjusting to this range, color unevenness can be suppressed without affecting the characteristics. In addition, atom ppm which shows content of Zr, Si, and Al is computed about the atom except oxygen.

これらを含むことにより結晶粒子径のバラつきが抑えられ、焼結を均一化する効果がある。また、複合酸化物の生成も抑制されていると考えられる。均一に焼結できれば、異常粒子成長に伴う気孔の形成が抑えられるので異常放電を防ぐことができる。 By including these, variation in crystal particle diameter is suppressed, and there is an effect of uniform sintering. Moreover, it is thought that the production | generation of complex oxide is also suppressed. If the sintering can be performed uniformly, the formation of pores accompanying abnormal particle growth can be suppressed, so that abnormal discharge can be prevented.

上述のように、酸化亜鉛焼結体表面の色ムラは極めて小さく抑えられている。具体的には、本発明のセラミックス部材は、L*a*b*表色系(JISZ8729)における色差ΔE*abを0.7以下にすることができる。色差は、以下の式で表すことができる。ΔE*ab=((ΔL*)+(Δa*)+(Δb*)1/2。ここで、ΔL*、Δa*、Δb*は、それぞれ酸化亜鉛焼結体表面の明度L*、色度a*、色度b*の差の最大を示す。所定数の測定箇所について明度L*、色度a*、色度b*を測定し、その差の最大を求めてΔE*abを算出する。本発明の酸化亜鉛焼結体では、上記のようにして求めたΔE*abは、全て0.7以下となる。 As described above, the color unevenness on the surface of the zinc oxide sintered body is extremely small. Specifically, the ceramic member of the present invention can make the color difference ΔE * ab in the L * a * b * color system (JISZ8729) 0.7 or less. The color difference can be expressed by the following formula. ΔE * ab = ((ΔL *) 2 + (Δa *) 2 + (Δb *) 2 ) 1/2 . Here, ΔL *, Δa *, and Δb * indicate the maximum difference in brightness L *, chromaticity a *, and chromaticity b * on the surface of the zinc oxide sintered body, respectively. The lightness L *, chromaticity a *, and chromaticity b * are measured for a predetermined number of measurement points, and the maximum difference is calculated to calculate ΔE * ab. In the zinc oxide sintered body of the present invention, ΔE * ab obtained as described above is all 0.7 or less.

スパッタリングターゲットに色ムラがあると、スパッタの発熱時にターゲット表面からの熱放射が不均一になるため温度差が生じ易い。ターゲット表面に温度差があると、高温部と低温部でスパッタリングレートが異なるため、均一な成膜は困難になる。また、色ムラがあると、ターゲット内で体積抵抗率に差が生じる恐れがある。本発明のスパッタリングターゲットであれば、色差ΔE*abが0.7以下と極めて色ムラが小さいので、ターゲット表面の温度差が生じ難く、成膜の均一性を高めることができ、ターゲットの体積抵抗率も均一化できる。 If the sputtering target is uneven in color, a temperature difference is likely to occur because heat radiation from the target surface becomes non-uniform when heat is generated during sputtering. If there is a temperature difference on the target surface, the sputtering rate is different between the high temperature part and the low temperature part, so that uniform film formation becomes difficult. Further, when there is color unevenness, there is a risk that a difference in volume resistivity occurs in the target. With the sputtering target of the present invention, since the color difference ΔE * ab is very small as 0.7 or less, the temperature difference of the target surface hardly occurs, the uniformity of film formation can be improved, and the volume resistance of the target The rate can also be made uniform.

酸化亜鉛焼結体の平均結晶粒径は、40μm以下とすることが好ましい。40μmよりも粒成長が進むと気孔が生じやすくなるため好ましくない。また、これよりも大きいと曲げ強度が低下する。 The average crystal grain size of the zinc oxide sintered body is preferably 40 μm or less. If the grain growth proceeds beyond 40 μm, pores tend to be generated, which is not preferable. On the other hand, if it is larger than this, the bending strength decreases.

スパッタリングターゲットを構成する酸化亜鉛焼結体の体積抵抗率は、1×10−2Ωcm以下が好ましい。このような体積抵抗率のスパッタリングターゲットを用いるとスパッタ効率がよく、成膜される膜の耐久性が向上する。 The volume resistivity of the zinc oxide sintered body constituting the sputtering target is preferably 1 × 10 −2 Ωcm or less. When a sputtering target having such a volume resistivity is used, sputtering efficiency is good and durability of a film to be formed is improved.

次に本発明のスパッタリングターゲットの製造方法について説明する。 Next, the manufacturing method of the sputtering target of this invention is demonstrated.

酸化亜鉛粉末は、高純度のものを用いることが好ましい。その純度は、好ましくは99%以上、より好ましくは99.8%以上の原料粉末を用いることが望ましい。酸化亜鉛粉末の平均粒径は、1.0μm以下のものを用いることが好ましい。さらに好ましい範囲は、0.1〜1.0μmである。また、Zr、Si及びAlのうち1以上の含有量が100ppm以下、より好ましくは3〜100ppmの酸化亜鉛粉末を用いることが好ましい。 It is preferable to use a high-purity zinc oxide powder. It is desirable to use a raw material powder having a purity of preferably 99% or more, more preferably 99.8% or more. The average particle diameter of the zinc oxide powder is preferably 1.0 μm or less. A more preferable range is 0.1 to 1.0 μm. Further, it is preferable to use zinc oxide powder having a content of one or more of Zr, Si and Al of 100 ppm or less, more preferably 3 to 100 ppm.

Gaは酸化物(Ga)の粉末で添加されることが好ましいが、これに限定されず、大気中での焼結後に酸化物を生成する炭化物、窒化物等の種々の形態であっても良い。純度は、好ましくは99%以上、より好ましくは99.9%以上の原料粉末を用いることが望ましい。Ga粉末の平均粒径は2.0μm以下のものを用いることが好ましい。さらに好ましい範囲は、0.01〜2.0μmである。 Ga is preferably added as an oxide (Ga 2 O 3 ) powder, but is not limited thereto, and may be in various forms such as carbides and nitrides that form oxides after sintering in the atmosphere. May be. It is desirable to use a raw material powder having a purity of preferably 99% or more, more preferably 99.9% or more. It is preferable to use a Ga 2 O 3 powder having an average particle size of 2.0 μm or less. A more preferable range is 0.01 to 2.0 μm.

原料粉末の混合方法は特に限定されず、ボールミル、振動ミル等を用いて湿式及び乾式のどちらでも行なうことができる。均一な結晶粒子を得る上で、混合方法は湿式ボールミル混合が最も好ましい。例えば、湿式ボールミル混合の場合には、混合時間を10〜20時間とすることができる。混合時間が短いと均一混合し難く、均一な結晶粒子が得難い。長時間混合しすぎると不純物が混入し易くなる。 The mixing method of the raw material powder is not particularly limited, and it can be performed by either a wet method or a dry method using a ball mill, a vibration mill or the like. In order to obtain uniform crystal particles, the mixing method is most preferably wet ball mill mixing. For example, in the case of wet ball mill mixing, the mixing time can be 10 to 20 hours. If the mixing time is short, uniform mixing is difficult and uniform crystal particles are difficult to obtain. If mixed for a long time, impurities are likely to be mixed.

成形方法は一軸プレス成形、CIP成形、湿式成形等種々の成形方法を用いることができる。なかでもCIP成形が好ましく、その成形圧力は1.2t/cm以上とすることが好ましい。CIP成形は、大型焼結体を得る場合に有効である。 As the molding method, various molding methods such as uniaxial press molding, CIP molding, and wet molding can be used. Of these, CIP molding is preferable, and the molding pressure is preferably 1.2 t / cm 2 or more. CIP molding is effective when obtaining a large sintered body.

次に得られた成型体を焼結するが、焼結温度は1250〜1600℃、特に1350〜1550℃が焼結中の酸化物蒸発による重量変化がなく容易に高密度化するため好ましい。焼結温度が1600℃をこえると、焼結中に酸化物の蒸発による重量減少が生じることがあり、また、焼結温度が1250℃未満の場合、高密度な焼結体が得られ難い。焼結時間は数時間〜数十時間が好ましい。 Next, the obtained molded body is sintered. A sintering temperature of 1250 to 1600 ° C., particularly 1350 to 1550 ° C., is preferable because it does not change in weight due to oxide evaporation during sintering and can easily be densified. When the sintering temperature exceeds 1600 ° C., weight loss may occur during the sintering due to evaporation of oxides. When the sintering temperature is less than 1250 ° C., it is difficult to obtain a high-density sintered body. The sintering time is preferably several hours to several tens of hours.

さらに焼結については、1100℃未満の温度域では、50℃/時間以上、好ましくは100℃/時間以上で昇温することが好ましい。この理由は、次のように考えられる。ZnOの焼結開始温度である1100℃よりも低い温度では、ZnOとGaが反応して複合酸化物(例えば、ZnGa)が生じやすいが、1100℃に達し、ZnOの焼結が始まると上記反応は起き難くなる。しがたって、1100℃が一つの注意温度となり、それ未満では、昇温速度を速くして複合酸化物の生成を抑える方が良いのである。昇温速度の上限は特に限定されないが、焼結体の厚みや大きさを考慮して焼結が均一に進む範囲で定める必要がある。なお、焼結の前に、成形体の脱脂が行われる。脱脂温度は500〜600℃とすることができ、脱脂温度近辺では脱脂割れが起きないように昇温速度を下げることが好ましい。上述のように50℃/時間の昇温速度とするのは、脱脂温度を過ぎてからが望ましい。 Furthermore, regarding the sintering, it is preferable to raise the temperature at 50 ° C./hour or more, preferably at 100 ° C./hour or more in a temperature range of less than 1100 ° C. The reason is considered as follows. At a temperature lower than 1100 ° C. which is the sintering start temperature of ZnO, ZnO and Ga 2 O 3 are likely to react to form a composite oxide (for example, ZnGa 2 O 4 ). The reaction is less likely to occur once the ligation begins. Therefore, 1100 ° C. is one caution temperature, and below that, it is better to increase the rate of temperature rise to suppress the formation of complex oxides. The upper limit of the rate of temperature increase is not particularly limited, but it is necessary to determine it within a range where the sintering proceeds uniformly in consideration of the thickness and size of the sintered body. In addition, degreasing | defatting of a molded object is performed before sintering. The degreasing temperature can be 500 to 600 ° C., and it is preferable to lower the temperature raising rate so that degreasing cracks do not occur near the degreasing temperature. As described above, it is desirable that the temperature increase rate is 50 ° C./hour after the degreasing temperature.

また、1100℃未満の温度域の昇温速度を速くするので、1100〜1200℃で保持時間を入れることが好ましい。保持時間では、例えば1100℃で所定時間キープしても良いし、1100℃から1200℃までの昇温を所定時間かけて行っても良い。この保持時間は製品の焼結体厚みに応じて適宜調整することができる。製品厚みをhmm、保持時間をt時間とすると、経験上h/t≦10であることが好ましい。保持時間を経た後、1100℃以上の温度域では、25℃/hr以上の温度で昇温して焼結させることができる。この場合も焼結体の厚みや大きさを考慮して焼結が均一に進む範囲で定めることができる。 Moreover, since the rate of temperature increase in the temperature range below 1100 ° C. is increased, it is preferable to set the holding time at 1100 to 1200 ° C. In the holding time, for example, the temperature may be kept at 1100 ° C. for a predetermined time, or the temperature may be raised from 1100 ° C. to 1200 ° C. over a predetermined time. This holding time can be appropriately adjusted according to the thickness of the sintered product. From the experience, it is preferable that h / t ≦ 10, where hmm is the product thickness and t time is the holding time. After passing the holding time, in the temperature range of 1100 ° C. or higher, the temperature can be raised at a temperature of 25 ° C./hr or higher to be sintered. In this case as well, the thickness and size of the sintered body can be taken into consideration and determined within a range where the sintering proceeds uniformly.

1100℃から焼結温度での保持が終了するまでの高温域の加熱時間は、脱脂温度を過ぎてから1100℃までの低温域の加熱時間の1.4倍以上とすることが好ましい。上述のように、1100℃未満の加熱時間を短くし、1100℃以上の加熱時間を長くすることで、複合酸化物の生成を調整しつつ、焼結させることができる。上記高温域の加熱では、Gaの酸化亜鉛への固溶が起こるので、体積抵抗率が低下し、ターゲットとして好適な酸化亜鉛焼結体が得られる。 The heating time in the high temperature range from 1100 ° C. to the end of the holding at the sintering temperature is preferably 1.4 times or more of the heating time in the low temperature range up to 1100 ° C. after passing the degreasing temperature. As described above, the heating time of less than 1100 ° C. is shortened, and the heating time of 1100 ° C. or more is lengthened, whereby sintering can be performed while adjusting the generation of the composite oxide. The heating in the high temperature region causes Ga to be dissolved in zinc oxide, so that the volume resistivity is lowered and a zinc oxide sintered body suitable as a target can be obtained.

焼結雰囲気は特に限定されないが、例えば大気中、酸素中、不活性ガス雰囲気中等が例示できる。特に焼結中に酸化物の蒸発による重量減少、組成ずれの低減のためには大気中等の酸化雰囲気での焼結が好ましい。なかでも、大気雰囲気または大気気流中が好ましい。また焼結雰囲気の圧力は限定されず、減圧、常圧から数気圧の加圧まで任意に適用できる。コスト面からは常圧が好ましい。 The sintering atmosphere is not particularly limited, and examples thereof include air, oxygen, and an inert gas atmosphere. In particular, sintering in an oxidizing atmosphere such as the air is preferable in order to reduce weight due to evaporation of oxides and reduce composition deviation during sintering. Of these, the atmosphere or the air stream is preferable. The pressure of the sintering atmosphere is not limited, and any pressure can be applied from reduced pressure, normal pressure to several atmospheric pressure. Normal pressure is preferable from the viewpoint of cost.

酸化亜鉛焼結体は、ターゲット材としてバッキングプレートに接合される前に、研削加工が施される。このとき、研削歪みが生じることから、歪みを除去するために、研削加工後に仮焼することが好ましい。仮焼は、600〜800℃で行うことができる。このような温度範囲であれば、十分に歪みが除去でき、焼結体の粒成長等も起きないので好ましい。 The zinc oxide sintered body is ground before being joined to the backing plate as a target material. At this time, since grinding distortion occurs, it is preferable to calcine after grinding in order to remove the distortion. Calcination can be performed at 600 to 800 ° C. Such a temperature range is preferable because distortion can be sufficiently removed and grain growth of the sintered body does not occur.

酸化亜鉛焼結体からなるターゲット材が接合されるバッキングプレートとしては、銅板が熱伝導に優れるので好ましい。銅板の他には、アルミニウム合金や銅等をマトリックス金属とし、セラミックスを強化材とした金属―セラミックス複合材料も好適である。 As a backing plate to which a target material made of a zinc oxide sintered body is bonded, a copper plate is preferable because it is excellent in heat conduction. In addition to the copper plate, a metal-ceramic composite material using aluminum alloy or copper as a matrix metal and ceramic as a reinforcing material is also suitable.

バッキングプレートと酸化亜鉛焼結体からなるターゲット材との接合はインジウム接合が好適である。ただし、インジウムによって形成される接合層は、前記バッキングプレート及びターゲット材の接合面に対して少なくとも90%の接触面積を有することが望ましい。本発明のターゲット材と銅板とをインジウムにより接合し、接触面積を90%以上とすれば、製造時または使用中の熱応力による割れを無くすことができる。 Indium bonding is suitable for the bonding between the backing plate and the target material made of the zinc oxide sintered body. However, the bonding layer formed of indium preferably has a contact area of at least 90% with respect to the bonding surface of the backing plate and the target material. If the target material of the present invention and a copper plate are joined with indium and the contact area is 90% or more, cracks due to thermal stress during production or use can be eliminated.

以下、本発明の実施例を比較例とともに具体的に挙げ、本発明をより詳細に説明する。 EXAMPLES Hereinafter, the Example of this invention is specifically given with a comparative example, and this invention is demonstrated in detail.

Zr、Si及びAlの含有量の異なる酸化亜鉛粉末(純度99.8%、平均粒径0.5μm)とGa粉末(純度99.9%、平均粒径0.5μm)とを97〜99.97:3〜0.03の割合で調整し、バインダーを添加して樹脂製ポットを用い、混合媒体としてΦ15、Φ25の樹脂ボールを用いて、20時間湿式混合した。混合後のスラリーを取り出し、スプレードライにより混合粉末の顆粒を作製した。得られた混合粉末を一軸プレス成形した後、CIP成形で1.2t/cmの圧力をかけて成形し、直径50mm、厚さ6mmの円盤状の成形体を得た。この成形体を電気炉内に空気を導入しながら大気気流中、100℃/hrで焼結温度である1350〜1450℃まで昇温し、10時間保持して焼結した。焼結後、加熱を制御せずに炉冷とした。 Zinc oxide powders (purity 99.8%, average particle size 0.5 μm) and Ga 2 O 3 powders (purity 99.9%, average particle size 0.5 μm) having different Zr, Si and Al contents are 97 It adjusted in the ratio of -99.97: 3-0.03, the binder was added, the resin-made pot was used, and it mixed for 20 hours using the resin ball of (PHI) 15 and (PHI) 25 as a mixing medium. The mixed slurry was taken out, and granulated powder was produced by spray drying. The obtained mixed powder was uniaxial press-molded and then molded by CIP molding under a pressure of 1.2 t / cm 2 to obtain a disk-shaped molded body having a diameter of 50 mm and a thickness of 6 mm. The molded body was heated to 1350 to 1450 ° C., which is a sintering temperature, at 100 ° C./hr in air flow while introducing air into an electric furnace, and held for 10 hours for sintering. After sintering, the furnace was cooled without controlling the heating.

得られた酸化亜鉛焼結体の気孔率は、アルキメデス法により測定した。焼結体の平均結晶粒径は焼結体表面を鏡面研磨後、研磨面を熱腐食したあとにSEM観察し、線インターセプト法によって求めた。また焼結体のZr、Si及びAlの含有量は、ICP発光分析によって測定した。また、体積抵抗率は上記試料の中心を直方体形状に切り出し、四端子法により測定した。また、X線回折により亜鉛とGaの複合酸化物(ZnGa12:JCPDS 50−448)の有無を調べた。X線回折は、リガク社製X線回折装置MultiFlexを使用し、CuKα線源、加速電圧40kV、40mAで測定した。結果を表1に示す。なお、認められた亜鉛とGaの複合酸化物はZnGa12のみであり、その他の複合酸化物、例えばZnAl等は全ての試料において認められなかった。 The porosity of the obtained zinc oxide sintered body was measured by Archimedes method. The average crystal grain size of the sintered body was determined by a line intercept method after mirror-polishing the surface of the sintered body and then subjecting the polished surface to thermal corrosion, followed by SEM observation. The Zr, Si and Al contents of the sintered body were measured by ICP emission analysis. The volume resistivity was measured by a four-terminal method by cutting the center of the sample into a rectangular parallelepiped shape. In addition, the presence or absence of a complex oxide of zinc and Ga (Zn 9 Ga 2 O 12 : JCPDS 50-448) was examined by X-ray diffraction. X-ray diffraction was measured using a Rigaku X-ray diffractometer MultiFlex with a CuKα radiation source, an acceleration voltage of 40 kV, and 40 mA. The results are shown in Table 1. The recognized zinc-Ga composite oxide was only Zn 9 Ga 2 O 12 , and other composite oxides such as ZnAl 2 O 4 were not observed in all samples.

Figure 0005292130
Figure 0005292130

Gaの含有量を0.01〜0.75原子%とした試験No.1〜5、7及び8では、複合酸化物が認められなかった。これらの酸化亜鉛焼結体の気孔率は、0.02〜0.05%と極めて小さく、緻密化しており、平均結晶粒径は40μm以下であった。ただし、Gaが0.01原子%の試験No.5では、体積抵抗率が2.0×10−2Ωcmと大きくなり、また色差ΔE*abも大きくなった。また、Zr、Si及びAlを含有していない試験No.7及び含有量の多い試験No.8では、色差ΔE*abがそれぞれ、1.23、5.26と大きくなった。 Test No. 1 with a Ga content of 0.01 to 0.75 atomic%. In 1 to 5, 7 and 8, no complex oxide was observed. The porosity of these zinc oxide sintered bodies was as extremely small as 0.02 to 0.05%, being dense, and the average crystal grain size was 40 μm or less. However, Test No. with Ga of 0.01 atomic%. In No. 5, the volume resistivity increased to 2.0 × 10 −2 Ωcm, and the color difference ΔE * ab also increased. Moreover, test No. which does not contain Zr, Si and Al. 7 and test No. with a large content. 8, the color difference ΔE * ab increased to 1.23 and 5.26, respectively.

Gaの含有量を1.0、3.0原子%とした試験No.6、9では、複合酸化物が認められ、気孔率が大きくなった。また、色差ΔE*abも大きくなった。 Test No. 1 with a Ga content of 1.0 and 3.0 atomic% was used. In 6 and 9, complex oxide was observed, and the porosity increased. In addition, the color difference ΔE * ab also increased.

このように、Gaを0.03〜0.75原子%含み、複合酸化物がX線回折で検出されない酸化亜鉛焼結体は、気孔率が高く緻密であり、体積抵抗率が低く、色差Δ*abも小さいことからスパッタリングターゲットに適していることがわかる。また、Zr、Si及びAlのうち1以上を合計で100原子ppm以下含ませることにより色差ΔE*abが小さくなり、成膜の均一性を高められることが期待できる。 Thus, the zinc oxide sintered body containing 0.03 to 0.75 atomic% of Ga and in which the composite oxide is not detected by X-ray diffraction has a high porosity, a dense volume, a low volume resistivity, and a color difference Δ Since * ab is also small, it is understood that it is suitable for a sputtering target. In addition, it can be expected that the color difference ΔE * ab is reduced by including one or more of Zr, Si, and Al in a total of 100 atomic ppm or less, and the uniformity of film formation can be improved.

Claims (1)

酸化亜鉛焼結体からなり、
酸素を除く原子について算出される原子%を単位として、Gaを0.03〜0.75原子%含み、
複合酸化物がX線回折で検出されず、
酸素を除く原子について算出される原子ppmを単位として、ZrおよびSiのうち1以上を合計で3〜100原子ppmの範囲で含み、かつ、酸化亜鉛焼結体表面の色差ΔE*abが0.7以下であることを特徴とするスパッタリングターゲット。
It consists of a zinc oxide sintered body,
Inclusive of atomic percent calculated for atoms excluding oxygen, containing 0.03 to 0.75 atomic percent of Ga,
Complex oxide is not detected by X-ray diffraction ,
With the atomic ppm calculated for atoms excluding oxygen as a unit, one or more of Zr and Si are included within a total range of 3 to 100 atomic ppm, and the color difference ΔE * ab on the surface of the zinc oxide sintered body is 0. Sputtering target characterized by being 7 or less .
JP2009047035A 2009-02-27 2009-02-27 Sputtering target Active JP5292130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047035A JP5292130B2 (en) 2009-02-27 2009-02-27 Sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047035A JP5292130B2 (en) 2009-02-27 2009-02-27 Sputtering target

Publications (2)

Publication Number Publication Date
JP2010202896A JP2010202896A (en) 2010-09-16
JP5292130B2 true JP5292130B2 (en) 2013-09-18

Family

ID=42964669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047035A Active JP5292130B2 (en) 2009-02-27 2009-02-27 Sputtering target

Country Status (1)

Country Link
JP (1) JP5292130B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887819B2 (en) * 2010-12-06 2016-03-16 東ソー株式会社 Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
JP5930374B2 (en) * 2012-02-08 2016-06-08 日本特殊陶業株式会社 Sputtering target and manufacturing method thereof
WO2014097963A1 (en) * 2012-12-17 2014-06-26 住友化学株式会社 Zinc oxide-based transparent conductive film
JP6024545B2 (en) * 2013-03-19 2016-11-16 住友金属鉱山株式会社 Zinc oxide-based sintered body, method for producing the same, and sputtering target
CN108431293A (en) * 2016-01-28 2018-08-21 Jx金属株式会社 Cylinder-shaped ceramic sputtering target material and the cylinder-shaped ceramic sputtering target that one or more cylinder-shaped ceramic sputtering target materials compositions are engaged on backing pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577924B2 (en) * 1999-06-29 2010-11-10 三井金属鉱業株式会社 Method for producing sputtering target containing zinc oxide
WO2007000867A1 (en) * 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
RU2380455C2 (en) * 2005-06-28 2010-01-27 Ниппон Майнинг Энд Металз Ко., Лтд. Sputtering target on basis of galim oxide-zinc oxide method of formation of treansparent conductive film and treansparent conductive film
JP5082927B2 (en) * 2007-03-09 2012-11-28 三菱マテリアル株式会社 Method for producing ZnO vapor deposition material

Also Published As

Publication number Publication date
JP2010202896A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP6585620B2 (en) Alumina sintered body and base substrate for optical element
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
TWI570090B (en) Composite ceramic and semiconductor manufacturing device components
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
JP5292130B2 (en) Sputtering target
TWI546273B (en) In-Ga-Zn-based oxide sputtering target and a method for manufacturing the same
JP2011179056A (en) Sputtering target
JP6231924B2 (en) Oxide sintered body and sputtering target
JP6626500B2 (en) Alumina sintered body and base substrate for optical element
US20120037502A1 (en) Sintered Body for ZnO-Ga2O3-Based Sputtering Target and Method of Producing the Same
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
TWI826566B (en) sintered body
JP2011195924A (en) In-Ga-Zn BASED COMPOUND OXIDE SINTERED BODY, AND METHOD FOR MANUFACTURING THE SAME
TWI669283B (en) Oxide sintered body and sputtering target material and their manufacturing method
JP5949718B2 (en) Sputtering target
JP5998712B2 (en) IGZO sintered body, sputtering target, and oxide film
Lee et al. Microstructure and density of sintered ZnO ceramics prepared by magnetic pulsed compaction
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
TW201605762A (en) Oxide sintered body, sputtering target and film
JP2009114531A (en) SnO2-BASED SPUTTERING TARGET
JP6722736B2 (en) Sintered body and sputtering target
JP5497479B2 (en) Sputtering target
JP2010111560A (en) Zinc oxide sintered compact and sputtering target using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250