JP3688973B2 - Rotation transmission device - Google Patents

Rotation transmission device Download PDF

Info

Publication number
JP3688973B2
JP3688973B2 JP2000130036A JP2000130036A JP3688973B2 JP 3688973 B2 JP3688973 B2 JP 3688973B2 JP 2000130036 A JP2000130036 A JP 2000130036A JP 2000130036 A JP2000130036 A JP 2000130036A JP 3688973 B2 JP3688973 B2 JP 3688973B2
Authority
JP
Japan
Prior art keywords
rotor
outer member
rotation transmission
transmission device
way clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000130036A
Other languages
Japanese (ja)
Other versions
JP2001311438A (en
Inventor
誠 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2000130036A priority Critical patent/JP3688973B2/en
Publication of JP2001311438A publication Critical patent/JP2001311438A/en
Application granted granted Critical
Publication of JP3688973B2 publication Critical patent/JP3688973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、各種機器や車両の駆動経路上において、駆動力の伝達と遮断の切り換えに用いられる回転伝達装置に関する。
【0002】
【従来の技術】
例えば、自動車において、動力の伝達と遮断を選択的に切り換えるために、動力の伝達経路上に動力を断続する装置を組み込み使用する必要があり、このため、4WD車の前後輪の断続切換え用途として、特開平10−53044号や特開平11−129779号によって、ローラ型ツーウェイクラッチと電磁コイルによる制御手段を組み合わせた回転伝達装置が提案されている。
【0003】
図8(A)と(B)及び図9は、上記した従来の回転伝達装置におけるツーウェイクラッチ51とこれを制御する制御手段52の構造を示している。
【0004】
上記ツーウェイクラッチ51は、回転軸53に一体回転するよう結合した内方部材54と外方部材である外輪55を軸受56を介して同軸上に回転可能に嵌合させ、内方部材54の外周に複数のカム面57を設け、外輪55の内周に円筒面58を設けて両面間に楔空間を形成し、その楔空間内に保持器59を配置し、この保持器59に形成した複数のポケット60で係合子としてのローラ61を保持することにより、該ローラ61を楔空間内に組み込み、さらに、ローラ61が円筒面58とカム面57に係合しない中立位置へ保持器59を支持付勢するスイッチばね62を、保持器59とカム面57を有する内方部材54との間で係止して構成されている。
【0005】
また、上記ツーウェイクラッチ51の制御手段52は、外輪55の端部に延長状となるよう一体に設けた円筒状の外方部材55a内に非磁性体63を介して固定した断面コ字状のロータ64と、ロータ64と保持器59の間に位置し、保持器59の端部に保持器59と軸方向に移動可能、相対回転不能に配置したアーマチュア65を、ロータ64と適当なすきまを介して重ね合わせ、そのロータ64とアーマチュア65を磁力により圧接させるための電磁コイル66をロータ64の内部に収納し、この電磁コイル66を固定部分への取り付けによって回転しないように配置して構成され、上記電磁コイル66への電流をオン−オフすることによって、ツーウェイクラッチ51のローラ61を係合または非係合させるようになっている。
【0006】
なお、ロータ64の内側円筒部の内径側には、軸受67が嵌合されており、ロータ64及び内側非磁性体68を介して外方部材55aと回転軸53とを回転可能に支持している。また、ロータ64の磁束を磁性体である外方部材55aに逃がさないための外側非磁性体63は、ロータ64の外側円筒部に圧入固定されており、この外側非磁性体63は外方部材55aに対して回転不能に固定されている。
【0007】
この回転伝達装置は、電流がオフのとき、スイッチばね62により、保持器59を介してローラ61は内方部材54に設けたカム面57の中立位置に付勢されており、内方部材54と外方部材55は空転可能である。
【0008】
また、回転伝達装置の内方部材54と外輪55を係合駆動させたいときは、電磁コイル66に電流を流すことにより、保持器59に連結しているアーマチュア65が、外方部材55aと固定されたロータ64に磁力でもって吸引圧接する。
【0009】
ここで、ツーウェイクラッチ51においては、ローラ61が係脱するため、外輪55に機械的な強度が要求され、また、磁力によってアーマチュア65とロータ64に発生する摩擦力を外輪55と保持器59に伝達するためには、外方部材55aとロータ64を回転方向、軸方向共に一体に連結する必要があり、このため、外方部材55aとロータ64の間に軸方向に十分な嵌合量を確保しなければならない。
【0010】
このため、従来の回転伝達装置は、ツーウェイクラッチ51の外輪55と、電磁クラッチ52の外方部材55aを、鉄材料を用いて一体構造に形成し、外側非磁性体63をロータ64の外径部に圧入固定すると共に、外側非磁性体63を外方部材55aに対してピン69等で回転不能に固定している。
【0011】
また、外側非磁性体63とロータ64は軸方向に位置決めする必要があるために、ロータ64が外方部材55aの内径部に内装嵌合され、止め輪70で軸方向に固定されており、そのため、外方部材55aと外側非磁性体63及びロータ64の円筒面が径方向に3層に組込まれた構造になっている。
【0012】
【発明が解決しようとする課題】
上記のような従来の回転伝達装置においては、ツーウェイクラッチ51の外方部材である外輪55と、制御手段52のロータ64を収納する外方部材55aが鉄材料を用いて一体に形成され、かつ、外方部材55aの内径部に外側非磁性体63とロータ64を内装嵌合した径方向に3層の構造となるので、外方部材55aの外径も大きくなり、その分だけ鉄材料の使用量が多くなって回転伝達装置全体の重量が重くなるという問題があった。
【0013】
ー方、外方部材55aの外径を小さくしようとすると、それに応じて電磁コイル66の外径も小さくなるためコイルの収容量が減り、所定の磁力が不足することになる。また、外方部材55aの外径を小径化することに応じてロータ64とアーマチュア65の接触半径が小さくなるため、制御手段52に所定のトルクを発生させるためには電磁コイル66の消費電力を増やさなければならなくなり、その分発熱も大きくなつてしまうという問題がある。
【0014】
そこで、この発明の課題は、制御手段のトルクを低減させることなく、軽量化や省電力化を図ることができるようにすることにある。
【0015】
【課題を解決するための手段】
上記のような、課題を解決するため、この発明は、同軸上に回転可能に嵌合させた内方部材と外方部材の間に保持器で支持した係合子を組み込んでツーウェイクラッチを形成し、上記保持器の端部に配置され、保持器と一体に回転するアーマチュアと、上記外方部材又は内方部材の一方に固定され、その内部に電磁コイルを収納し、この電磁コイルの入り切りにより、アーマチュア吸着と解除を行うロータとによって形成した回転伝達装置において、上記ツーウェイクラッチの外方部材とロータを収納する外方部材を別体とし、ツーウェイクラッチの外方部材の端部にロータを収納する外方部材を固定し、このロータを収納する外方部材を非磁性体材料で形成した構成を採用したものである。
【0016】
ここで、上記ツーウェイクラッチの外方部材とロータを収納する外方部材の固定は、圧入による嵌合以外に、嵌合部に平坦部か凹凸もしくは互いに係合する係合部材を設けることにより、両外方部材を相対回転不能に連結した構造とすることができる。
【0017】
また、上記嵌合部を固定する手段の他の構造としては、嵌合部分をピンもしくはねじで固定するようにすることができる。
【0018】
さらに、ロータを収納する外方部材に対してロータを固定する場合も圧入による以外に、嵌合部に平坦部を設けたり、外方部材とロータのどちらか一方を加締めて固定する構造とすることができる。
【0019】
また、ロータは、外方部材に対して回転可能に取り付け、このロータをツーウェイクラッチの内方部材と一体に回転するような構造にしてもよい。
【0020】
回転伝達装置におけるツーウェイクラッチを、外径面に複数のカム面を有する内方部材と、円筒内径面を有する外方部材との間に楔形空間を形成し、この楔形空間に保持器で支持された複数のローラを組み込んだ構造とすることができる。
【0021】
上記ロータを収納する外方部材を形成する非磁性体材料を、アルミ合金、合成樹脂、銅又はステンレス鋼等の内から選択することができる。
【0022】
【発明の実施の形態】
以下、この発明の実施の形態を図1乃至図7の図示例と共に説明する。
【0023】
図1は第1の実施の形態の回転伝達装置を示し、この回転伝達装置は、ツーウェイクラッチ1とこのツーウェイクラッチ1の入り切りを制御する制御手段2を組み合わせ、回転軸3を動力の入り側としたタイプである。
【0024】
先ず、ツーウェイクラッチ1は、内径の部分で回転軸3と一体に回転するようセレーション等を介して結合する内方部材(内輪)4と、この内方部材4の外側に外方部材である外輪5を同軸上に回転可能に嵌合させ、内方部材4の外径面に複数のカム面6と外輪5の内径面に円筒面7を設けて両面間に楔空間を形成し、その楔空間内に保持器8を配置している。
【0025】
この保持器8には、カム面6と等しい数と配置のポケット9が設けられ、各ポケット9で係合子としてのローラ10を保持することにより、該ローラ10を楔空間内に組み込み、しかも、ローラ10が円筒面7とカム面6に係合しない中立位置へ保持器8を支持付勢するため、スイッチばね11が保持器8とカム面6を有する内方部材4との間に係止して配置されている。
【0026】
このスイッチばね11は、図1(B)のように、両端の屈曲端部11a、11aを、カム面6を有する内方部材4の切り欠き12と保持器8の切り欠き13にそれぞれ係止し、保持器8に中立位置への弾性を付勢している。
【0027】
上記した外輪5は、クラッチとしての強度確保のために鉄材料を用いて形成され、一方の端部が軸受14を介して回転軸3に支持され、他端側はローラ10の外側端部に臨む程度の長さに設定されている。
【0028】
次に、制御手段2は、保持器8の端部と対向するよう配置した断面コ字状のロータ21と、ロータ21と保持器8の間に位置し、保持器8の端部にこの保持器8と軸方向に移動可能、相対回転不能に配置したアーマチュア22とロータ21とアーマチュア22を磁力により圧接させるための電磁コイル23とで形成され、上記ロータ21は、外輪5と別体となる外方部材24の内部に一体に回転するよう固定され、電磁コイル23はロータ21の内部に納まり、固定部材31に取り付けられて回転不能となり、電磁コイル23への電流をオン−オフすることによって、ツーウェイクラッチ1のローラ10を係合または非係合させるようになっている。
【0029】
この外方部材24は、ロータ21の磁束を磁性体である外輪5に逃がさないようにするため、非磁性体を用いて円筒状に形成され、一端側を外輪5の端部に固定し、ロータ21を他端側の内部に固定することにより、該外方部材24を介してロータ21と外輪5を一体に回転するよう連結している。
【0030】
上記ロータ21は、内側円筒部の内径側に軸受25が嵌合されており、この軸受25を回転軸3に外嵌するアルミや合成樹脂等の内側非磁性体26に嵌挿することにより、該ロータ21は回転軸3に回転可能に支持されることになる。
【0031】
上記アーマチュア22は、磁性金属板を用いて円板状に形成され、保持器8の端部に該保持器8と軸方向への移動可能、相対回転不能となるよう、接続金具27を介して接続されている。
【0032】
この接続金具27は、保持器8の端部に一体に回転するよう配置され、その外周に設けた屈曲突部28をアーマチュア22に形成した孔29に係合し、接続金具27に対してアーマチュア22は軸方向に移動可能となり、接続金具27がアマ−チュア22と保持器8を一体に回転させるようになっており、該アーマチュア22とロータ21の垂直面は適当なすきまを保つように、対向面間に設けた皿ばね30等の弾性体を介して重ね合わせられている。
【0033】
非磁性体を用いて形成された外方部材24は、外輪5の端部からロータ21の全長を覆える程度の長さを有し、外輪5の端部で外径円筒部にその一端側を一体に回転するよう嵌合によって固定し、この外方部材24の他端側内径に上記ロータ21を、十分な嵌合量を確保した状態で一体に回転するよう嵌合固定している。
【0034】
上記外方部材24の外輪5に対する固定には、異なった幾つかの手段を採用することができ、第1の固定手段としては、外輪5の端部外径を一段小径の円筒部5aに形成し、外方部材24の一端側内径を内周の環状突部32が当接する位置まで該円筒部5aに圧入して嵌合することにより、外輪5と外方部材24が一体に回転するよう固定することができる。
【0035】
第2の固定手段は、図3のように、外輪5の円筒部5aに外方部材24の一端側内径を嵌合するようにし、両者の嵌合部の一方に凹部33と他方に該凹部33に嵌合する凸部34を設けることにより、外輪5と外方部材24が一体に回転するよう固定している。
【0036】
第3の固定手段は、図4のように、外輪5の円筒部5aに外方部材24の一端側内径を嵌合し、両者の嵌合部面間にキーのような係合部材35を打ち込むことにより、外輪5と外方部材24が一体に回転するよう固定している。
【0037】
図面で例示した以外の固定手段としては、外輪5と外方部材24の嵌合部面間にセレーションを設けて外輪5と外方部材24が一体に回転するよう固定してもよい。
【0038】
さらに、外方部材24の他端側内径に対するロータ21の固定にも、上記外方部材24の外輪5に対する固定の場合と同様、嵌合を基本として、異なった幾つかの手段を採用することができる。
【0039】
ここでは特に図示していないが、圧入による固定以外に、上記した図3の第2の固定手段と同様、両者の嵌合部に互いに重なり合う平坦部を設けるか、外方部材24とロータ21をルーズに嵌合した後、どちらか一方を加締めることにより固定する構造を採用することができる。
【0040】
なお、外方部材24には、アーマチュア22の外周が臨む位置に、潤滑のため複数の通油孔(貫通孔)36が周方向に所定の間隔で複数設けられている。
【0041】
次に、図2に示す第2の実施の形態の回転伝達装置は、図1で示した第1の実施の形態の回転伝達装置において、外輪5と非磁性体である外方部材24の固定構造の他の例を示している。
【0042】
この第2の実施の形態では、外輪5の端部で一段小径とした外径円筒部5aに外方部材24の一端側内径がルーズに嵌合されており、外方部材24の外面から半径方向に、外輪5と外方部材24の嵌合部にわたって、円周方向の複数箇所に孔37を設け、この孔37にそれぞれピン38を嵌挿することにより、外輪5と外方部材24が一体に回転するよう固定した構造としたものである。
【0043】
なお、外輪5に設ける上記の孔37はねじ孔とし、ピン28に代えてねじをねじ孔にねじ込むことにより、外輪5と外方部材24を固定化するようにしてもよい。
【0044】
上記外方部材24の他端側内径面には第1の実施の形態と同様にロータ21が圧入等によって固定されており、これによって、外輪5とロータ21は外方部材24を介して回転方向、軸方向共に一体化されている。
【0045】
この第2の実施の形態のように、外輪5の外径円筒部5aに外方部材24をルーズに嵌合させるようにすると、上記第1の実施の形態よりも、外輪5と外方部材24の組立性が向上するという利点がある。
【0046】
図5(A)、(B)に示す第3の実施の形態の回転伝達装置は、図1で示した第1の実施の形態の回転伝達装置において、外輪5と非磁性体である外方部材24の固定構造のさらに他の例を示している。
【0047】
この第3の実施の形態では、外輪5の外径円筒部5aと外方部材24の内径面の周方向の位置に、嵌合時に互いに重なり合う平取り面39と40を設け、両平取り面39と40の重なりによって、単に圧入するよりも回転方向に大きなトルクが受けられるようにしたものである。
【0048】
上記外方部材24の非磁性体材料にアルミ合金のような軽量材料を使用した回転伝達装置において、この回転伝達装置が温度変化の大きい条件で使用されるような場合、外方部材24の熱膨張率が大きいため、外輪5に対する圧入代が減少することになるが、この第3の実施の形態のように、互いに重なり合う平取り面39と40を設けると、回転方向に対して係合状態を確実に維持することができるという点で効果的である。
【0049】
図示詳細を省いたが、同様に、ロータ21の外径円筒面と外方部材24の内径面にも各々平取り面が設けられ、外輪5と外方部材24の固定のように、回転方向に相対回転できないようにしている。
【0050】
この第3の実施の形態では、図5(A)のように、軸方向には外方部材24の平取り面40側の端面と外輪5が止め輪41によって、また、外方部材24とロータ21の軸方向を止め輪42によってそれぞれ位置決めしており、このようにすると、外方部材24とロータ21及び外輪5は圧入しなくてもよいので組立性が良いという利点がある。
【0051】
なお、第3の実施の形態は、平取り面39と40により外方部材24と外輪5およびロータ21の相対回転を防止しているが、平取りによる嵌合だけでなく、第1の実施の形態で示したキーやセレーション、ねじ等を併用して固定を行ってもよい。
【0052】
図6と図7(A)、(B)に示す第4の実施の形態は、制御手段2のロータ21を回転軸3に固定し、外方部材24とロータ21を回転可能とし、外輪5を動力の入り側としたタイプである。
【0053】
この第4の実施の形態の制御手段2は、ロータ21の内径部を回転軸3に固定した内側非磁性体26に圧入等の手段で固定し、ロータ21の外径部と外方部材24の間に軸受25aを介在させ、外輪5と固定した外方部材24を軸受25aとロータ21を介して回転軸3で支持している。
【0054】
また、ツーウェイクラッチ1は、図7(A)のように、外輪5の内径面にカム面6と内方部材4の外径面に円筒面7を設け、両面間に楔空間を形成し、その楔空間内に配置した保持器8でローラ10を保持し、この保持器8と外輪5の間にスイッチばね11が設けられ、スイッチばね11の両屈曲端部11a、11aは、図7(B)の如く、保持器8の切り欠き15と外輪5の切り欠き16に係合し、楔空間に対してローラ10を中立位置に保持するようになっていると共に、保持器8と軸方向に移動可能で一体に回転するよう配置したアーマチュア22がロータ21と対向している。
【0055】
この第4の実施の形態では、外輪5と外方部材24が回転して回転軸3が停止する状態で、ロータ21も停止しており、制御手段2の電磁コイル23に対する通電をオンにすると、停止するロータ21に外輪5と一体に回転するアーマチュア22が吸着され、これにより、外輪5のカム面6と保持器8のローラ10の位相がずれ、ツーウェイクラッチ1が係合することで回転軸3が回転することになる。
【0056】
なお、各実施の形態において、外方部材24の形成に用いる非磁性体材料としては、アルミ合金、合成樹脂(例えば、ポリアミド、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、熱可塑性ポリエステル、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリアミドイミド)、銅のほか、強度が必要な場合、ステンレス鋼(SUS304を代表とするオーステナイト系ステンレス)等を用いることができる。さらに、外方部材24として合成樹脂を用いれば、外輪5またはロータ21と一体に射出成形して固定することもでき、上記アルミや合成樹脂のような軽量な材料の採用は、外輪5の短尺化とによって、回転伝達装置全体の軽量化が図れ、また、外方部材24の形成に銅を使用すれば放熱性が向上することになる。
【0057】
この発明の各実施の形態で示した回転伝達装置はローラ係合式のクラッチとして、前述した従来例の回転伝達装置にすべて適用でき、スイッチばね11のような弾性部材が保持器8およびローラ10を係合しない中立位置に付勢するものでも、ローラを一方の係合位置に常時付勢しているタイプのクラッチにも成立する。また、本回転伝達装置は、内輪を入力側、外輪を出力側として使用しても、その反対に内輪を出力側、外輪を入力側としてもよい。
【0058】
さらに、ツーウェイクラッチ1は、ローラ係合式のクラッチの構造以外に、係合子としてスプラグを使用し、内方部材4の外径面と外輪5の内径面を互いに対向する円筒面とし、両円筒面間に配置した固定と制御用の一対の保持器でスプラグを保持し、制御用保持器によりスプラグの角度を制御することで、正逆回転の切り換えを行うスプラグ式のクラッチ構造を採用してもよく、ローラ係合式のクラッチと同様の効果が得られる。
【0059】
上記各実施の形態で示した回転伝達装置は、例えば、自動車における動力の伝達経路上に組み込み使用し、内方部材4を入力側となる回転軸3と一体に回転するよう結合すると共に、外輪5を前輪又は後輪に結合される出力側の部材と結合し、制御手段2の電磁コイル23に対する通電がオフの時、スイッチばね11の作用でローラ10は中立位置に保持され、内方部材4と外輪5は空転可能となり、回転軸3の回転が出力側の部材に伝達されることはない。
【0060】
ここで、図1に示す第1の実施の形態において、制御手段2の電磁コイル23に対する通電をオンすると、保持器8に連結しているアーマチュア22が、外輪5と固定されたロータ21に磁力でもって吸引圧接し、この圧接による摩擦トルクは、アーマチュア22、ロータ21、外方部材24を介して保持器8と外輪5に作用し、内方部材4と外輪5が相対回転すると摩擦トルクはスイッチばね11のトルクより大きいため、保持器8とローラ10は外輪5と同回転し、その結果、ローラ10はカム面6の中立位置から楔係合位置に移動し、これにより、ツーウェイクラッチ1は内方部材4と外輪5が係合し、回転軸3の回転が外輪5を介して出力側の部材に伝達されることになる。
【0061】
上記の内方部材4と外輪5が係合する状態で、電磁コイル23に対する通電をオフにすると、ロータ21へのアーマチュア22の吸着が解かれ、スイッチばね11の作用でローラ10はカム面6の中立位置に戻り、ツーウェイクラッチ1は係合が解けて回転の伝達が遮断されることになる。
【0062】
ここで、回転伝達装置は、ツーウェイクラッチ1の外方部材である外輪5と、制御手段2のロータ21を収納する外方部材24を別体とし、外輪5の端部に外方部材24を固定することにより、外輪5をローラ10の端部に臨む長さに設定することができ、鉄材料を用いた外輪5の短尺化によって外輪5の使用材料の削減が図れる。
【0063】
また、ツーウェイクラッチ1の外輪5と、ロータ21を収納する外方部材24を別体とすることにより、外方部材24の形成に軽量材質を選ぶことができ、回転伝達装置全体の軽量化が可能になり、また、外方部材24を外輪5の端部に嵌合固定し、この外方部材24の他端側内部にロータ21を収納することにより、ロータ21の外径部分は外方部材24との2層構造になり、従来に比べ、一層の厚み分を減らすことでロータ支持部分の小径化が可能になり、かつ、ロータ支持部分の外径を従来通りとすれば、内部に組み込むロータ21や電磁コイル23の大径化が図れることになる。
【0064】
なお、電力の大きさはコイルの巻数と電流の大きさに比例する。従って、電磁コイル23の大径化によってコイルの巻数を増やせば、消費電力量を少なくできる。
【0065】
【発明の効果】
以上のように、この発明によると、ツーウェイクラッチの外方部材とロータを収納する外方部材を別体とし、ロータを収納する外方部材を非磁性体材料で形成して、ツーウェイクラッチの外方部材の端部に固定したので、ツーウェイクラッチの外方部材がツーウェイクラッチを覆える長さに短尺化することで重量の重い外方部材の形成材料の削減が図れ、ロータを収納する外方部材に軽量材料を採用することで、回転伝達装置全体の軽量化が可能になる。
【0066】
また、ロータを収納する外方部材の内径面にロータを固定するようにすれば、ロータの外径部分の外側は外方部材との2層構造になり、このため、ロータと電磁コイルのサイズが従来と同じで同電力のままであれば、外方部材の小径化が可能になり、外方部材のサイズを同じままとすれば、その内部に組み込むロータや電磁コイルの径サイズを大きく設定することができ、その結果、コイルの巻数を増やすことで従来と同磁力にして電力量を下げることができる。
【0067】
また、外方部材の非磁性体材料にアルミ合金や銅を使用すれば、外方部材が外部にさらされているために放熱性に関しても有利となる。
【図面の簡単な説明】
【図1】(A)は回転伝達装置の第1の実施形態を示す縦断正面図、(B)は(A)の矢印a−aの縦断側面図
【図2】(A)は回転伝達装置の第2の実施形態を示す縦断正面図、(B)は(A)の矢印a−aの縦断側面図
【図3】外輪と外方部材の固定構造の第1の例を示す縦断側面図
【図4】外輪と外方部材の固定構造の第2の例を示す縦断側面図
【図5】(A)は回転伝達装置の第3の実施形態を示す縦断正面図、(B)は(A)の矢印a−aの縦断側面図
【図6】回転伝達装置の第4の実施形態を示す縦断正面図
【図7】(A)は図6の矢印a−aの縦断側面図、(B)は図6の矢印b−bの縦断側面図
【図8】(A)は先行技術の回転伝達装置を示す縦断正面図、(B)は(A)の矢印a−aの縦断側面図
【図9】図8(A)の矢印b−bの縦断側面図
【符号の説明】
1 ツーウェイクラッチ
2 電磁クラッチ
3 回転軸
4 内方部材
5 外輪
6 カム面
7 円筒面
8 保持器
9 ポケット
10 ローラ
11 スイッチばね
21 ロータ
22 アーマチュア
23 電磁コイル
24 外方部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotation transmission device that is used for switching between transmission and interruption of driving force on driving paths of various devices and vehicles.
[0002]
[Prior art]
For example, in an automobile, in order to selectively switch between transmission and interruption of power, it is necessary to incorporate and use a device that interrupts power on the power transmission path. For this reason, as an intermittent switching application for front and rear wheels of a 4WD vehicle JP-A-10-53044 and JP-A-11-12979 propose a rotation transmission device combining a roller type two-way clutch and a control means using an electromagnetic coil.
[0003]
8A, 8B, and 9 show the structures of the two-way clutch 51 and the control means 52 that controls the two-way clutch 51 in the above-described conventional rotation transmission device.
[0004]
The two-way clutch 51 includes an inner member 54 coupled to a rotary shaft 53 so as to rotate together with an outer ring 55 that is an outer member so as to be coaxially rotatable via a bearing 56, and an outer periphery of the inner member 54. A plurality of cam surfaces 57 are provided, a cylindrical surface 58 is provided on the inner periphery of the outer ring 55 to form a wedge space between both surfaces, and a cage 59 is disposed in the wedge space. By holding a roller 61 as an engaging member in the pocket 60, the roller 61 is incorporated into the wedge space, and the retainer 59 is supported in a neutral position where the roller 61 does not engage with the cylindrical surface 58 and the cam surface 57. The urging switch spring 62 is configured to be locked between the retainer 59 and the inner member 54 having the cam surface 57.
[0005]
Further, the control means 52 of the two-way clutch 51 has a U-shaped cross section that is fixed to a cylindrical outer member 55a provided integrally with the end of the outer ring 55 via a non-magnetic material 63a. A rotor 64, and an armature 65 that is positioned between the rotor 64 and the cage 59, is axially movable with the cage 59 at the end of the cage 59, and is disposed so as not to rotate relative to the rotor 64. And an electromagnetic coil 66 for pressing the rotor 64 and the armature 65 by magnetic force is housed in the rotor 64, and the electromagnetic coil 66 is arranged so as not to rotate by being attached to a fixed portion. The roller 61 of the two-way clutch 51 is engaged or disengaged by turning on and off the current to the electromagnetic coil 66.
[0006]
A bearing 67 is fitted on the inner diameter side of the inner cylindrical portion of the rotor 64, and the outer member 55a and the rotating shaft 53 are rotatably supported via the rotor 64 and the inner nonmagnetic body 68. Yes. Further, the outer nonmagnetic body 63 for preventing the magnetic flux of the rotor 64 from escaping to the outer member 55a, which is a magnetic body, is press-fitted and fixed to the outer cylindrical portion of the rotor 64. The outer nonmagnetic body 63 is the outer member. It is fixed so as not to rotate with respect to 55a.
[0007]
In this rotation transmission device, when the current is off, the roller 61 is biased to the neutral position of the cam surface 57 provided on the inner member 54 by the switch spring 62 via the retainer 59. The outer member 55 can idle.
[0008]
When it is desired to engage and drive the inner member 54 and the outer ring 55 of the rotation transmission device, the armature 65 connected to the retainer 59 is fixed to the outer member 55a by passing a current through the electromagnetic coil 66. The rotor 64 is brought into suction pressure contact with a magnetic force.
[0009]
Here, in the two-way clutch 51, since the roller 61 is engaged and disengaged, the outer ring 55 is required to have mechanical strength, and the friction force generated in the armature 65 and the rotor 64 by the magnetic force is applied to the outer ring 55 and the retainer 59. In order to transmit, it is necessary to integrally connect the outer member 55a and the rotor 64 in both the rotational direction and the axial direction. Therefore, a sufficient amount of engagement between the outer member 55a and the rotor 64 in the axial direction is provided. Must be secured.
[0010]
For this reason, in the conventional rotation transmission device, the outer ring 55 of the two-way clutch 51 and the outer member 55a of the electromagnetic clutch 52 are integrally formed using an iron material, and the outer non-magnetic body 63 is outer diameter of the rotor 64. The outer non-magnetic body 63 is fixed to the outer member 55a so as not to rotate with a pin 69 or the like.
[0011]
Further, since the outer non-magnetic body 63 and the rotor 64 need to be positioned in the axial direction, the rotor 64 is internally fitted to the inner diameter portion of the outer member 55a and is fixed in the axial direction by the retaining ring 70. Therefore, the outer member 55a, the outer non-magnetic body 63, and the cylindrical surface of the rotor 64 are structured in three layers in the radial direction.
[0012]
[Problems to be solved by the invention]
In the conventional rotation transmission device as described above, the outer ring 55 that is the outer member of the two-way clutch 51 and the outer member 55a that houses the rotor 64 of the control means 52 are integrally formed using an iron material, and The outer member 55a has a three-layer structure in the radial direction in which the outer non-magnetic body 63 and the rotor 64 are internally fitted to the inner diameter portion of the outer member 55a. There is a problem that the amount of use increases and the weight of the entire rotation transmission device increases.
[0013]
On the other hand, if the outer diameter of the outer member 55a is to be reduced, the outer diameter of the electromagnetic coil 66 is accordingly reduced, so that the amount of coil accommodation is reduced and the predetermined magnetic force is insufficient. Further, since the contact radius between the rotor 64 and the armature 65 becomes smaller as the outer diameter of the outer member 55a is reduced, the power consumption of the electromagnetic coil 66 is reduced in order to cause the control means 52 to generate a predetermined torque. There is a problem that the heat generation must be increased and the heat generation increases accordingly.
[0014]
Accordingly, an object of the present invention is to enable weight reduction and power saving without reducing the torque of the control means.
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention forms a two-way clutch by incorporating an engaging member supported by a cage between an inner member and a outer member that are rotatably fitted on the same axis. The armature is disposed at the end of the cage and rotates integrally with the cage, and is fixed to one of the outer member or the inner member. The electromagnetic coil is housed in the armature, and the electromagnetic coil is turned on and off. In the rotation transmission device formed by the armature suction and release rotor, the outer member of the two-way clutch and the outer member storing the rotor are separated and the rotor is stored at the end of the outer member of the two-way clutch. The outer member to be fixed is fixed, and the outer member for housing the rotor is formed of a non-magnetic material.
[0016]
Here, the outer member of the two-way clutch and the outer member housing the rotor are fixed by providing a fitting portion with a flat portion or unevenness or engaging members that engage with each other, in addition to press fitting. It can be set as the structure which connected both the outward members so that relative rotation was impossible.
[0017]
As another structure for fixing the fitting portion, the fitting portion can be fixed with a pin or a screw.
[0018]
Furthermore, when the rotor is fixed to the outer member that houses the rotor, in addition to the press-fitting, a fitting portion is provided with a flat portion, or either the outer member or the rotor is fixed by crimping and can do.
[0019]
The rotor may be rotatably attached to the outer member, and the rotor may be rotated integrally with the inner member of the two-way clutch.
[0020]
In the two-way clutch in the rotation transmission device, a wedge-shaped space is formed between an inner member having a plurality of cam surfaces on the outer diameter surface and an outer member having a cylindrical inner diameter surface, and the wedge-shaped space is supported by a cage. In addition, a structure incorporating a plurality of rollers can be employed.
[0021]
The non-magnetic material forming the outer member that houses the rotor can be selected from aluminum alloy, synthetic resin, copper, stainless steel, and the like.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below together with examples shown in FIGS.
[0023]
FIG. 1 shows a rotation transmission device according to a first embodiment. This rotation transmission device is a combination of a two-way clutch 1 and a control means 2 for controlling on / off of the two-way clutch 1, and the rotation shaft 3 is connected to the power input side. Type.
[0024]
First, the two-way clutch 1 includes an inner member (inner ring) 4 that is coupled via a serration or the like so as to rotate integrally with the rotary shaft 3 at an inner diameter portion, and an outer ring that is an outer member outside the inner member 4. 5 is rotatably fitted coaxially, a plurality of cam surfaces 6 are provided on the outer diameter surface of the inner member 4, and a cylindrical surface 7 is provided on the inner diameter surface of the outer ring 5, thereby forming a wedge space between the two surfaces. A cage 8 is arranged in the space.
[0025]
The retainer 8 is provided with pockets 9 of the same number and arrangement as the cam surface 6, and by holding the rollers 10 as the engaging members in the pockets 9, the rollers 10 are incorporated into the wedge space, The switch spring 11 is locked between the retainer 8 and the inner member 4 having the cam surface 6 in order to support and bias the retainer 8 to a neutral position where the roller 10 does not engage the cylindrical surface 7 and the cam surface 6. Are arranged.
[0026]
As shown in FIG. 1B, the switch spring 11 has bent ends 11a and 11a at both ends locked to the notch 12 of the inner member 4 having the cam surface 6 and the notch 13 of the retainer 8, respectively. The cage 8 is urged to be elastic toward the neutral position.
[0027]
The outer ring 5 described above is formed using an iron material to ensure strength as a clutch, one end is supported by the rotating shaft 3 via a bearing 14, and the other end is on the outer end of the roller 10. It is set to a length that will meet.
[0028]
Next, the control means 2 is positioned between the rotor 21 and the cage 8, the rotor 21 having a U-shaped cross section disposed so as to be opposed to the end of the cage 8. Formed of an armature 22 that is axially movable and non-rotatable relative to the vessel 8, a rotor 21, and an electromagnetic coil 23 that presses the armature 22 by magnetic force. The rotor 21 is separated from the outer ring 5. The electromagnetic coil 23 is fixed in the outer member 24 so as to rotate integrally. The electromagnetic coil 23 is accommodated in the rotor 21 and attached to the fixing member 31 to be unable to rotate, and the current to the electromagnetic coil 23 is turned on and off. The roller 10 of the two-way clutch 1 is engaged or disengaged.
[0029]
The outer member 24 is formed in a cylindrical shape using a non-magnetic material so that the magnetic flux of the rotor 21 does not escape to the outer ring 5 that is a magnetic body, and one end side is fixed to the end of the outer ring 5, By fixing the rotor 21 inside the other end, the rotor 21 and the outer ring 5 are connected to rotate integrally through the outer member 24.
[0030]
The rotor 21 is fitted with a bearing 25 on the inner diameter side of the inner cylindrical portion, and by inserting the bearing 25 into an inner nonmagnetic material 26 such as aluminum or synthetic resin that is fitted on the rotary shaft 3, The rotor 21 is rotatably supported on the rotary shaft 3.
[0031]
The armature 22 is formed in a disk shape using a magnetic metal plate, and is connected to the end of the retainer 8 via the connection fitting 27 so that it can move in the axial direction and cannot rotate relative to the retainer 8. It is connected.
[0032]
The connection fitting 27 is arranged so as to rotate integrally with the end portion of the cage 8, and a bent protrusion 28 provided on the outer periphery thereof is engaged with a hole 29 formed in the armature 22, so that the armature is connected to the connection fitting 27. 22 is movable in the axial direction, and the connection fitting 27 rotates the armature 22 and the cage 8 together, and the vertical surfaces of the armature 22 and the rotor 21 maintain an appropriate clearance. They are superposed via an elastic body such as a disc spring 30 provided between the opposing surfaces.
[0033]
The outer member 24 formed using a non-magnetic material has a length that can cover the entire length of the rotor 21 from the end of the outer ring 5, and the end of the outer ring 5 is connected to the outer diameter cylindrical portion at one end thereof. Are fixed by fitting so as to rotate integrally, and the rotor 21 is fitted and fixed to the inner diameter of the other end of the outer member 24 so as to rotate integrally with a sufficient amount of fitting secured.
[0034]
Several different means can be employed for fixing the outer member 24 to the outer ring 5. As the first fixing means, the outer diameter of the end of the outer ring 5 is formed in a cylindrical portion 5a having a small diameter. The outer ring 5 and the outer member 24 are integrally rotated by press-fitting the inner diameter of the outer member 24 into the cylindrical portion 5a until the inner circumferential annular protrusion 32 comes into contact therewith. Can be fixed.
[0035]
As shown in FIG. 3, the second fixing means is configured such that the inner diameter of the outer member 24 is fitted to the cylindrical portion 5a of the outer ring 5, and the concave portion 33 is provided in one of the fitting portions and the concave portion is provided in the other. By providing the convex part 34 fitted to 33, the outer ring 5 and the outer member 24 are fixed so as to rotate integrally.
[0036]
As shown in FIG. 4, the third fixing means is configured such that the inner diameter of one end of the outer member 24 is fitted to the cylindrical portion 5a of the outer ring 5, and an engagement member 35 such as a key is provided between the fitting portion surfaces. By driving, the outer ring 5 and the outer member 24 are fixed to rotate integrally.
[0037]
As fixing means other than those illustrated in the drawings, serrations may be provided between the fitting portion surfaces of the outer ring 5 and the outer member 24 so that the outer ring 5 and the outer member 24 rotate together.
[0038]
Further, for fixing the rotor 21 to the inner diameter on the other end side of the outer member 24, as in the case of fixing the outer member 24 to the outer ring 5, several different means are adopted on the basis of fitting. Can do.
[0039]
Although not specifically shown here, in addition to the fixing by press-fitting, as in the second fixing means of FIG. 3 described above, a flat portion that overlaps each other is provided in the fitting portion or the outer member 24 and the rotor 21 are connected. After fitting loosely, it is possible to adopt a structure in which either one is fixed by caulking.
[0040]
The outer member 24 is provided with a plurality of oil passage holes (through holes) 36 at predetermined intervals in the circumferential direction for lubrication at positions where the outer periphery of the armature 22 faces.
[0041]
Next, the rotation transmission device of the second embodiment shown in FIG. 2 is the same as that of the rotation transmission device of the first embodiment shown in FIG. The other example of a structure is shown.
[0042]
In the second embodiment, one end side inner diameter of the outer member 24 is loosely fitted to the outer diameter cylindrical portion 5 a having a smaller diameter at the end of the outer ring 5, and the radius from the outer surface of the outer member 24 is increased. A hole 37 is provided at a plurality of locations in the circumferential direction across the fitting portion between the outer ring 5 and the outer member 24 in the direction, and the pin 38 is fitted and inserted into each of the holes 37, whereby the outer ring 5 and the outer member 24 are The structure is fixed so as to rotate integrally.
[0043]
The hole 37 provided in the outer ring 5 may be a screw hole, and the outer ring 5 and the outer member 24 may be fixed by screwing a screw into the screw hole instead of the pin 28.
[0044]
As in the first embodiment, the rotor 21 is fixed to the inner diameter surface of the other end side of the outer member 24 by press-fitting or the like, so that the outer ring 5 and the rotor 21 rotate via the outer member 24. Both direction and axial direction are integrated.
[0045]
When the outer member 24 is loosely fitted to the outer diameter cylindrical portion 5a of the outer ring 5 as in the second embodiment, the outer ring 5 and the outer member are more than in the first embodiment. There is an advantage that the assembly of 24 is improved.
[0046]
The rotation transmission device according to the third embodiment shown in FIGS. 5A and 5B is the same as the rotation transmission device according to the first embodiment shown in FIG. The other example of the fixing structure of the member 24 is shown.
[0047]
In the third embodiment, chamfered surfaces 39 and 40 that overlap each other at the time of fitting are provided at the circumferential positions of the outer diameter cylindrical portion 5a of the outer ring 5 and the inner diameter surface of the outer member 24. By overlapping 39 and 40, a larger torque can be received in the rotational direction than simply press-fitting.
[0048]
In the rotation transmission device using a light-weight material such as an aluminum alloy as the nonmagnetic material of the outer member 24, when the rotation transmission device is used under conditions with a large temperature change, the heat of the outer member 24 is reduced. Since the expansion rate is large, the press-fitting allowance for the outer ring 5 is reduced. However, when the chamfered surfaces 39 and 40 that overlap each other are provided as in the third embodiment, the engagement state with respect to the rotation direction is achieved. It is effective in that it can be reliably maintained.
[0049]
Although illustration details are omitted, similarly, the outer cylindrical surface of the rotor 21 and the inner diameter surface of the outer member 24 are each provided with a chamfered surface so that the outer ring 5 and the outer member 24 are fixed in the rotational direction. To prevent relative rotation.
[0050]
In the third embodiment, as shown in FIG. 5A, in the axial direction, the end surface of the outer member 24 on the flat surface 40 side and the outer ring 5 are provided by the retaining ring 41, and the outer member 24 and The axial direction of the rotor 21 is respectively positioned by the retaining ring 42, and in this way, the outer member 24, the rotor 21 and the outer ring 5 do not need to be press-fitted, so that there is an advantage that the assemblability is good.
[0051]
In the third embodiment, the relative rotation of the outer member 24, the outer ring 5 and the rotor 21 is prevented by the flat surfaces 39 and 40, but not only the fitting by the flat surface but the first embodiment. The key, serration, screw or the like shown in the above form may be used in combination.
[0052]
In the fourth embodiment shown in FIGS. 6, 7 </ b> A, and 7 </ b> B, the rotor 21 of the control means 2 is fixed to the rotating shaft 3, the outer member 24 and the rotor 21 can be rotated, and the outer ring 5. Is the type with the power input side.
[0053]
The control means 2 of the fourth embodiment fixes the inner diameter portion of the rotor 21 to the inner nonmagnetic body 26 fixed to the rotating shaft 3 by means such as press fitting, and the outer diameter portion of the rotor 21 and the outer member 24. The outer member 24 fixed to the outer ring 5 is supported by the rotary shaft 3 via the bearing 25 a and the rotor 21.
[0054]
Further, as shown in FIG. 7A, the two-way clutch 1 has a cam surface 6 on the inner diameter surface of the outer ring 5 and a cylindrical surface 7 on the outer diameter surface of the inner member 4, and forms a wedge space between both surfaces. A roller 10 is held by a retainer 8 disposed in the wedge space, and a switch spring 11 is provided between the retainer 8 and the outer ring 5. Both bent ends 11a and 11a of the switch spring 11 are shown in FIG. As shown in B), the roller 10 is engaged with the notch 15 of the retainer 8 and the notch 16 of the outer ring 5 to hold the roller 10 in a neutral position with respect to the wedge space. The armature 22 arranged so as to be able to move and rotate together is opposed to the rotor 21.
[0055]
In the fourth embodiment, when the outer ring 5 and the outer member 24 are rotated and the rotating shaft 3 is stopped, the rotor 21 is also stopped, and energization of the electromagnetic coil 23 of the control means 2 is turned on. The armature 22 that rotates integrally with the outer ring 5 is adsorbed to the rotor 21 that stops, thereby causing the cam surface 6 of the outer ring 5 and the roller 10 of the retainer 8 to be out of phase and rotating when the two-way clutch 1 is engaged. The shaft 3 rotates.
[0056]
In each embodiment, the nonmagnetic material used for forming the outer member 24 includes an aluminum alloy, a synthetic resin (for example, polyamide, polyacetal, polyimide, polycarbonate, modified polyphenylene ether, thermoplastic polyester, polyphenylene sulfide, In addition to copper, polytetrafluoroethylene, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyamideimide), copper, and stainless steel (austenitic stainless steel represented by SUS304), etc. may be used when strength is required. it can. Further, if a synthetic resin is used as the outer member 24, it can be injection-molded and fixed integrally with the outer ring 5 or the rotor 21, and the use of a lightweight material such as the above-mentioned aluminum or synthetic resin makes the outer ring 5 shorter. As a result, the rotation transmission device as a whole can be reduced in weight, and if copper is used to form the outer member 24, heat dissipation is improved.
[0057]
The rotation transmission device shown in each embodiment of the present invention can be applied to all of the conventional rotation transmission devices described above as a roller engagement type clutch, and an elastic member such as a switch spring 11 connects the cage 8 and the roller 10 to each other. Even those that urge the neutral position where they are not engaged can be applied to a type of clutch that always urges the roller to one engagement position. In addition, the rotation transmission device may use the inner ring as the input side and the outer ring as the output side, or conversely, may use the inner ring as the output side and the outer ring as the input side.
[0058]
Furthermore, the two-way clutch 1 uses a sprag as an engaging element in addition to the structure of the roller-engaged clutch, and the outer diameter surface of the inner member 4 and the inner diameter surface of the outer ring 5 are cylindrical surfaces facing each other. Even if a sprag clutch structure is used that switches between forward and reverse rotation by holding a sprag with a pair of retainers for control and control arranged between them and controlling the angle of the sprag with the retainer for control. The effect similar to that of a roller engagement type clutch can be obtained.
[0059]
The rotation transmission device shown in each of the above embodiments is, for example, incorporated in a power transmission path in an automobile, coupled to the inner member 4 so as to rotate integrally with the rotary shaft 3 on the input side, and the outer ring. 5 is coupled to an output side member coupled to the front wheel or the rear wheel, and when the energization of the electromagnetic coil 23 of the control means 2 is off, the roller 10 is held in the neutral position by the action of the switch spring 11, and the inner member 4 and the outer ring 5 can idle, and the rotation of the rotating shaft 3 is not transmitted to the output side member.
[0060]
Here, in the first embodiment shown in FIG. 1, when energization of the electromagnetic coil 23 of the control means 2 is turned on, the armature 22 connected to the retainer 8 applies a magnetic force to the rotor 21 fixed to the outer ring 5. Thus, the frictional torque caused by the pressure contact acts on the cage 8 and the outer ring 5 via the armature 22, the rotor 21, and the outer member 24. When the inner member 4 and the outer ring 5 rotate relative to each other, the friction torque is Since the torque of the switch spring 11 is greater, the retainer 8 and the roller 10 rotate in the same manner as the outer ring 5, and as a result, the roller 10 moves from the neutral position of the cam surface 6 to the wedge engagement position. The inner member 4 and the outer ring 5 are engaged, and the rotation of the rotating shaft 3 is transmitted to the output side member through the outer ring 5.
[0061]
When the energization of the electromagnetic coil 23 is turned off in the state where the inner member 4 and the outer ring 5 are engaged with each other, the armature 22 is not attracted to the rotor 21, and the roller 10 acts on the cam surface 6 by the action of the switch spring 11. Returning to the neutral position, the two-way clutch 1 is disengaged and the transmission of rotation is cut off.
[0062]
Here, in the rotation transmission device, the outer ring 5 that is the outer member of the two-way clutch 1 and the outer member 24 that houses the rotor 21 of the control means 2 are separated, and the outer member 24 is attached to the end of the outer ring 5. By fixing, the outer ring 5 can be set to a length facing the end of the roller 10, and the material used for the outer ring 5 can be reduced by shortening the outer ring 5 using iron material.
[0063]
Further, by making the outer ring 5 of the two-way clutch 1 and the outer member 24 that accommodates the rotor 21 separate, a lightweight material can be selected for the formation of the outer member 24, thereby reducing the weight of the entire rotation transmission device. Further, the outer member 24 is fitted and fixed to the end of the outer ring 5 and the rotor 21 is housed inside the other end of the outer member 24 so that the outer diameter portion of the rotor 21 is outward. It becomes a two-layer structure with the member 24, and it becomes possible to reduce the diameter of the rotor support part by reducing the thickness of one layer compared to the conventional one, and if the outer diameter of the rotor support part is the same as before, it will be inside The diameter of the rotor 21 and the electromagnetic coil 23 to be incorporated can be increased.
[0064]
The magnitude of power is proportional to the number of turns of the coil and the magnitude of the current. Therefore, if the number of turns of the coil is increased by increasing the diameter of the electromagnetic coil 23, the power consumption can be reduced.
[0065]
【The invention's effect】
As described above, according to the present invention, the outer member of the two-way clutch and the outer member that accommodates the rotor are separated, and the outer member that accommodates the rotor is formed of a nonmagnetic material. Since the outer member of the two-way clutch is shortened to a length that can cover the two-way clutch, the material for forming the heavy outer member can be reduced, and the outer member that houses the rotor can be reduced. By adopting a lightweight material for the member, the entire rotation transmission device can be reduced in weight.
[0066]
Further, if the rotor is fixed to the inner diameter surface of the outer member that accommodates the rotor, the outer side of the outer diameter portion of the rotor has a two-layer structure with the outer member. Therefore, the size of the rotor and the electromagnetic coil is reduced. If the power is the same as before, the outer member can be made smaller in diameter, and if the outer member is kept the same size, the diameter of the rotor and electromagnetic coil incorporated in the outer member can be set larger. As a result, by increasing the number of turns of the coil, it is possible to reduce the amount of power with the same magnetic force as in the prior art.
[0067]
In addition, if an aluminum alloy or copper is used for the nonmagnetic material of the outer member, the outer member is exposed to the outside, which is advantageous in terms of heat dissipation.
[Brief description of the drawings]
1A is a longitudinal front view showing a first embodiment of a rotation transmission device, FIG. 1B is a longitudinal side view of the arrow aa in FIG. 2A, and FIG. 2A is a rotation transmission device; FIG. 3B is a longitudinal side view of the first embodiment of the fixing structure of the outer ring and the outer member. FIG. FIG. 4 is a longitudinal side view showing a second example of the fixing structure of the outer ring and the outer member. FIG. 5A is a longitudinal front view showing a third embodiment of the rotation transmission device, and FIG. FIG. 6A is a longitudinal front view showing a fourth embodiment of the rotation transmission device. FIG. 7A is a longitudinal side view of the arrow aa in FIG. FIG. 8A is a longitudinal front view of a prior art rotation transmission device, and FIG. 8B is a longitudinal side view of arrow aa in FIG. FIG. 9 is an arrow in FIG. Longitudinal side view of a b-b [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Two-way clutch 2 Electromagnetic clutch 3 Rotating shaft 4 Inner member 5 Outer ring 6 Cam surface 7 Cylindrical surface 8 Cage 9 Pocket 10 Roller 11 Switch spring 21 Rotor 22 Armature 23 Electromagnetic coil 24 Outer member

Claims (13)

同軸上に回転可能に嵌合させた内方部材と外方部材の間に保持器で支持した係合子を組み込んでツーウェイクラッチを形成し、上記保持器の端部に配置され、保持器と一体に回転するアーマチュアと、上記外方部材又は内方部材の一方に固定され、その内部に電磁コイルを収納し、この電磁コイルの入り切りにより、アーマチュアの吸着と解除を行うロータとによって形成した回転伝達装置において、
上記ツーウェイクラッチの外方部材とロータを収納する外方部材を別体とし、ツーウェイクラッチの外方部材の端部にロータを収納する外方部材を固定し、このロータを収納する外方部材を非磁性体材料で形成したことを特徴とする回転伝達装置。
A two-way clutch is formed by incorporating an engagement member supported by a cage between an inner member and an outer member, which are rotatably fitted on the same axis, and is arranged at the end of the cage, and is integrated with the cage. Rotation transmission formed by an armature that rotates to the outside and a rotor that is fixed to one of the outer member or the inner member and that houses an electromagnetic coil inside and turns the electromagnetic coil on and off. In the device
The outer member for housing the rotor is separated from the outer member for housing the two-way clutch, and the outer member for housing the rotor is fixed to the end of the outer member for the two-way clutch. A rotation transmission device formed of a non-magnetic material.
上記ツーウェイクラッチの外方部材とロータを収納する外方部材を、圧入による嵌合によって固定したことを特徴とする請求項1に記載の回転伝達装置。The rotation transmission device according to claim 1, wherein an outer member of the two-way clutch and an outer member that houses the rotor are fixed by fitting by press-fitting. 上記ツーウェイクラッチの外方部材の端部にロータを収納する外方部材の端部を嵌合し、この嵌合部に平坦部を設けて両部材を相対回転不能に連結したことを特徴とする請求項1又は2に記載の回転伝達装置。The end portion of the outer member that houses the rotor is fitted to the end portion of the outer member of the two-way clutch, and a flat portion is provided in the fitting portion to connect the two members so as not to rotate relative to each other. The rotation transmission device according to claim 1 or 2. 上記ツーウェイクラッチの外方部材の端部にロータを収納する外方部材の端部を嵌合し、この嵌合部に互いに嵌まり合う凹凸を設けて両部材を相対回転不能に連結したことを特徴とする請求項1又は2に記載の回転伝達装置。The end of the outer member that houses the rotor is fitted to the end of the outer member of the two-way clutch, and the fitting is provided with irregularities that fit together to connect the two members so that they cannot rotate relative to each other. The rotation transmission device according to claim 1 or 2, characterized by the above. 上記ツーウェイクラッチの外方部材の端部にロータを収納する外方部材の端部を嵌合し、この嵌合部に互いに係合する係合部材を設けて両部材を相対回転不能に連結したことを特徴とする請求項1又は2に記載の回転伝達装置。The end portion of the outer member that houses the rotor is fitted to the end portion of the outer member of the two-way clutch, and an engaging member that engages with each other is provided in the fitting portion to connect the two members so as not to be relatively rotatable. The rotation transmission device according to claim 1 or 2. 上記ツーウェイクラッチの外方部材の端部にロータを収納する外方部材の端部を嵌合し、この嵌合部をピンもしくはねじで固定したことを特徴とする請求項1又は2に記載の回転伝達装置。The end portion of the outer member that houses the rotor is fitted to the end portion of the outer member of the two-way clutch, and the fitting portion is fixed with a pin or a screw. Rotation transmission device. 上記ロータを収納する外方部材の内部にロータを圧入して固定したことを特徴とする請求項1乃至6の何れかに記載の回転伝達装置。The rotation transmission device according to any one of claims 1 to 6, wherein the rotor is press-fitted and fixed inside an outer member that houses the rotor. 上記ロータを収納する外方部材の内部にロータを嵌合し、この嵌合部に平坦部を設けて外方部材とロータを相対回転不能に連結したことを特徴とする請求項1乃至6の何れかに記載の回転伝達装置。7. The rotor according to claim 1, wherein a rotor is fitted into an outer member that accommodates the rotor, and a flat portion is provided in the fitting portion to connect the outer member and the rotor so as not to be relatively rotatable. The rotation transmission device according to any one of the above. 上記ロータを収納する外方部材の内部にロータを嵌合し、外方部材とロータのどちらか一方を加締めして、外方部材とロータを相対回転不能に連結したことを特徴とする請求項1乃至6の何れかに記載の回転伝達装置。The rotor is fitted into an outer member that accommodates the rotor, and either the outer member or the rotor is crimped to connect the outer member and the rotor so as not to be relatively rotatable. Item 7. The rotation transmission device according to any one of Items 1 to 6. 上記ロータを収納する外方部材の内部にロータを回転可能に収納し、このロータをツーウェイクラッチの内方部材と一体に回転するように固定したことを特徴とする請求項1乃至6の何れかに記載の回転伝達装置。7. The rotor according to claim 1, wherein the rotor is rotatably housed in an outer member housing the rotor, and the rotor is fixed so as to rotate integrally with the inner member of the two-way clutch. The rotation transmission device according to 1. 上記ツーウェイクラッチが、外径面に複数のカム面を有する内方部材と、円筒内径面を有する外輪との間に楔形空間を形成し、この楔形空間に保持器で支持された複数のローラを組み込んで形成されていることを特徴とする請求項1乃至10の何れかに記載の回転伝達装置。The two-way clutch forms a wedge-shaped space between an inner member having a plurality of cam surfaces on the outer diameter surface and an outer ring having a cylindrical inner diameter surface, and a plurality of rollers supported by a cage in the wedge-shaped space. The rotation transmission device according to any one of claims 1 to 10, wherein the rotation transmission device is formed by being incorporated. 上記ロータを収納する外方部材の形成に用いる非磁性体材料が、アルミ合金又は合成樹脂であることを特徴とする請求項1乃至11の何れかに記載の回転伝達装置。The rotation transmission device according to any one of claims 1 to 11, wherein the nonmagnetic material used for forming the outer member that houses the rotor is an aluminum alloy or a synthetic resin. 上記ロータを収納する外方部材の形成に用いる非磁性体材料が、銅又はステンレス鋼であることを特徴とする請求項1乃至11の何れかに記載の回転伝達装置。The rotation transmission device according to any one of claims 1 to 11, wherein the non-magnetic material used for forming the outer member that houses the rotor is copper or stainless steel.
JP2000130036A 2000-04-28 2000-04-28 Rotation transmission device Expired - Lifetime JP3688973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130036A JP3688973B2 (en) 2000-04-28 2000-04-28 Rotation transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130036A JP3688973B2 (en) 2000-04-28 2000-04-28 Rotation transmission device

Publications (2)

Publication Number Publication Date
JP2001311438A JP2001311438A (en) 2001-11-09
JP3688973B2 true JP3688973B2 (en) 2005-08-31

Family

ID=18639208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130036A Expired - Lifetime JP3688973B2 (en) 2000-04-28 2000-04-28 Rotation transmission device

Country Status (1)

Country Link
JP (1) JP3688973B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545457B2 (en) * 2004-03-02 2010-09-15 Ntn株式会社 Rotation transmission device
WO2005083287A1 (en) 2004-03-02 2005-09-09 Ntn Corporation Rotation transmission device
JP2007170623A (en) * 2005-12-26 2007-07-05 Gkn ドライブライン トルクテクノロジー株式会社 Joint structure of magnetic flux leakage prevention member, joining method for magnetic flux leakage prevention members, and electromagnetic clutch device using them
JP4792298B2 (en) * 2006-02-03 2011-10-12 Ntn株式会社 Rotation transmission device
JP4907301B2 (en) * 2006-11-08 2012-03-28 Ntn株式会社 Rotation transmission device
WO2022131247A1 (en) * 2020-12-18 2022-06-23 Ntn株式会社 Vessel propulsion apparatus

Also Published As

Publication number Publication date
JP2001311438A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
EP1577193B1 (en) Steer-by-wire steering system with solenoid clutch
JP5658046B2 (en) Rotation transmission device
US6766888B2 (en) Rotation transmission device
US10596901B2 (en) Differential device
JP6352015B2 (en) Rotation transmission device
JP4754235B2 (en) Rotation transmission device
JP3688973B2 (en) Rotation transmission device
JP2009156283A (en) Rotation transmitting device
JP2021017908A (en) Rotation transmission device and vehicle steering device
JP2007270986A (en) Rotation transmission device
JP4907301B2 (en) Rotation transmission device
JP2008032036A (en) Rotation transmission device
JP2007187249A (en) Rotation transmitting device
JP3597383B2 (en) Rotation transmission device
JP7108506B2 (en) Rotation transmission device
JP4541178B2 (en) Rotation transmission device
WO2023058648A1 (en) Rotation transmission device, steer-by-wire steering device, and vehicle steering device of steer-by-wire type
JP4606921B2 (en) Rotation transmission device
WO2023042803A1 (en) Steer-by-wire steering device
JP2005054873A (en) Rotation transmitting device
JP2009144737A (en) Rotation transmission device
JP2018035816A (en) Rotation transmission device
JP2008045706A (en) Rotation transmitting device
JP3641358B2 (en) Rotation transmission device
JP2020159430A (en) Rotation transmission device and steer-by-wire steering device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3688973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term