JP3690589B2 - Sulfonic acid-containing polyimidazole compound and molded product thereof - Google Patents

Sulfonic acid-containing polyimidazole compound and molded product thereof Download PDF

Info

Publication number
JP3690589B2
JP3690589B2 JP2001101022A JP2001101022A JP3690589B2 JP 3690589 B2 JP3690589 B2 JP 3690589B2 JP 2001101022 A JP2001101022 A JP 2001101022A JP 2001101022 A JP2001101022 A JP 2001101022A JP 3690589 B2 JP3690589 B2 JP 3690589B2
Authority
JP
Japan
Prior art keywords
sulfonic acid
polymer
film
acid group
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001101022A
Other languages
Japanese (ja)
Other versions
JP2002208416A (en
Inventor
佳充 坂口
幸太 北村
淳子 中尾
史朗 濱本
寛 舘盛
敏 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001101022A priority Critical patent/JP3690589B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to DE60117595T priority patent/DE60117595T2/en
Priority to CNB018187536A priority patent/CN100358938C/en
Priority to US10/416,551 priority patent/US7288603B2/en
Priority to AT01982763T priority patent/ATE318854T1/en
Priority to EP01982763A priority patent/EP1354907B1/en
Priority to PCT/JP2001/009885 priority patent/WO2002038650A1/en
Publication of JP2002208416A publication Critical patent/JP2002208416A/en
Application granted granted Critical
Publication of JP3690589B2 publication Critical patent/JP3690589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子電解質膜として有用なスルホン酸基含有ポリイミダゾール系化合物および樹脂に関するものである。
【0002】
【従来の技術】
液体電解質のかわりに高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を上げることができる。これらに用いられる高分子膜は、カチオン交換膜としてプロトン導電率とともに化学的、熱的、電気化学的および力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとしては、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、100℃を越える条件で運転しようとすると、膜の含水率が急激に落ちるほか、膜の軟化も顕著となる。このため、将来が期待されるメタノールを燃料とする燃料電池においては、膜内のメタノール透過による性能低下がおこり、十分な性能を発揮することはできない。また、現在主に検討されている水素を燃料として80℃付近で運転する燃料電池においても、膜のコストが高すぎることが燃料電池技術の確立の障害として指摘されている。
【0003】
このような欠点を克服するため、芳香族環含有ポリマーにスルホン酸基を導入した高分子電解質膜が種々検討されている。例えば、ポリアリールエーテルスルホンをスルホン化したもの(Journal of Membrane Science, 83, 211(1993))、ポリエーテルエーテルケトンをスルホン化したもの(特開平6−93114)、スルホン化ポリスチレン等である。しかしながら、ポリマーを原料として芳香環上に導入されたスルホン酸基は酸または熱により脱スルホン酸反応が起こりやすく、燃料電池用電解質膜として使用するには耐久性が十分であるとは言えない。
【0004】
高耐熱、高耐久性のポリマーとしてはポリイミダゾールなどの芳香族ポリアゾール系のポリマーが知られており、これらのポリマーにスルホン酸基を導入して上記目的に利用することが考えられる。このようなポリマー構造として、スルホン酸を含有したポリベンズイミダゾールについては、UnoらのJ. Polym. Sci., Polym. Chem., 15, 1309(1977)における3,3‘−ジアミノベンジジンと3,5−ジカルボキシベンゼンスルホン酸または2,5−ジカルボキシベンゼンスルホン酸から合成するものが、USP−5312895では1,2,4,5−ベンゼンテトラミンと2,5−ジカルボキシベンゼンスルホン酸を主成分として合成するものが報告されている。しかしこれらの報告では、スルホン酸含有ポリベンズイミダゾールの溶解性や耐熱性などには注意が向けられているが、電解質膜用途などスルホン酸基が持つ電気化学的特性について顧みられることはなかった。特に、これらの物は、耐熱性、耐溶剤性、機械的特性とイオン伝導特性を両立させる点で劣り、高分子電解質膜などには使用するには不適であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、耐熱性、耐溶剤性、機械特性など優れた性質を持つポリイミダゾール系ポリマーにスルホン酸基を導入することにより、加工性、耐溶剤性、耐久安定性だけでなくイオン伝導性にも優れた高分子電解質となりうる新規な高分子材料を得ることにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、スルホン酸基を含有する特定のポリイミダゾール類において、優れた加工性、耐久性、耐溶剤性、機械特性とイオン伝導性を示す高分子電解質を得るに至った。
【0007】
すなわち本発明は、一般式(1)、(2)で表される繰り返し単位からなる重合体を主成分とし、濃硫酸中で測定した対数粘度が0.25以上であり、繰り返し単位が複数の場合主としてランダムおよび/または交互的に結合していることを特徴とするスルホン酸基含有ポリイミダゾール化合物である。
【0008】
【化2】

Figure 0003690589
(式中、Xは−O−,−SO2−,−C(CH32−,−C(CF32−,−OPhO−を、Arは芳香族基を、mは1から4の数を、nは0.2以上1.0以下の数を、Phはベンゼン環を示す。)
mが4以上であれば、耐水性を保持しながら高いイオン伝導性を保持することが困難となる。n=1の場合は、すべての繰り返し単位がスルホン酸基を含有するホモポリマーとなる。本発明の成型物とは、高分子化合物の成形方法と同様に処理して得られるものである。即ち重合溶液又は単離したポリマーから押し出し、紡糸、圧延、キャストなどの任意の方法で繊維やフィルムに成形したものである。本発明はこれらの化合物を主成分とすることを特徴とする成形物であり、繊維、フィルム、シート状物などに加工することができ、特に膜にすることにより、特に効果的な性能が発揮される。
【0009】
【発明の実施の形態】
以下本発明について詳細に説明する。
本発明の一般式(1)、(2)で表されるスルホン酸基含有ポリイミダゾール化合物において、燃料電池用電解質膜として使用しても耐久性だけでなく、イオン伝導性においても優れた性質を示す新規材料が得られた。
【0010】
上記一般式(1)、(2)で示す本発明のスルホン酸基含有ポリイミダゾールを合成する経路は特には限定されないが、通常は式中のベンズビスイミダゾール環を形成しうる芳香族テトラミン類およびそれらの誘導体から選ばれる化合物と、芳香族ジカルボン酸およびその誘導体から選ばれる化合物の反応により合成することができる。その際、使用するジカルボン酸の中にスルホン酸基またはその塩を含有するジカルボン酸を使用することで、得られるポリアゾール中にスルホン酸基を導入することができる。
【0011】
一般式(1)、(2)で示されるスルホン酸基含有ポリイミダゾールを与える芳香族テトラミンの具体例としては、3,3’,4,4‘−テトラアミノジフェニルエーテル、3,3’,4,4‘−テトラアミノジフェニルスルホン、2,2−ビス(3,4−ジアミノフェニル)プロパン、2,2−ビス(3,4−ジアミノフェニル)ヘキサフルオロプロパン、ビス(3,4,−ジアミノフェノキシ)ベンゼン等が挙げられる。これらの誘導体の例としては、塩酸、硫酸、リン酸などの酸との塩などをあげることができる。これらの化合物は、同時に複数使用することもできる。これらの芳香族テトラミンは、必要に応じて塩化すず(II)や亜リン酸化合物など公知の酸化防止剤を含んでいてもよい。
【0012】
一般式(1)の構造を与えるスルホン酸基含有ジカルボン酸は、芳香族系ジカルボン酸中に1個から4個のスルホン酸基を含有するものを選択することができるが、具体例としては、例えば、2,5−ジカルボキシベンゼンスルホン酸、3,5−ジカルボキシベンゼンスルホン酸、2,5−ジカルボキシ−1,4−ベンゼンジスルホン酸、4,6−ジカルボキシ−1,3−ベンゼンジスルホン酸などのスルホン酸含有ジカルボン酸及びこれらの誘導体を挙げることができる。誘導体としては、ナトリウム、カリウムなどのアルカリ金属塩や、アンモニウム塩などをあげることができる。スルホン酸基含有ジカルボン酸の構造は特にこれらに限定されることはない。スルホン酸基含有ジカルボン酸はそれら単独だけでなく、一般式(2)の構造を与えるスルホン酸基を含有しないジカルボン酸とともに共重合の形で導入することができる。スルホン酸基含有ジカルボン酸とともに使用できるジカルボン酸例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ビフェニルジカルボン酸、ターフェニルジカルボン酸、2,2−ビス(4−カルボキシフェニル)ヘキサフルオロプロパン等ポリエステル原料として報告されている一般的なジカルボン酸を使用することができ、ここで例示したものに限定されるものではない。スルホン酸基を含有するジカルボン酸の純度は特に制限されるものではないが、98%以上が好ましく、99%以上がより好ましい。スルホン酸基を含有するジカルボン酸を原料として重合されたポリイミダゾールは、スルホン酸基を含有しないジカルボン酸を用いた場合に比べて、重合度が低くなる傾向が見られるため、スルホン酸基を含有するジカルボン酸はできるだけ純度が高いものを用いることが好ましい。スルホン酸基含有ジカルボン酸とともにスルホン酸基を含有しないジカルボン酸を使用する場合、スルホン酸基含有ジカルボン酸を全ジカルボン酸中の20モル%以上とすることでスルホン酸の効果を明確にすることができる。スルホン酸のきわだった効果を引き出すためには、50モル%以上であることがさらに好ましい。
【0013】
上述のモノマー類からスルホン酸基含有ポリイミダゾールを合成する手法は、特には限定されないが、J.F.Wolfe, Encyclopedia of Polymer Science and Engineering, 2nd Ed., Vol.11, P.601(1988)に記載されるようなポリリン酸を溶媒とする脱水、環化重合により合成することができる。また、ポリリン酸のかわりにメタンスルホン酸/五酸化リン混合溶媒系を用いた同様の機構による重合を適用することもできる。他に、適当な有機溶媒中や混合モノマー融体の反応でポリアミド構造などの前駆体ポリマーとしておき、その後の適当な熱処理などによる環化反応で目的のポリイミダゾール構造に変換する方法なども使用することができる。熱安定性の高いポリマーを合成するには、一般によく使用されるポリリン酸を用いた重合が好ましい。しかしながら、従来報告されているような長時間をかけた重合では、スルホン酸含有モノマーを含む系では、得られたポリマーの熱安定性が低下してしまう恐れがある。このため、本発明では、重合時間は個々のモノマーの組み合わせにより最適な時間があるので一概には規定できないが、重合時間を効果的に短くすることが好ましい。このことにより、スルホン酸基量が多いポリマーも熱安定性の高い状態で得ることができる。これらのスルホン酸基含有ポリイミダゾールの分子量は特に限定されるものではないが、1,000〜1,000,000であることが好ましい。実質的にはポリマーの分子量は溶液粘度で評価することができ、濃硫酸中で測定した対数粘度が0.25以上であることが好ましい。分子量が低すぎると、良好な成形物を得ることが困難になる。また、分子量が必要以上に高すぎると成形が困難になるので、溶液粘度は10よりも小さいことが好ましい。また、繰り返し単位が複数の場合主としてランダムおよび/または交互的に結合していることで、高分子電解質膜として安定した性能を示す特徴を持つ。
【0014】
本発明のスルホン酸基含有ポリアゾール化合物は、重合溶液又は単離したポリマーから押し出し、紡糸、圧延、キャストなど任意の方法で繊維やフィルムに成形することができる。中でも適当な溶媒に溶解した溶液から成形することが好ましい。溶解する溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなど非プロトン極性溶媒や、ポリリン酸、メタンスルホン酸、硫酸、トリフルオロ酢酸などの強酸から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。また、溶解性を向上させる手段として、臭化リチウム、塩化リチウム、塩化アルミニウムなどのルイス酸を有機溶媒に添加したものを溶媒としてもよい。溶液中のポリマー濃度は0.1〜30重量%の範囲であることが好ましい。低すぎると成形性が悪化し、高すぎると加工性が悪化する。
【0015】
溶液から成形体を得る方法は公知の方法を用いることができる。例えば加熱、減圧乾燥、ポリマーを溶解する溶媒と混和できるポリマー非溶媒への浸漬などによって、溶媒を除去しスルホン酸基含有ポリアゾールの成形体を得ることができる。溶媒が有機溶媒の場合は、加熱又は減圧乾燥で溶媒を留去させることが好ましい。溶媒が強酸の場合には、水、メタノール、アセトンなどに浸漬することが好ましい。この際、必要に応じて他のポリマーと複合された形で繊維やフィルムに成形することもできる。溶解性挙動が類似するポリベンズアゾール系ポリマーと組み合わせると、良好な成形をするのに都合がよい。
【0016】
本発明のスルホン酸基含有ポリアゾール化合物を主成分とする膜を成形する好ましい方法は、溶液からのキャストである。キャストした溶液から前記のように溶媒を除去してスルホン酸基含有ポリアゾールの膜を得ることができる。溶媒の除去は、乾燥することが膜の均一性からは好ましい。また、ポリマーや溶媒の分解や変質をさけるため、減圧下でできるだけ低い温度で乾燥することが好ましい。キャストする基板には、ガラス板やテフロン板などを用いることができる。溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液の厚みは特に制限されないが、10〜1000μmであることが好ましい。薄すぎると膜としての形態を保てなくなり、厚すぎると不均一な膜ができやすくなる。より好ましくは100〜500μmである。溶液のキャスト厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度で厚みを制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱する場合には最初の段階では低温にして蒸発速度を下げたりすることができる。また、水などの非溶媒に浸漬する場合には、溶液を空気中や不活性ガス中に適当な時間放置しておくなどしてポリマーの凝固速度を調整することができる。本発明の膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが好ましい。具体的には200μm以下であることが好ましく、50μm以下であることがさらに好ましく、20μm以下であることが最も好ましい。
【0017】
本発明のスルホン酸基含有ポリオキサゾールポリマーは、イオン伝導性に優れているため、フィルム、膜状にして燃料電池などのイオン交換膜として使用するのに適している。さらに、本発明のポリマー構造を主成分にすることにより、本発明のイオン交換膜と電極との接合体を作製するときのバインダー樹脂等の塗料として利用することもできる。
【0018】
また、本発明による膜は、耐久性、耐溶剤性、機械的特性に優れている。例えば、耐久性としては熱水中での加水分解による分子量低下が少なく、耐溶剤性では酸性水溶液中での膨潤も少なく、機械的特性では膜厚の薄い状態でも膜の取り扱いで破断などの心配がないものである。
【0019】
【実施例】
以下本発明を実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。
溶液粘度:ポリマー粉末を0.5g/dlの濃度で濃硫酸に溶解し、30℃の恒温槽中でオストワルド粘度計を用いて粘度測定を行い、対数粘度[ln(ta/tb)]/cで評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。
イオン伝導性測定:自作測定用プローブ(テフロン製)上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃95%RHの恒温・恒湿オーブン(株式会社ナガノ科学機械製作所、LH−20−01)中に試料を保持し、白金線間の10KHzにおける交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定し、極間距離と抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルした導電率を算出した。
導電率[S/cm]=1/膜幅[cm]x膜厚[cm]x抵抗極間勾配[Ω/cm]
ポリマー対数粘度:ポリマー濃度0.5g/dlの硫酸溶液について、オストワルド粘度計を用いて30℃で測定した。
耐溶剤性評価:沸騰水中に膜を1時間浸漬した際に、膨潤や溶解などで膜の形態が変化しないかを目視で判定した。
耐久性:ポリマー粉末を溶封したアンプル中で100℃の水中に浸漬して3日間放置した。処理前後の粘度測定値の変化から耐久性の評価を行った。
IR測定:分光器にBiorad社FTS-40、顕微鏡にBiorad社UMA-300Aを用いた顕微透過法により測定した。
【0020】
実施例1
3,3’,4,4‘−テトラアミノジフェニルスルホン(略号:TAS)1.500g(5.389x10-3mole)、2,5−ジカルボキシベンゼンスルホン酸モノナトリウム(略号:STA、純度99%)1.445g(5.389x10-3mole)、ポリリン酸(五酸化リン含量75%)20.48g、五酸化リン16.41gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温 する。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いてpH試験紙中性になるまで水洗を繰り返した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.35を示した。ポリマーのIRスペクトルを図1に示す。
得られたポリマー400mgとNMP4mlを撹拌しながら、オイルバス上で170℃に加熱して溶解させた。ホットプレート上で、ガラス板上に約200μm厚に流延し、NMPを蒸発させた。フィルムをガラス板からはがし、80℃終夜減圧乾燥し、その後アセトン浸漬することで溶媒を除いてイオン伝導性測定用フィルムを作製した。80℃95%RHにおけるイオン伝導度は0.018S/cmを示し、測定イオン伝導度は長期にわたり安定した性能を保った。フィルムを沸騰水中に1時間浸漬したが、形態の変化は認められなかった。また、100℃水中で3日間浸漬処理したあとの対数粘度は1.37であり、処理前との変化は認められなかった。また厚さ10マイクロメーター程度の薄膜を作製しても、上記の各種評価において膜が壊れることはなかった。
【0021】
実施例2
STAのかわりにSTAとテレフタル酸(略号:TPA)の混合比を変えて、合計で5.389x10-3moleになるようにして仕込む以外は、実施例1と同様にして重合および各種測定を行った。イオン伝導度はいずれの試料とも長期にわたり安定した性能を保つとともに、膜の形態も良好に保たれていた。各種測定結果を表1に示す。
【0022】
【表1】
Figure 0003690589
【0023】
実施例3
STAのかわりに3,5−ジカルボキシベンゼンスルホン酸モノナトリウム(略号:SIA、純度98%)を用いる以外は実施例2と同様に評価した。イオン伝導度はいずれの試料とも長期にわたり安定した性能を保つとともに、膜の形態も良好に保たれていた。各種測定結果を表2に示す。TPA/SIA=66/34におけるポリマーのIRスペクトルを図2に示す。
【0024】
【表2】
Figure 0003690589
【0025】
実施例4
実施例3において、重合時に塩化すず(II)をTASに対して1モル%になるように加えてポリマーを得、同様に評価した。イオン伝導度はいずれの試料とも長期にわたり安定した性能を保保つとともに、膜の形態も良好に保たれていた。各種測定結果を表3に示す。
【0026】
【表3】
Figure 0003690589
【0027】
比較例1
実施例1においてSTAのかわりにTPA0.895gを用いて重合したところ、対数粘度2.11のポリマーが得られた。フィルムを沸騰水中に1時間浸漬したが、形態の変化は認められず、100℃水中で3日間浸漬処理したあとの対数粘度は2.06であり、処理前との変化は認められなかった。80℃95%RHにおけるイオン伝導度を測定したが、実質的にイオンが流れる挙動をとらえることはできなかった。
【0028】
比較例2
実施例1においてTASのかわりに3,3‘−ジアミノベンジジンを用いてポリマーを合成した。得られたポリマーの対数粘度は1.23を示したが、ポリマーはNMPに溶解せず、評価可能なフィルムを作製することはできなかった。
【0029】
比較例3
実施例1においてTASのかわりにテトラアミノベンゼン(塩酸塩)を用いてポリマーを合成した。得られたポリマーの対数粘度は1.41を示し、強靱ではないがフィルムを作製することができた。得られたフィルムを沸騰水中に浸漬したところ徐々に膨潤が認められ、フィルム端部の崩壊も認められた。
【0030】
比較例4
実施例1において、TASを1.05g(3.773x10-3mole)、TPAを0.598g(3.557x10-3mole)として重合した後、重合液をいったん冷却してからさらにTASを0.45g(1.616x10-3mole)、STAを0.491g(1.832x10-3mole)追加し、TPA/STA=66/34のブロック性共重合体を合成した。得られたポリマーの対数粘度は0.86であり、同様の方法でフィルムを作製することができたが、イオン伝導度は80℃95%RHにおけるイオン伝導度は0.0003S/cmと同一共重合比の実施例2のポリマーに比べ一桁小さい値を示した。
【0031】
比較例5
実施例1においてTASのかわりに3,3‘−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン1.510g(5.387x10-3mole)を用いて、類似のポリベンゾオキサゾール系ポリマーを合成した。得られたポリマーの対数粘度は0.48であった。このポリマーを100℃水中で3日間浸漬処理したあとで対数粘度を測定したところ0.18に減少していた。
【0032】
比較例6
実施例1においてTASを1.45gとする以外は同様にしてポリマーを合成した。得られたポリマーの対数粘度は0.21であり、製膜したフィルムはもろいものであった。
【0033】
比較のため、実施例1、比較例1〜5の結果を表4に示す。
【0034】
【表4】
Figure 0003690589
【0035】
【発明の効果】
耐久性、イオン伝導性に優れた、本発明のポリマーにより、燃料電池などの高分子電解質としても際立った性能を示す材料を提供することができる。
【図面の簡単な説明】
【図1】TASとSTAから合成されたスルホン酸含有ポリベンズイミダゾールのIRスペクトル
【図2】TASとTPA/SIA=66/34組成で合成されたスルホン酸含有ポリベンズイミダゾールのIRスペクトル。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sulfonic acid group-containing polyimidazole compound and a resin useful as a polymer electrolyte membrane.
[0002]
[Prior art]
As an example of an electrochemical device using a polymer solid electrolyte as an ionic conductor instead of a liquid electrolyte, a water electrolyzer and a fuel cell can be raised. The polymer membrane used for these must be sufficiently stable chemically, thermally, electrochemically and mechanically with proton conductivity as a cation exchange membrane. For this reason, perfluorocarbon sulfonic acid membranes, typically “Nafion (registered trademark)” manufactured by DuPont, have been used as long-term usable products. However, if the operation is performed at a temperature exceeding 100 ° C., the moisture content of the membrane is drastically lowered and the membrane is also softened. For this reason, in a fuel cell that uses methanol as a fuel, which is expected in the future, the performance is deteriorated due to the permeation of methanol in the membrane, so that sufficient performance cannot be exhibited. Further, even in a fuel cell that is currently studied mainly using hydrogen as a fuel and operated at around 80 ° C., it is pointed out that the cost of the membrane is too high as an obstacle to the establishment of fuel cell technology.
[0003]
In order to overcome such drawbacks, various polymer electrolyte membranes in which a sulfonic acid group is introduced into an aromatic ring-containing polymer have been studied. For example, sulfonated polyarylethersulfone (Journal of Membrane Science, 83 , 211 (1993)), sulfonated polyetheretherketone (JP-A-6-93114), sulfonated polystyrene, and the like. However, a sulfonic acid group introduced onto an aromatic ring using a polymer as a raw material is likely to undergo a desulfonic acid reaction by acid or heat, and cannot be said to have sufficient durability for use as an electrolyte membrane for a fuel cell.
[0004]
As polymers having high heat resistance and high durability, aromatic polyazole polymers such as polyimidazole are known, and it is considered that sulfonic acid groups are introduced into these polymers and used for the above purpose. As such a polymer structure, polybenzimidazole containing sulfonic acid is described in 3,3′-diaminobenzidine and 3,3 in Uno et al., J. Polym. Sci., Polym. Chem., 15 , 1309 (1977). What is synthesized from 5-dicarboxybenzene sulfonic acid or 2,5-dicarboxybenzene sulfonic acid is based on 1,2,4,5-benzenetetramine and 2,5-dicarboxybenzene sulfonic acid in USP-531295. Have been reported to be synthesized. However, in these reports, attention has been paid to the solubility and heat resistance of the sulfonic acid-containing polybenzimidazole, but the electrochemical characteristics of the sulfonic acid group such as electrolyte membrane use have not been looked after. In particular, these materials are inferior in terms of achieving both heat resistance, solvent resistance, mechanical properties and ion conduction properties, and are unsuitable for use in polymer electrolyte membranes.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to introduce not only processability, solvent resistance and durability stability but also ion conduction by introducing a sulfonic acid group into a polyimidazole polymer having excellent properties such as heat resistance, solvent resistance and mechanical properties. It is to obtain a novel polymer material that can be a polymer electrolyte having excellent properties.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors of the present invention have achieved excellent processability, durability, solvent resistance, mechanical properties and ion conduction in specific polyimidazoles containing sulfonic acid groups. The polymer electrolyte which shows the property was obtained.
[0007]
That is, the present invention has as a main component a polymer composed of repeating units represented by the general formulas (1) and (2), has a logarithmic viscosity of 0.25 or more measured in concentrated sulfuric acid, and has a plurality of repeating units. In some cases, it is a sulfonic acid group-containing polyimidazole compound characterized in that it is mainly bonded randomly and / or alternately.
[0008]
[Chemical formula 2]
Figure 0003690589
(Wherein X represents —O—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —OPhO—, Ar represents an aromatic group, and m represents 1 to 4 Where n is a number from 0.2 to 1.0 , and Ph is a benzene ring .)
If m is 4 or more, it will be difficult to maintain high ion conductivity while maintaining water resistance. When n = 1, all repeating units are homopolymers containing sulfonic acid groups. The molded product of the present invention is obtained by processing in the same manner as in the polymer compound molding method. That is, it is formed into a fiber or a film by any method such as extrusion, spinning, rolling, or casting from a polymerization solution or an isolated polymer. The present invention is a molded product characterized by containing these compounds as a main component, and can be processed into a fiber, a film, a sheet-like material, etc., and particularly effective when it is made into a film. Is done.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In the sulfonic acid group-containing polyimidazole compound represented by the general formulas (1) and (2) of the present invention, it has excellent properties not only in durability but also in ion conductivity even when used as an electrolyte membrane for fuel cells. The new material shown was obtained.
[0010]
The route for synthesizing the sulfonic acid group-containing polyimidazole of the present invention represented by the general formulas (1) and (2) is not particularly limited, but usually aromatic tetramines capable of forming a benzbisimidazole ring in the formula and It can be synthesized by reacting a compound selected from those derivatives with a compound selected from aromatic dicarboxylic acids and derivatives thereof. In that case, a sulfonic acid group can be introduce | transduced in the polyazole obtained by using the dicarboxylic acid containing a sulfonic acid group or its salt in the dicarboxylic acid to be used.
[0011]
Specific examples of the aromatic tetramine that gives the sulfonic acid group-containing polyimidazole represented by the general formulas (1) and (2) include 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4, 4'-tetraaminodiphenyl sulfone, 2,2-bis (3,4-diaminophenyl) propane, 2,2-bis (3,4-diaminophenyl) hexafluoropropane, bis (3,4, -diaminophenoxy) Examples include benzene. Examples of these derivatives include salts with acids such as hydrochloric acid, sulfuric acid and phosphoric acid. A plurality of these compounds can be used simultaneously. These aromatic tetramines may contain known antioxidants such as tin chloride (II) and phosphite compounds as necessary.
[0012]
The sulfonic acid group-containing dicarboxylic acid that gives the structure of the general formula (1) can be selected from those containing 1 to 4 sulfonic acid groups in an aromatic dicarboxylic acid. For example, 2,5-dicarboxybenzenesulfonic acid, 3,5-dicarboxybenzenesulfonic acid, 2,5-dicarboxy-1,4-benzenedisulfonic acid, 4,6-dicarboxy-1,3-benzenedisulfone Mention may be made of sulfonic acid-containing dicarboxylic acids such as acids and their derivatives. Examples of the derivatives include alkali metal salts such as sodium and potassium, and ammonium salts. The structure of the sulfonic acid group-containing dicarboxylic acid is not particularly limited to these. The sulfonic acid group-containing dicarboxylic acids can be introduced not only by themselves but also in the form of copolymerization with a dicarboxylic acid not containing a sulfonic acid group giving the structure of the general formula (2). Examples of dicarboxylic acids that can be used with sulfonic acid group-containing dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, biphenyl dicarboxylic acid, terphenyl dicarboxylic acid, 2,2-bis (4 -Carboxyphenyl) General dicarboxylic acid reported as a polyester raw material such as hexafluoropropane can be used, and is not limited to those exemplified here. The purity of the dicarboxylic acid containing a sulfonic acid group is not particularly limited, but is preferably 98% or more, and more preferably 99% or more. Polyimidazole polymerized using dicarboxylic acid containing sulfonic acid group as a raw material contains a sulfonic acid group because the degree of polymerization tends to be lower than when dicarboxylic acid containing no sulfonic acid group is used. It is preferable to use a dicarboxylic acid having as high purity as possible. When using a dicarboxylic acid not containing a sulfonic acid group together with a sulfonic acid group-containing dicarboxylic acid, the effect of the sulfonic acid can be clarified by setting the sulfonic acid group-containing dicarboxylic acid to 20 mol% or more of the total dicarboxylic acid. it can. In order to bring out the remarkable effect of sulfonic acid, it is more preferably 50 mol% or more.
[0013]
The method for synthesizing the sulfonic acid group-containing polyimidazole from the above-mentioned monomers is not particularly limited, but is described in JFWolfe, Encyclopedia of Polymer Science and Engineering, 2nd Ed., Vol. 11, P.601 (1988). It can be synthesized by dehydration and cyclopolymerization using such polyphosphoric acid as a solvent. Further, polymerization by a similar mechanism using a mixed solvent system of methanesulfonic acid / phosphorus pentoxide instead of polyphosphoric acid can be applied. In addition, a precursor polymer such as a polyamide structure can be obtained in a suitable organic solvent or mixed monomer melt reaction, and then converted to the desired polyimidazole structure by a cyclization reaction by appropriate heat treatment. be able to. In order to synthesize a polymer having high thermal stability, polymerization using polyphosphoric acid which is commonly used is preferred. However, in the polymerization that takes a long time as reported conventionally, in the system containing the sulfonic acid-containing monomer, the thermal stability of the obtained polymer may be lowered. For this reason, in the present invention, the polymerization time cannot be defined unconditionally because there is an optimum time depending on the combination of individual monomers, but it is preferable to shorten the polymerization time effectively. As a result, a polymer having a large amount of sulfonic acid groups can also be obtained in a highly heat stable state. The molecular weight of these sulfonic acid group-containing polyimidazoles is not particularly limited, but is preferably 1,000 to 1,000,000. The molecular weight of the polymer can be substantially evaluated by the solution viscosity, and the logarithmic viscosity measured in concentrated sulfuric acid is preferably 0.25 or more. If the molecular weight is too low, it is difficult to obtain a good molded product. In addition, if the molecular weight is too high, molding becomes difficult, so the solution viscosity is preferably smaller than 10. In addition, when there are a plurality of repeating units, they are mainly randomly and / or alternately bonded to each other, so that the polymer electrolyte membrane has stable characteristics.
[0014]
The sulfonic acid group-containing polyazole compound of the present invention can be formed into a fiber or a film by any method such as extrusion, spinning, rolling, or casting from a polymerization solution or an isolated polymer. Among these, it is preferable to mold from a solution dissolved in an appropriate solvent. Soluble solvents include aprotic polar solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, hexamethylphosphonamide, polyphosphoric acid, methanesulfonic acid, sulfuric acid, A suitable acid can be selected from strong acids such as trifluoroacetic acid, but is not limited thereto. A plurality of these solvents may be used as a mixture within a possible range. As a means for improving the solubility, a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride to an organic solvent may be used. The polymer concentration in the solution is preferably in the range of 0.1 to 30% by weight. If it is too low, the moldability will deteriorate, and if it is too high, the workability will deteriorate.
[0015]
A known method can be used as a method of obtaining a molded body from a solution. For example, the solvent is removed by heating, drying under reduced pressure, or immersion in a polymer non-solvent that is miscible with the solvent that dissolves the polymer, and a molded article of a sulfonic acid group-containing polyazole can be obtained. When the solvent is an organic solvent, the solvent is preferably distilled off by heating or drying under reduced pressure. When the solvent is a strong acid, it is preferably immersed in water, methanol, acetone or the like. At this time, if necessary, it can be formed into a fiber or a film in a form combined with another polymer. When combined with a polybenzazole-based polymer having similar solubility behavior, it is convenient for good molding.
[0016]
A preferred method for forming a film containing the sulfonic acid group-containing polyazole compound of the present invention as a main component is casting from a solution. The solvent can be removed from the cast solution as described above to obtain a sulfonic acid group-containing polyazole film. The solvent is preferably dried from the viewpoint of film uniformity. Further, in order to avoid decomposition or alteration of the polymer or solvent, it is preferable to dry at a temperature as low as possible under reduced pressure. For the substrate to be cast, a glass plate, a Teflon plate, or the like can be used. When the viscosity of the solution is high, when the substrate or the solution is heated and cast at a high temperature, the viscosity of the solution is lowered and can be easily cast. The thickness of the solution at the time of casting is not particularly limited, but is preferably 10 to 1000 μm. If it is too thin, the shape of the film cannot be maintained. More preferably, it is 100-500 micrometers. As a method for controlling the cast thickness of the solution, a known method can be used. For example, the thickness can be controlled with the amount and concentration of the solution with a constant thickness using an applicator, a doctor blade or the like, or with a cast area constant using a glass petri dish or the like. The cast solution can obtain a more uniform film by adjusting the solvent removal rate. For example, in the case of heating, the evaporation rate can be reduced by lowering the temperature in the first stage. Further, when immersed in a non-solvent such as water, the solidification rate of the polymer can be adjusted by leaving the solution in air or an inert gas for an appropriate time. The film of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, it is preferably 200 μm or less, more preferably 50 μm or less, and most preferably 20 μm or less.
[0017]
Since the sulfonic acid group-containing polyoxazole polymer of the present invention is excellent in ionic conductivity, it is suitable for use as an ion exchange membrane for a fuel cell or the like in the form of a film or membrane. Furthermore, by using the polymer structure of the present invention as a main component, it can be used as a coating material for a binder resin or the like when producing a joined body of the ion exchange membrane of the present invention and an electrode.
[0018]
The film according to the present invention is excellent in durability, solvent resistance and mechanical properties. For example, as for durability, there is little decrease in molecular weight due to hydrolysis in hot water, solvent resistance causes little swelling in acidic aqueous solution, and mechanical properties may cause breakage due to handling of the film even when the film thickness is thin There is no.
[0019]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.
Solution viscosity: The polymer powder was dissolved in concentrated sulfuric acid at a concentration of 0.5 g / dl, the viscosity was measured using an Ostwald viscometer in a thermostatic bath at 30 ° C., and the logarithmic viscosity [ln (ta / tb)] / c (Ta is the number of seconds that the sample solution falls, tb is the number of seconds that the solvent is dropped, and c is the polymer concentration).
Ion conductivity measurement: A platinum wire (diameter: 0.2 mm) was pressed against the surface of a strip-shaped membrane sample on a probe for self-made measurement (manufactured by Teflon), and a constant temperature / humidity oven at 80 ° C. and 95% RH A specimen was held in Science Machine Mfg. Co., Ltd., LH-20-01), and the AC impedance at 10 KHz between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. The measurement was performed while changing the distance between the electrodes, and the conductivity in which the contact resistance between the film and the platinum wire was canceled was calculated from the gradient obtained by plotting the distance between the electrodes and the measured resistance value.
Conductivity [S / cm] = 1 / film width [cm] x film thickness [cm] x resistance-to-resistance gradient [Ω / cm]
Logarithmic viscosity of polymer: A sulfuric acid solution having a polymer concentration of 0.5 g / dl was measured at 30 ° C. using an Ostwald viscometer.
Solvent resistance evaluation: When the film was immersed in boiling water for 1 hour, it was visually determined whether the form of the film would change due to swelling or dissolution.
Durability: It was immersed in 100 ° C. water in an ampoule in which polymer powder was sealed and left for 3 days. Durability was evaluated from changes in viscosity measured before and after treatment.
IR measurement: Measured by a microscopic transmission method using Biorad FTS-40 as a spectroscope and Biorad UMA-300A as a microscope.
[0020]
Example 1
1.500 g (5.389 × 10 −3 mole) of 3,3 ′, 4,4′-tetraaminodiphenylsulfone (abbreviation: TAS), monosodium 2,5-dicarboxybenzenesulfonate (abbreviation: STA, purity 99%) 1.445 g (5.389 × 10 −3 mole), 20.48 g of polyphosphoric acid (phosphorus pentoxide content 75%), and 16.41 g of phosphorus pentoxide are weighed in a polymerization vessel. Flow nitrogen and raise the temperature to 100 ° C while stirring gently on an oil bath. After maintaining at 100 ° C. for 1 hour, the temperature was raised to 150 ° C. for 1 hour, and the temperature was raised to 200 ° C. and polymerized for 4 hours. After completion of the polymerization, the mixture was allowed to cool, and water was added to take out the polymerized product, followed by repeated washing with a home mixer until the pH test paper was neutral. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.35. The IR spectrum of the polymer is shown in FIG.
The obtained polymer 400 mg and NMP 4 ml were dissolved by heating to 170 ° C. on an oil bath while stirring. NMP was evaporated by casting on a glass plate to a thickness of about 200 μm on a hot plate. The film was peeled off from the glass plate, dried under reduced pressure at 80 ° C. overnight, and then immersed in acetone to remove the solvent to produce a film for ion conductivity measurement. The ionic conductivity at 80 ° C. and 95% RH was 0.018 S / cm, and the measured ionic conductivity maintained stable performance over a long period of time. The film was immersed in boiling water for 1 hour, but no change in shape was observed. Moreover, the logarithmic viscosity after being immersed in 100 ° C. water for 3 days was 1.37, and no change from that before the treatment was observed. Even when a thin film having a thickness of about 10 micrometers was produced, the film was not broken in the various evaluations described above.
[0021]
Example 2
Polymerization and various measurements were performed in the same manner as in Example 1 except that the mixing ratio of STA and terephthalic acid (abbreviation: TPA) was changed instead of STA and the total amount was 5.389 × 10 −3 mole. The ionic conductivity of each sample maintained stable performance over a long period of time, and the membrane morphology was also kept good. Various measurement results are shown in Table 1.
[0022]
[Table 1]
Figure 0003690589
[0023]
Example 3
Evaluation was conducted in the same manner as in Example 2 except that monosodium 3,5-dicarboxybenzenesulfonate (abbreviation: SIA, purity 98%) was used instead of STA. The ionic conductivity of each sample maintained stable performance over a long period of time, and the membrane morphology was also kept good. Various measurement results are shown in Table 2. The IR spectrum of the polymer at TPA / SIA = 66/34 is shown in FIG.
[0024]
[Table 2]
Figure 0003690589
[0025]
Example 4
In Example 3, tin (II) chloride was added at 1 mol% with respect to TAS during polymerization, and a polymer was obtained and evaluated in the same manner. The ionic conductivity of both samples kept stable performance over a long period of time, and the membrane morphology was also kept good. Various measurement results are shown in Table 3.
[0026]
[Table 3]
Figure 0003690589
[0027]
Comparative Example 1
In Example 1, polymerization was carried out using 0.895 g of TPA instead of STA to obtain a polymer having a logarithmic viscosity of 2.11. The film was immersed in boiling water for 1 hour, but no change in morphology was observed, and the logarithmic viscosity after immersion in water at 100 ° C. for 3 days was 2.06, indicating no change from before the treatment. Ionic conductivity at 80 ° C. and 95% RH was measured, but it was not possible to capture the behavior of ions flowing substantially.
[0028]
Comparative Example 2
In Example 1, a polymer was synthesized using 3,3′-diaminobenzidine instead of TAS. Although the logarithmic viscosity of the obtained polymer was 1.23, the polymer was not dissolved in NMP, and an evaluable film could not be produced.
[0029]
Comparative Example 3
In Example 1, a polymer was synthesized using tetraaminobenzene (hydrochloride) instead of TAS. The logarithmic viscosity of the obtained polymer was 1.41, and although it was not tough, a film could be produced. When the obtained film was immersed in boiling water, the swelling was gradually observed, and the film edge was also confirmed to collapse.
[0030]
Comparative Example 4
In Example 1, after polymerizing TAS as 1.05 g (3.773 × 10 −3 mole) and TPA as 0.598 g (3.557 × 10 −3 mole), the polymerization liquid was once cooled, and further TAS was 0.45 g (1.616 × 10 − 3) and 0.491 g (1.832 × 10 −3 mole) of STA was added to synthesize a block copolymer of TPA / STA = 66/34. The resulting polymer had a logarithmic viscosity of 0.86, and a film could be produced by the same method. However, the ionic conductivity at 80 ° C. and 95% RH was the same as 0.0003 S / cm. The polymerization ratio was an order of magnitude smaller than that of the polymer of Example 2.
[0031]
Comparative Example 5
A similar polybenzoxazole-based polymer was synthesized using 1.53 g (5.387 × 10 −3 mole) of 3,3′-diamino-4,4′-dihydroxydiphenylsulfone instead of TAS in Example 1. The logarithmic viscosity of the obtained polymer was 0.48. When the logarithmic viscosity was measured after the polymer was immersed in 100 ° C. water for 3 days, it was found to be 0.18.
[0032]
Comparative Example 6
A polymer was synthesized in the same manner as in Example 1 except that TAS was 1.45 g. The obtained polymer had a logarithmic viscosity of 0.21, and the film formed was brittle.
[0033]
For comparison, Table 4 shows the results of Example 1 and Comparative Examples 1 to 5.
[0034]
[Table 4]
Figure 0003690589
[0035]
【The invention's effect】
The polymer of the present invention, which is excellent in durability and ion conductivity, can provide a material that exhibits outstanding performance as a polymer electrolyte for fuel cells and the like.
[Brief description of the drawings]
FIG. 1 is an IR spectrum of sulfonic acid-containing polybenzimidazole synthesized from TAS and STA. FIG. 2 is an IR spectrum of sulfonic acid-containing polybenzimidazole synthesized with TAS and TPA / SIA = 66/34 composition.

Claims (3)

一般式(1)、(2)で表される繰り返し単位からなる重合体を主成分とし、濃硫酸中で測定した対数粘度が0.25以上10以下であり、繰り返し単位が複数の場合主としてランダムおよび/または交互的に結合していることを特徴とするスルホン酸基含有ポリイミダゾール化合物。
Figure 0003690589
(式中、Xは−O−,−SO2−,−C(CH32−,−C(CF32−,−OPhO−を、Arは芳香族基を、mは1から4の数を、nは0.2以上1.0以下の数を、Phはベンゼン環を示す。
Mainly composed of a polymer composed of repeating units represented by the general formulas (1) and (2), a logarithmic viscosity measured in concentrated sulfuric acid is 0.25 or more and 10 or less , and a plurality of repeating units are mainly random. And / or a sulfonic acid group-containing polyimidazole compound, which is alternately bonded.
Figure 0003690589
(Wherein X represents —O—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —OPhO—, Ar represents an aromatic group, and m represents 1 to 4 Where n is a number from 0.2 to 1.0 , and Ph is a benzene ring.
請求項1に記載の化合物を主成分とすることを特徴とする成形物。  A molded product comprising the compound according to claim 1 as a main component. 請求項1乃至2のいずれかに記載の化合物を主成分とすることを特徴とする膜。  A film comprising the compound according to claim 1 as a main component.
JP2001101022A 2000-11-13 2001-03-30 Sulfonic acid-containing polyimidazole compound and molded product thereof Expired - Fee Related JP3690589B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001101022A JP3690589B2 (en) 2000-11-13 2001-03-30 Sulfonic acid-containing polyimidazole compound and molded product thereof
CNB018187536A CN100358938C (en) 2000-11-13 2001-11-12 Polybenzole compound having sulfo group and/or phosphono group, resin composition containing same, molded resin, solid polymer electrotyte film, solid electrolyte film/electrode catalyst layer ...
US10/416,551 US7288603B2 (en) 2000-11-13 2001-11-12 Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
AT01982763T ATE318854T1 (en) 2000-11-13 2001-11-12 POLYBENZAZOLE COMPOUND WITH SULFO AND/OR PHOSPHONO GROUP, RESIN COMPOSITION CONTAINING SAME, RESIN MOLDING, POLYMER SOLID ELECTROLYTE FILM, COMPOSITE OF SOLID ELECTROLYTE FILM AND ELECTRODE CATALYST LAYER AND METHOD FOR PRODUCING THE COMPOSITE
DE60117595T DE60117595T2 (en) 2000-11-13 2001-11-12 Polybenzazole compound having sulfo and / or phosphono groups, resin composition containing the same, resin molding, polymer solid electrolyte sheet, solid electrolyte sheet and electrode catalyst sheet composite, and composite forming method
EP01982763A EP1354907B1 (en) 2000-11-13 2001-11-12 Polybenzazole compound having sulfo group and/or phosphono group, resin composition containing the same, molded resin, solid polymer electrolyte film, solid electrolyte film/electrode catalyst layer composite, and process for producing the composite
PCT/JP2001/009885 WO2002038650A1 (en) 2000-11-13 2001-11-12 Polybenzazole compound having sulfo group and/or phosphono group, resin composition containing the same, molded resin, solid polymer electrolyte film, solid electrolyte film/electrode catalyst layer composite, and process for producing the composite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-345604 2000-11-13
JP2000345604 2000-11-13
JP2001101022A JP3690589B2 (en) 2000-11-13 2001-03-30 Sulfonic acid-containing polyimidazole compound and molded product thereof

Publications (2)

Publication Number Publication Date
JP2002208416A JP2002208416A (en) 2002-07-26
JP3690589B2 true JP3690589B2 (en) 2005-08-31

Family

ID=26603876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101022A Expired - Fee Related JP3690589B2 (en) 2000-11-13 2001-03-30 Sulfonic acid-containing polyimidazole compound and molded product thereof

Country Status (1)

Country Link
JP (1) JP3690589B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246373A1 (en) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane for use, e.g. in fuel cells, manufactured by heating a mixture of sulfonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane
DE10258580A1 (en) * 2002-12-16 2004-06-24 Celanese Ventures Gmbh High molecular weight polyazoles, e.g. useful for making shaped products, fibers, films, coatings and electrode membranes, produced by polymerizing a selected particle size fraction
JP4875489B2 (en) * 2003-07-27 2012-02-15 ベーアーエスエフ フューエル セル ゲーエムベーハー Proton conducting membrane and use thereof
JP5012268B2 (en) * 2007-07-09 2012-08-29 トヨタ自動車株式会社 Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane
JP5950323B2 (en) * 2011-06-03 2016-07-13 株式会社カネカ POLYMER ELECTROLYTE AND USE THEREOF

Also Published As

Publication number Publication date
JP2002208416A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR101129162B1 (en) Proton conducting polymer membrane, method for producing same, and fuel cell using same
EP1354907A1 (en) Polybenzazole compound having sulfo group and/or phosphono group, resin composition containing the same, molded resin, solid polymer electrolyte film, solid electrolyte film/electrode catalyst layer composite, and process for producing the composite
JP2002529546A (en) Polymer composition, film containing the polymer composition, method for producing the same and use thereof
JP4549007B2 (en) Composition containing an acid group-containing polybenzimidazole compound and an acid compound, an ion conductive membrane, an adhesive, a composite, and a fuel cell
JP4096227B2 (en) Composition comprising an acid group-containing polybenzimidazole compound and an acid group-containing polymer, an ion conductive membrane, an adhesive, a composite, and a fuel cell
JP2004131532A (en) Polybenzimidazole compound having phosphonic acid group and resin composition comprising the same and method for producing the same
JP2004131533A (en) Polybenzimidazole compound having sulfonic acid group and/or phosphonic acid group and resin composition comprising the same and method for producing the same
JP2002146014A (en) Ion-conductive polyazole containing phosphonic acid group
JP3690589B2 (en) Sulfonic acid-containing polyimidazole compound and molded product thereof
JP2003055457A (en) Sulfonic acid-containing ion conductive polybenzimidazole
JP4200224B2 (en) Ion conductive sulfonic acid-containing polyazole
JP2003327694A (en) Polybenzazole compound having sulfonic acid group and/ or phosphonic acid group, resin composition containing the same, resin molded article, solid polymeric electrolyte film, solid electrolyte film/electrode catalyst layer composite, and manufacturing method for the composite
JP4061522B2 (en) POLYAZOLE POLYMER COMPOSITION, FILM CONTAINING THE SAME, AND METHOD FOR MOLDING POLYAZOLE POLYMER COMPOSITION
JP2002146022A (en) Conductive polyimidazole containing sulfonic acid group or phosphonic acid group ion
JP2004131530A (en) Solution consisting essentially of polybenzimidazole compound having ionic group and molded product and method for producing the same molded product
JP4337038B2 (en) Composition comprising an acidic group-containing polybenzimidazole compound
JP4590824B2 (en) Sulfonated aromatic polyether compounds, composites thereof, and production methods thereof.
JP4470099B2 (en) Acid group-containing polybenzimidazole compound and composition thereof
JP2002146016A (en) Ion-conductive polyazole containing phosphonic acid group
JP2002212291A (en) Sulfonic acid- or phosphonic acid-containing polyimidazole and molded product thereof
JP3968625B2 (en) Phosphonic acid-containing polyazole
JP2002146013A (en) Ion-conductive polyazole containing phosphonic acid group
JP2002201269A (en) Novel polybenzazole having ionic group and membrane containing it as main component
JP3959669B2 (en) Ion conductive sulfonic acid group-containing polyazole and membrane comprising the same as main component
JP4093408B2 (en) Novel membranes for use in fuel cells with improved mechanical properties

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R151 Written notification of patent or utility model registration

Ref document number: 3690589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees