JP3686184B2 - 車両の輪重計測装置 - Google Patents

車両の輪重計測装置 Download PDF

Info

Publication number
JP3686184B2
JP3686184B2 JP26251396A JP26251396A JP3686184B2 JP 3686184 B2 JP3686184 B2 JP 3686184B2 JP 26251396 A JP26251396 A JP 26251396A JP 26251396 A JP26251396 A JP 26251396A JP 3686184 B2 JP3686184 B2 JP 3686184B2
Authority
JP
Japan
Prior art keywords
load
speed
vehicle
value
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26251396A
Other languages
English (en)
Other versions
JPH1090043A (ja
Inventor
隆志 平野
年幸 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Scale Co Ltd
Original Assignee
Yamato Scale Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co Ltd filed Critical Yamato Scale Co Ltd
Priority to JP26251396A priority Critical patent/JP3686184B2/ja
Publication of JPH1090043A publication Critical patent/JPH1090043A/ja
Application granted granted Critical
Publication of JP3686184B2 publication Critical patent/JP3686184B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば低速から高速までの比較的広い速度範囲内の任意の速度で走行する車両の静的輪重値又は静的軸重値を精度良く計測することができる車両の軸重計測装置に関する。
【0002】
【従来の技術】
従来、走行中の車両の静的軸重値、静的輪重又はこれらを加算して車両の重量を計測する装置として、路面に設置されている電気式荷重検出器と、この荷重検出器により検出した荷重を種々の方法により処理し、この処理によって得られた荷重を静的軸重値として出力する処理手段と、からなるものがある。その際、荷重検出器は、構造上、経済上の理由から走行方向の長さが約1m程度のものを用いている。図10(a)は、車輪が荷重検出器上を通過しようとする状態を示す図で、1は車両の車輪を概略的に表し、2は載荷板、3a、3bは荷重検出器である。この載荷板2の上を車輪1が通過すると、荷重検出器3a、3bの出力は、図10(b)の5a、5bとなり、その合成波5の高さが真の荷重であり、波形としては台形波が期待される。しかし、荷重検出器3a、3bの上を通過する車両には振動があり、その振幅及び位相は必ずしも一定ではなく、荷重検出器3a、3bの出力は図11(a)、(b)のような波形7、8となり、図10(b)に示す真の荷重4と相違する。そして、車両はほとんどの場合、図11に示すような略正弦的定常振動6をしながら荷重検出器3a、3bの上を通過する。
【0003】
そこで、この略正弦的定常振動をしながら荷重検出器の上を通過する車両の軸重を正確に測定しようとして考え出された車両の軸重計測装置が特公昭59−44572号公報に掲載されている。この軸重計測装置は、動的軸重値Wから振動成分gを算出し、荷重補正を行うことを特徴とし、その目的は真の静的軸重値との誤差が極めて小さい静的軸重値W0 を計測することである。図12は荷重検出器3a、3bで得られる動的軸重値Wの出力波形7を示す。動的軸重値Wは、車両の上下振動成分gと静的軸重値W0 の和である。今、k0 をこの振動成分gの振幅、θを位相、tを時間、fを振動成分gの周波数とし、
g=k0 ・sin(2Πft+θ) ・・・・(7)
とすると、動的軸重値Wは、
W=W0 +k0 0 ・sin(2Πft+θ) ・・・・(8)
と表すことができる。図12の出力波形7において、任意の時刻t1 、t2 、t3 における動的軸重値を夫々W1 、W2 、W3 とすると、(8)式より、連立方程式
【0004】
【数3】
Figure 0003686184
【0005】
が成立し、これを解けば、
【0006】
【数4】
Figure 0003686184
【0007】
が得られる。即ち、車両の上下振動成分の周波数fと動的軸重値を検出するサンプリング時刻T1 =t1 、T2 =t2 、T3 =t3 が決まれば、静的軸重値W0 を求めることができる。ここで、時刻t1 、t2 、t3 のサンプリング間隔を常に一定にして計算処理上一定とし、車両の上下振動成分の周波数fは、計測の対象となる車両の載荷状態では、3Hz前後であることが経験的に知られているので、この周波数fを定数の3Hzとして扱うことにより静的軸重値W0 を求めることができる。
【0008】
【発明が解決しようとする課題】
しかし、上記従来の軸重計測装置では、車両速度が比較的低速の約25km/h未満の場合には静的軸重値W0 を正確に計測することができるが、走行速度が約25km/h以上の場合は計測誤差が極端に大きくなり、従って、上記従来の軸重計測装置では、車両の走行速度が25km/h以上の場合は静的軸重値W0 を正確に計測することができないという問題がある。
【0009】
つまり、車両の走行速度が或る一定以上となると計測精度が急激に悪化するのは、車両の走行速度が早くなるに従って車輪が1mの載荷板2上を通過する時間が短くなり、この通過時間が短くなると、サンプリング時刻t1 、t2 、t3 の時間間隔が短くなって各動的軸重値W1 、W2 、W3 が互いに接近することとなる。これによって、各動的軸重値どうしの偏差|W1 −W2 |、|W2 −W3 |、|W1 −W3 |が小さくなって、各偏差が各種の誤差やノイズの大きさに近づくと、もはや各動的軸重値W1 、W2 、W3 に基づいて図12に示す正弦的定常振動を正確に演算することができなくなり、これによって静的軸重値W0 を正確に算出することができないからである。また、場合によっては、この軸重計測装置により計算された静的軸重値が、正弦的定常振動の最大重量を越えたり最小重量未満となることがあり、この軸重計測装置を使用せずに、単に正弦的定常振動の実測重量を静的軸重値とした方が静的軸重値の計測精度が上がることとなる。このように、この計測装置の使用自体が無意味となる。
【0010】
本発明は、例えば低速から高速までの比較的広い速度範囲内の任意の速度で走行する車両の静的輪重値又は静的軸重値を精度良く計測することができると共に、装置の費用が安価であり、設置面積が比較的狭くてよい車両の輪重計測装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために第1の発明は、車両の通過する路面に互いに間隔を隔てて設けた2台以上の荷重検出手段と、これら荷重検出手段上を通過する車両の速度を検出する速度検出手段と、上記速度が2以上の速度範囲に区分されて、これら区分された各速度範囲ごとに対応して定めた2つ以上の第1の輪重値演算手段と、これら2つ以上の第1の輪重値演算手段のうちから、上記速度検出手段が検出した上記車両の検出速度と対応する輪重値演算手段を選択して、上記車両の静的輪重値をその選択した第1の輪重値演算手段に演算させる選択手段とを、具備する車両の輪重計測装置において、上記各第1の輪重値演算手段は、上記車両の上下振動のほぼ1周期の範囲内にあり、ばらつきが大きい複数の動的荷重値と、これら動的荷重値の取得時点とに基づいて上記車両の静的輪重値を演算するように、上記各荷重検出手段のうち、上記各第1の輪重値演算手段に対応する速度に応じて予め定めた台数のものからの上記動的荷重値が供給され、上記2つ以上の速度範囲のうち速い速度範囲に対応する第1の輪重値演算手段には多くの上記荷重検出手段から上記動的荷重値が供給されるものである。
【0012】
第2の発明は、第1の発明の車両の輪重計測装置において、上記各第1の輪重値演算手段が対応する上記車両の速度よりも遅い速度範囲に対応して第2の輪重値演算手段が設けられ、第2の輪重値演算手段は、上記車両の上下振動のほぼ1周期にわたって検出された複数の動的荷重値の平均値に基づいて静的輪重値を演算するように1台の上記荷重検出手段の動的荷重値が供給されるものである。
【0013】
第3の発明は、車両の通過する路面に互いに間隔を隔てて設けた2台以上の荷重検出手段と、これら荷重検出手段上を通過していく車両の速度を検出する速度検出手段と、互いに異なる少なくとも時刻T=0、T=t、T3=tと、これら時刻における上記荷重検出手段の動的荷重値W、W、Wを下記(13)式と(14)式に代入し、下記(13)乃至(15)式に基づいて静的輪重値Wを演算する輪重値演算手段とを有する車両の輪重計測装置において、上記車両が上記各荷重検出手段上を通過していく時間帯の中で少なくとも上記各時刻T 、T 、T3が、上記車両の上下振動のほぼ1周期の範囲内に入り、かつ、上記各時刻T 、T 、T3における検出動的荷重値W 、W 、W のばらつきが大きくなるように、上記速度検出手段が検出した速度に応じて予め定めた台数の上記荷重検出手段が検出した上記検出動的荷重値を選択して、上記輪重値演算手段に供給する選択手段が設けられ、上記選択手段は、上記速度検出手段によって検出された上記車両の速度が、予め定めた2以上の速度範囲のいずれに属するかによって上記検出動的荷重値を供給する上記荷重検出手段を決定し、上記2つ以上の速度範囲のうち速い速度範囲ほど多くの上記荷重検出手段から上記動的荷重値が上記輪重値演算手段に供給されるものである。
【0014】
【数5】
Figure 0003686184
【0016】
第1及び第2の各発明は、例えば予め定めた低速から高速までの比較的広い速度範囲内の任意の速度で走行する車両の静的輪重値W0を精度良く計測することができるようにしたものであり、そのために、この速度を2以上の速度範囲に区分して各速度範囲ごとに夫々対応して定めた2以上の第1の輪重値演算手段と、車両の速度を速度検出手段が検出してその検出速度と対応する第1の輪重値演算手段を選択する選択手段とを備えている。例えば区分されている比較的高速度範囲内の速度で走行する車両に対しては、高速度用の第1の輪重値演算手段が予め定めた台数、例えば2台以上の所定の荷重検出手段を使用して静的輪重値を演算し、区分されている比較的低速度範囲内の速度で走行する車両に対しては、低速度用の第1の輪重値演算手段が予め定めた台数、例えば上記台数よりも少ない台数の所定の荷重検出手段を使用して静的輪重値を演算する。つまり、各第1の輪重値演算手段は、それぞれと対応する速度に適した予め定めた台数又は設置位置の荷重検出手段が夫々予め定めた時刻に出力する動的荷重値を使用して静的輪重値を演算することができる。つまり、高速で走行する車両の静的輪重値を正確に演算するには、従来例で説明したように、各動的荷重値W 1 、W 2 、W 3 どうしの偏差|W 1 −W 2 |、|W 2 −W 3 |、|W 1 −W 3 |が大きくなるようにすることが必要であるので、比較的大きい偏差の動的荷重値W 1 、W 2 、W 3 を採用することができるように、予め定めた適切なサンプリング時刻T 1 、T 2 、T 3 における動的荷重値W 1 、W 2 、W 3 に基づいて静的輪重値W 0 を演算する方式を採用している。従って、第1の輪重値演算手段では、サンプリング時刻T 1 、T 2 、T 3 の間隔を長くとるために、例えば、設置されている各荷重検出手段のうち互いの間隔が比較的長いもの使用して比較的高速で走行する車両の静的輪重値を精度よく演算することができる。
【0017】
そして、荷重検出手段が車両の左右の動的荷重値を計測する構成とすることにより、輪重値演算手段がその動的荷重値に基づいて車両の静的軸重値を演算することができる。
【0019】
第2の発明において、第2の輪重値演算手段は、車両の上下振動の略1周期に亘って検出された複数の動的荷重値の平均値に基づいて静的輪重値W0を演算することができる。つまり、この第2の輪重値演算手段は、車両の速度が比較的低速であり、車両の上下振動の略1周期に亘って逐次動的荷重値を検出することができる場合に静的輪重値W0を演算して求めるものである。例えば、設置されている各荷重検出手段のうち互いの間隔が比較的短いもの、又は1台の荷重検出手段を使用して比較的低速で走行する車両の上下振動の略1周期に亘って検出した動的荷重値の平均値を演算することにより静的輪重値W0を正確に計測することができる。
【0020】
第3の発明によると、少なくとも時刻T1 =0、T2 =t1 、T3 =t2 における荷重検出手段の出力した動的荷重値W1 、W2 、W3 を上記(13)式と(14)式に代入し、上記(13)乃至(15)式に基づいて静的輪重値W0 を演算することができる。そして、選択手段は、速度検出手段が検出した検出速度に基づいて、車両が荷重検出手段上を通過する時間帯の中で少なくとも各時刻T1 、T2 、T3 が、車両の上下振動の略1周期の範囲内に入り、かつ、各時刻における動的荷重値W1 、W2 、W3 のばらつきが大きくなる各時刻を選択する。つまり、車両の上下振動の振動波形を或る限られたサンプル時刻T1 、T2 、T3 における動的荷重値W1 、W2 、W3 に基づいて正確に演算するには、その振動波形の1周期の波形を正確に演算するのがよく、従って、これら少なくとも3つのサンプル時刻T1 、T2 、T3 を車両の上下振動の1周期内に収め、かつ、各時刻における動的荷重値W1 、W2 、W3 のばらつきが大きくなる各時刻を選択することにより、その上下振動の振動波形(振幅、位相角等)を正確に演算することができ、従って、静的輪重値W0 を正確に演算することができる。
【0021】
【発明の実施の形態】
本発明に係る車両の輪重計測装置を車両の軸重計測装置に適用した一実施形態を各図を参照して説明する。図1乃至図3に示す8、9、10は第1、第2、第3の荷重検出部である。第1、第2、第3の各荷重検出部8、9、10は、図1及び図3に示すように、夫々同等のものであり同一の構造、形状、及び大きさのものであり、横幅は走行する車両の左右の両輪の間隔よりも少し広く形成してある。そして、これら3台の荷重検出部8、9、10は、路面11に車両12の走行方向13に沿って設けてあり、第1の荷重検出部8と第2の荷重検出部9との間隔は、d1 (1.736m)であり、第1の荷重検出部8と第3の荷重検出部10との間隔は、d2 (3.472m)である。
【0022】
図2は、第1の荷重検出部8の車両12の走行方向13に平行する方向の断面図である。第1の荷重検出部8は、路面11と略同一高さに水平に設けられている矩形の載荷板14と、この載荷板14を支持する4つのロードセル15〜18を備えている。この載荷板14の車両の走行方向13と平行する横の長さは約1.2m、縦の長さが約4.0mである。この第1の荷重検出部8は、図10に示す従来の荷重検出器3a、3bと同様に、載荷板14上を車両12の左右の両輪が通過すると、図12の7に示すような波形の信号(動的軸重値)を出力する。なお、第2及び第3の荷重検出部9、10は、第1の荷重検出部8と同等であるので説明を省略する。
【0023】
図1は、軸重計測装置の電気回路を示すブロック図である。第1乃至第3の各荷重検出部8、9、10が備えている各ロードセル15〜18は4枚の歪ゲージ19からなるホイートストンブリッジ回路を備えている。そして、この4つのロードセル15〜18は、並列接続されて等価的に1つのホイートストンブリッジ回路を構成している。なお、これら4つのロードセル15〜18のブリッジ回路には、直流電源電圧が印加されている。また、これら第1乃至第3の各荷重検出部8、9、10は、図1に示すように、増幅器20、アナログ・デジタル変換器(A/D変換器)21を介して演算制御部22に接続されている。即ち、各荷重検出部8、9、10は、歪ゲージ19が検出した歪み量に応じたアナログ荷重信号を出力し、このアナログ荷重信号は、対応する増幅器20により増幅されてA/D変換器21によってデジタル荷重信号に変換され、そして演算制御部22に入力する。このデジタル荷重信号が請求項1、2、3に記載の動的荷重値であり、この動的荷重値は、この実施形態では動的軸重値を意味する。
【0024】
この演算制御部22には、パルス発振器23、記憶部24、設定表示部25が接続している。
パルス発振器23は、所定の微小時間間隔おきにパルス信号を発信し、このパルス信号を演算制御部22に供給する。後述する速度検出手段及び4つの軸重値演算手段は、このパルス数をカウントし、そのカウント数を用いて下記各々の時刻、時間間隔、及び計測期間を算出することができる。
【0025】
記憶部24は、4つの軸重値演算手段のプログラム、各軸重値演算手段と対応する速度範囲等を記憶している。軸重値演算手段は、請求項1乃至3に記載の輪重値演算手段と対応しており、車両12の両輪の動的軸重値に基づいて静的軸重値を演算する手段である。
【0026】
設定表示部25は、上記速度範囲等の設定、変更を行うことができ、更に演算された静的軸重値W0 等を表示することができる。
【0027】
演算制御部22は、速度検出手段と選択手段と4つの軸重値演算手段を備えている。
速度検出手段は、車両12が第1乃至第3の荷重検出部8、9、10上を通過したときに各荷重検出部8、9、10は夫々荷重信号(以下、動的軸重値という。)を出力するので、第1の荷重検出部8が出力する動的軸重値を入力した時点から第3の荷重検出部10が出力する動的軸重値を入力した時までの時間間隔を測定し、その測定した時間間隔を、第1の荷重検出部8と第3の荷重検出部10が設置されている所定距離間隔d2 で除算することによって走行車両12の平均速度を算出することができる機能を備えている。
【0028】
選択手段は、4つの軸重値演算手段のうちから速度検出手段が検出した車両12の検出速度と対応する軸重値演算手段を選択して、その速度が検出された車両12の静的軸重値をその選択した軸重値演算手段に演算させる機能を備えている。
つまり、4つの軸重値演算手段は、例えば時速が100km以下の範囲内で任意の速度で走行する車両12の静的軸重値を演算するためのものである。即ち、時速が40kmを越えて100kmまでの範囲内で任意の速度で走行する車両12の静的軸重値を演算する高速用軸重値演算手段と、時速が23kmを越えて40kmまでの範囲内で任意の速度で走行する車両12の静的軸重値を演算する中速用軸重値演算手段と、時速が10kmを越えて23kmまでの範囲内で任意の速度で走行する車両12の静的軸重値を演算する低速用軸重値演算手段と、時速が10km以下の範囲内で任意の速度で走行する車両12の静的軸重値を演算する超低速用軸重値演算手段とからなっている。
従って、速度検出手段が検出した車両12の検出速度が時速50kmであるとすると、選択手段は、この時速50kmが属する速度範囲(40kmを越えて100km)と対応する高速用軸重値演算手段を選択し、この選択した高速用軸重値演算手段により車両12の静的軸重値W0 を演算させることができる。
【0029】
上記4つの各軸重値演算手段は、略正弦的定常振動をしながら第1乃至第3の荷重検出器8、9、10の上を通過する車両12の静的軸重値W0 を正確に測定するものである。即ち、動的軸重値Wから振動波形を算出し、この振動波形に基づいて静的軸重値W0 を演算するものである。今、aをこの振動波形の振幅、ψを位相、tを時間、fを振動波形の周波数とすると、動的軸重値Wは、
W=a・sin(2Πft+ψ)+W0 ・・・・(16)
と表すことができる。図5の振動波形26において、所定の時刻t=0(=T1 )、t=t1 (=T2 )、t=t2 (=T3 )における動的軸重値を夫々W1 、W2 、W3 とすると、(16)式より、連立方程式
【0030】
【数6】
Figure 0003686184
【0031】
が成立し、これを解けば、
【0032】
【数7】
Figure 0003686184
【0033】
が得られる。即ち、車両12の上下振動波形の周波数fと動的軸重値を検出するサンプリング時刻t=0、t=t1 、t=t2 が決まれば、真の静的軸重値W0 を求めることができる。ここで、車両12の上下振動波形の周波数fは、計測の対象となる重量車の載荷状態では、従来例で説明したように3Hz前後であることが経験的に知られているので、この周波数f=3Hzとして代入することにより静的軸重値W0 を求めることができる。
【0034】
高速用軸重値演算手段は、この軸重計測装置が計測しようとする車両12の車輪が第1乃至第3の各荷重検出部8、9、10上を通過した時に、各荷重検出部8、9、10が出力する動的軸重値W1 (t)、W2 (t+t1 )、W3 (t+t2 )を式(20)、(21)に代入して式(22)により静的軸重値W0 (t)を演算して求める機能を備えている。
つまり、例えば車両12の左右の前輪が図5に示すように、第1、第2、第3の各荷重検出部8、9、10を乗り上げる時間(時刻)が、t=0、t=t1 、t=t2 であり、車輪が第1、第2、第3の各荷重検出部8、9、10から降りる時間(時刻)が、t=tW 、t=t1 +tW 、t=t2 +tW である。従って、車輪が第1、第2、第3の各荷重検出部8、9、10上を走行している時間が夫々tW であり、この各走行時間tW が第1、第2、第3の各荷重検出部8、9、10による動的軸重値の計測時間である。
【0035】
この高速用軸重値演算手段によると、まず、第1の荷重検出部8の時間t=0における動的軸重値W1 (0)、第2の荷重検出部9の時間t=t1 における動的軸重値W2 (t1 )、第3の荷重検出部の時間t=t2 における動的軸重値W3 (t2 )を、式(20)、(21)に代入して式(22)により静的軸重値W0 (0)を演算して求める。同様に、
第1の荷重検出部の時間t=1、2、・・・、tW −1における動的軸重値はW1 (1)、W1 (2)、・・・、W1 (tW −1)であり、
第2の荷重検出部の時間t=t1 +1、t1 +2、・・・、t1 +tW −1における動的軸重値はW2 (t1 +1)、W2 (t1 +2)、・・・、W2 (t1 +tW −1)であり、
第3の荷重検出部の時間t=t2 +1、t2 +2、・・・、t2 +tW −1における動的軸重値はW3 (t2 +1)、W3 (t2 +2)、・・・、W3 (t2 +tW −1)であり、
各動的軸重値〔W1 (1)、W2 (t1 +1)、W3 (t2 +1)〕、〔W1 (2)、W2 (t1 +2)、W3 (t2 +2)〕、・・・、〔W1 (tW −1)、W2 (t1 +tW −1)、W3 (t2 +tW −1)〕を、上記と同様に式(20)、(21)に順次代入して式(22)により各静的軸重値W0 (1)、W0 (2)、・・・、W0 (tW −1)を順次演算して求め、これら各静的軸重値W0 (0)、W0 (1)、・・・、W0 (tW −1)の平均値を計算して静的軸重値W0 を求めることができる。
【0036】
次に、この高速用軸重値演算手段が時速40kmを越えて100kmまでの範囲内における任意の速度で走行する車両12の静的軸重値W0 を演算するように定めた理由を説明する。車両12の上下振動の振動波形を限られたサンプル時刻T1 (t=0〜tW −1)、T2 (t=t1 〜t1 +tW −1)、T3 (t=t2 〜t2 +tW −1)において対応する3つのサンプル時刻T1 、T2 、T3 における動的軸重値W1 、W2 、W3 に基づいて静的軸重値W0 を正確に演算するには、その振動波形の1周期の波形を正確に求めるのがよく、従って、これら3つのサンプル時刻T1 、T2 、T3 を車両12の上下振動の1周期内に収め、かつ、各時刻における動的軸重値W1 、W2 、W3 のばらつきが大きくなる各時刻を選択することにより、その上下振動の振動波形(振幅、位相角等)を正確に求めることができ、よって、静的軸重値W0 を正確に演算することができる。そこで、車両12の走行速度が高速になるほど動的軸重値の振動波形(図5参照)の1周期の長さ(メートル)が長くなるので、この1周期の長さ(メートル)が長くなるほど互いの距離的間隔が広い状態で設置された荷重検出部の出力する動的軸重値W1 、W2 、W3 を採用する必要がある。その為に、この3つの動的軸重値W1 、W2 、W3 を1つの荷重検出部が出力する動的軸重値から採用するのではなく、互いに間隔を隔てて設けられている第1乃至第3の各荷重検出部8、9、10が出力する動的軸重値を採用することとしている。因みに、図5は、時速約72kmで走行する車両12の振動波形を示している。なお、この振動波形の周波数fを3Hzとしている。
【0037】
中速用軸重値演算手段は、図6に示すように、この軸重計測装置が計測しようとする車両12の車輪が第1及び第2の各荷重検出部8、9上を通過した時に、各荷重検出部8、9が出力する動的軸重値W1 (t)、W2 (t+tW /2)、W3 (t+t1 )を式(20)、(21)に代入して式(22)により静的軸重値W0 (t)を演算して求める機能を備えている。
つまり、例えば車両12の左右の前輪が図6に示すように、第1の荷重検出部8を乗り上げる時間(時刻)がt=0、第1の荷重検出部8の中央を通過する時間(時刻)がt=tW /2、第1の荷重検出部8から降りる時間(時刻)がt=tW 、第2の荷重検出部9を乗り上げる時間(時刻)がt=t1 、第2の荷重検出部9の中央を通過する時間(時刻)がt=t1 +tW /2である。この場合、第1の荷重検出部8による動的軸重値の計測時間がtW であり、第2の荷重検出部9による動的軸重値の計測時間がtW /2である。ただし、図6は、中速度で走行する車両12の振動波形を示しているので、車両12が第1、第2の荷重検出部上を通過する時間tW 及びt1 は、図5に示す通過時間tW 及びt1 よりも長いが、計測時間及び時刻を示すものとして図では同一の符号で示している。
【0038】
この中速用軸重値演算手段によると、まず、第1の荷重検出部8の時間t=0における動的軸重値W1 (0)、第1の荷重検出部の時間t=tW /2における動的軸重値W2 (tW /2)、第2の荷重検出部の時間t=t1 における動的軸重値W3 (t1 )を、式(20)、(21)に代入して式(22)により静的軸重値W0 (0)を演算して求める。同様に、
第1の荷重検出部8の時間t=1、2、・・・、(tW /2)−1における動的軸重値はW1 (1)、W1 (2)、・・・、W1 ((tW /2)−1)であり、
第1の荷重検出部8の時間t=(tW /2)+1、(tW /2)+2、・・・、tW −1における動的軸重値はW2 (tW /2+1)、W2 ((tW /2)+2)、・・・、W2 (tW −1)であり、
第2の荷重検出部9の時間t=t1 +1、t1 +2、・・・、t1 +(tW /2)−1における動的軸重値はW3 (t1 +1)、W3 (t1 +2)、・・・、W3 (t1 +(tW /2)−1)であり
各動的軸重値〔W1 (1)、W2 (tW /2+1)、W3 (t1 +1)〕、〔W1 (2)、W2 (tW /2+2)、W3 (t1 +2)〕、・・・、〔W1 ((tW /2)−1)、W2 (tW −1)、W3 (t1 +(tW /2)−1〕を、式(20)、(21)に順次代入して式(22)により各静的軸重値W0 (1)、W0 (2)、・・・、W0 ((tW /2)−1)を順次演算して求め、これら各静的軸重値W0 (0)、W0 (1)、・・・、W0 ((tW /2)−1)の平均値を計算して静的軸重値W0 を求めることができる。
【0039】
次に、この中速用軸重値演算手段が時速23kmを越えて40kmまでの範囲内における任意の速度で走行する車両12の静的軸重値W0 を演算するように定めた理由を説明する。高速用軸重値演算手段について説明したように、3つのサンプル時刻T1 (t=0〜tW /2−1)、T2 (t=tW /2〜tW −1)、T3 (t=t1 〜t1 +(tW /2)−1)において対応する各3つのサンプル時刻T1 、T2 、T3 を車両12の上下振動の1周期内に収め、かつ、各時刻における動的軸重値W1 、W2 、W3 のばらつきが大きくなる各時刻を選択することにより、その上下振動の振動波形(振幅、位相角等)を正確に演算することができ、よって、静的軸重値W0 を正確に演算することができる。従って、3つの動的軸重値W1 、W2 、W3 を第1乃至第3の荷重検出部8、9、10が出力する動的軸重値から採用すると、これら動的軸重値W1 、W2 、W3 のサンプル時刻T1 とT3 の時間間隔が振動波形27の1周期を越えることとなって静的軸重値W0 を正確に演算することができないので、サンプル時刻T1 とT3 の時間間隔が振動波形27の1周期を越えないように、互いに時間間隔が比較的短い第1及び第2の荷重検出部8、9が出力する動的軸重値を採用することとした。因みに、図6は、時速約36kmで走行する車両12の振動波形を示している。なお、この振動波形の周波数fを3Hzとしている。
【0040】
ただし、中速用軸重値演算手段は、図6に示すように、時間t=0〜(tW /2)−1と、時間t=tW /2〜tW −1と、時間t=t1 〜t1 +(tW /2)−1の3つの各時間の動的軸重値に基づいて静的軸重値W0 を演算する構成としたが、この代わりに、中速用軸重値演算手段は、図7に示すように、時間t=0〜(tW /2)−1と、時間t=t1 〜t1 +(tW /2)−1と、時間t=t1 +(tW /2)〜t1 +tW −1の3つの各時間の動的軸重値に基づいて静的軸重値W0 を演算する構成としてもよい。また、図6と図7に示す各方法により求めた2つの静的軸重値W0 の平均値を計算して静的軸重値W0 を演算する構成としてもよい。更に、中速用軸重値演算手段は、第1と第2の各荷重検出部8、9の動的軸重値に基づいて静的軸重値W0 を演算すると共に、第2と第3の各荷重検出部9、10の動的軸重値に基づいて静的軸重値W0 を演算し、これら2つの静的軸重値W0 の平均値を静的軸重値W0 として出力する構成としてもよい。
【0041】
低速用軸重値演算手段は、図8に示すように、この軸重計測装置が計測しようとする車両12の車輪が第1の荷重検出部8上を通過した時に、この第1の荷重検出部8が出力する動的軸重値W1 (t)、W2 (t+tW /3)、W3 (t+2tW /3)を式(20)、(21)に代入して式(22)により静的軸重値W0 (t)を演算して求める機能を備えている。
つまり、例えば車両12の左右の前輪が図8に示すように、第1の荷重検出部8を乗り上げる時間(時刻)がt=0、第1の荷重検出部8の乗り上げ位置から1/3の部分を通過する時間(時刻)がt=tW /3、第1の荷重検出部8の乗り上げ位置から2/3の部分を通過する時間(時刻)がt=2tW /3、第1の荷重検出部8から降りる時間(時刻)がt=tW である。従って、車輪が第1の荷重検出部8上を走行している時間がtW であり、この走行時間tW が第1の荷重検出部8による動的軸重値の計測時間である。ただし、図8は、低速度で走行する車両12の振動波形を示しているので、車両12が第1の荷重検出部8上を通過する時間tW は、図5乃至図7に示す通過時間tW よりも長いが、計測時間を示すものとして図では同一の符号で示している。
【0042】
この低速用軸重値演算手段によると、まず、第1の荷重検出部8の時間t=0における動的軸重値W1 (0)、第1の荷重検出部8の時間t=tW /3における動的軸重値W2 (tW /3)、第1の荷重検出部8の時間t=2tW /3における動的軸重値W3 (2tW /3)を、式(20)、(21)に代入して式(22)により静的軸重値W0 (0)を演算して求める。同様に、
第1の荷重検出部8の時間t=1、2、・・・、(tW /3)−1における動的軸重値はW1 (1)、W1 (2)、・・・、W1 ((tW /3)−1)であり、
第1の荷重検出部8の時間t=(tW /3)+1、(tW /3)+2、・・・、(2tW /3)−1における動的軸重値はW2 ((tW /3)+1)、W2 ((tW /3)+2)、・・・、W2 ((2tW /3)−1)であり、
第1の荷重検出部8の時間t=(2tW /3)+1、(2tW /3)+2、・・・、tW −1における動的軸重値はW3 ((2tW /3)+1)、W3 ((2tW /3)+2)、・・・、W3 (tW −1)であり、
各動的軸重値〔W1 (1)、W2 ((tW /3)+1)、W3 ((2tW /3)+1)〕、〔W1 (2)、W2 ((tW /3)+2)、W3 ((2tW /3)+2)〕、・・・、〔W1 ((tW /3)−1)、W2 ((2tW /3)−1)、W3 (tW −1)〕を、式(20)、(21)に順次代入して式(22)により各静的軸重値W0 (1)、W0 (2)、・・・、W0 ((tW /3)−1)を演算して求め、これら静的軸重値W0 (0)、W0 (1)、・・・、W0 ((tW /3)−1)の平均値を計算して静的軸重値W0 を求めることができる。
【0043】
次に、この低速用軸重値演算手段が時速10kmを越えて23kmまでの範囲内における任意の速度で走行する車両12の静的軸重値W0 を演算するように定めた理由を説明する。高速用及び中速用軸重値演算手段について説明した理由と同様に、組をなす3つの動的軸重値W1 、W2 、W3 を第1乃至第3、又は第1及び第2の荷重検出部8乃至10、又は8及び9が出力する動的軸重値から採用すると、これら動的軸重値W1 とW3 のサンプル時刻T1 とT3 の時間間隔が振動波形28の1周期を越えることとなって静的軸重値W0 を正確に演算することができないので、サンプル時刻T1 とT3 の時間間隔が振動波形28の1周期を越えないように、第1の荷重検出部8が出力する動的軸重値から採用することとした。因みに、図8は、時速約20kmで走行する車両12の振動波形を示している。なお、この振動波形28の周波数fを3Hzとしている。
【0044】
ただし、低速用軸重値演算手段は、図8に示すように、第1の荷重検出部8の各時間の動的軸重値に基づいて静的軸重値W0 を演算する構成としたが、この代わりに、第2又は第3の荷重検出部9又は10の各時間の動的軸重値に基づいて静的軸重値W0 を演算する構成としてもよい。また、第1乃至第3の各荷重検出部8、9、10の動的軸重値に基づいて第1乃至第3の各荷重検出部8、9、10ごとに3つの静的軸重値W0 を演算し、合計3つの静的軸重値W0 の平均値を静的軸重値W0 として出力する構成としてもよい。
【0045】
超低速用軸重値演算手段は、車両12の振動波形(上下振動)29の周波数を3Hzとしてその振動波形の1周期の時間を演算し、この1周期の時間内に第1の荷重検出部8が出力する動的軸重値の平均値を演算して、その平均値を静的軸重値W0 として求める機能を備えている。
つまり、例えば車両12の左右の前輪が第1の荷重検出部8を乗り上げる時刻を図9に示すt=0、第1の荷重検出部8の乗り上げた時刻t=0からこの車両12の振動波形29の1周期の時間tW が経過した時刻がt=tW である。この時間tW が第1の荷重検出部8による動的軸重値の計測時間である。ただし、図9に示す1周期の時間tW は、図5乃至図8に示す通過時間tW と長さが相違しているが、計測時間を示すものとして図では同一の符号で示している。
【0046】
この超低速用軸重値演算手段によると、第1の荷重検出部8の時間t=0、1、2、・・・、tW −1における動的軸重値W1 (0)、W1 (1)、W1 (2)、・・・、W1 (tW −1)の平均値を演算して静的軸重値W0 を求める。
【0047】
次に、この超低速用軸重値演算手段が時速10km以下の範囲内における任意の速度で走行する車両12の静的軸重値W0 を演算するように定めた理由を説明する。車両12が時速10kmで走行する場合に、振動波形の1周期の期間で走行する距離が約0.92mであり、この0.92mの長さは第1の荷重検出部8の走行方向の長さである1.2mよりも短く、従って、高速、中速、低速用の各軸重値演算手段のように3つの動的軸重値のデータから振動波形を推定して静的軸重値W0 を演算するよりも、第1の荷重検出部8上を通過する車両12の実際の振動波形29において、その1周期の期間に亘って逐次動的軸重値W1 を検出してそれらの平均値を静的軸重値W0 とした方が精度が向上するからである。因みに、図9は、時速約7kmで走行する車両12の振動波形を示している。なお、この振動波形の周波数fを3Hzとしている。
【0048】
ただし、超低速用軸重値演算手段は、図9に示すように、第1の荷重検出部8が振動波形の1周期の期間に出力する動的軸重値の平均値を静的軸重値W0 として演算する構成としたが、この代わりに、第2又は第3の荷重検出部9又は10が振動波形の1周期の期間に出力する動的軸重値の平均値を静的軸重値W0 として演算する構成としてもよい。また、第1乃至第3の各荷重検出部8、9、10が振動波形の1周期の期間に出力する動的軸重値の平均値を計算して第1乃至第3の各荷重検出部8、9、10ごとに合計3つの静的軸重値W0 を演算し、これら3つの静的軸重値W0 の平均値を静的軸重値W0 として出力する構成としてもよい。
【0049】
次に、上記車両の軸重計測装置により静的軸重値W0 を演算する手順を図4に示すフローチャートを参照して説明する。まず、車両12が図3に示す第1乃至第3の荷重検出部8〜10上を通過すると、速度検出手段が車両12の走行速度Vを検出する(S100)。次に、選択手段は、その走行速度Vが時速40km(V3 )を越える高速範囲、時速23km(V2 )を越えて40km(V3 )までの中速範囲、時速10km(V1 )を越えて23km(V2 )までの低速範囲、時速10km(V1 )以下の超低速範囲の4つの速度範囲のうちのどの速度範囲内に属するかを判定する(S102、S106、S110)。そして、選択手段が、走行速度Vが上記高速範囲内であると判定すると、高速用軸重値演算手段が車両12の静的軸重値W0 を演算し(S104)、走行速度Vが中速範囲内であると判定すると、中速用軸重値演算手段が車両12の静的軸重値W0 を演算し(S108)、走行速度Vが低速範囲内であると判定すると、低速用軸重値演算手段が車両12の静的軸重値W0 を演算し(S112)、走行速度Vが超低速範囲内であると判定すると、超低速用軸重値演算手段が車両12の静的軸重値W0 を演算し(S114)、この演算により求めた静的軸重値W0 を設定表示部25に表示して終了する。
【0050】
この車両12の軸重計測装置によると、選択手段が車両12の走行速度に応じて自動的にその走行速度に適した軸重値演算手段を予め記憶部24に記憶されている4つの軸重値演算手段から選択し、その選択された軸重値演算手段が、対応する速度に応じて予め定めた荷重検出手段の出力する動的軸重値に基づいて車両12の静的軸重値W0 を演算する構成であるので、超低速から高速までの比較的広い速度範囲内(時速100km以下)のいずれの速度で走行する車両12であっても静的軸重値W0 を自動的に精度良く計測することができる。因みに、この軸重計測装置により時速100km以下の速度範囲内の任意の速度で走行する車両12の動的軸重値を計測して静的軸重値を演算すると、実際には5t(トン)の静的軸重値を5±0.3t(トン)の精度で計測することが可能である。
【0051】
ただし、上記実施形態において、高速用軸重値演算手段が、静的軸重値W0 (1)、W0 (2)、・・・、W0 (tW −1)を演算して求め、これら静的軸重値W0 (0)、W0 (1)、・・・、W0 (tW −1)の平均値を計算して静的軸重値W0 を求める構成としたが、図5に示す動的軸重値W1 (0)〜W1 (tw −1)の平均値、動的軸重値W2 (t1 )〜W2 (t1 +tw −1)の平均値、動的軸重値W3 (t2 )〜W3 (t2 +tw −1)の平均値を夫々求めてこの3つの平均値を式(20)、(21)に代入して式(22)により静的軸重値W0 を演算して求める構成としてもよい。
【0052】
同様に、中速用軸重値演算手段が、静的軸重値W0 (1)、W0 (2)、・・・、W0 ((tW /2)−1)を演算して求め、これら静的軸重値W0 (0)、W0 (1)、・・・、W0 ((tW /2)−1)の平均値を計算して静的軸重値W0 を求める構成としたが、図6に示す動的軸重値W1 (0)〜W1 ((tW /2)−1)の平均値、動的軸重値W2 (tW /2)〜W2 (tw −1)の平均値、動的軸重値W3 (t1 )〜W3 (t1 +(tW /2)−1)の平均値を夫々求めてこの3つの平均値を式(20)、(21)に代入して式(22)により静的軸重値W0 を演算して求める構成としてもよい。
【0053】
更に、低速用軸重値演算手段が、静的軸重値W0 (1)、W0 (2)、・・・、W0 ((tW /3)−1)を演算して求め、これら静的軸重値W0 (0)、W0 (1)、・・・、W0 ((tW /3)−1)の平均値を計算して静的軸重値W0 を求める構成としたが、図8に示す動的軸重値W1 (0)〜W1 ((tW /3)−1)の平均値、動的軸重値W2 (tW /3)〜W2 ((2tw /3)−1)の平均値、動的軸重値W3 (2tw /3)〜W3 (tW −1)の平均値を夫々求めてこの3つの平均値を式(20)、(21)に代入して式(22)により静的軸重値W0 を演算して求める構成としてもよい。
【0054】
そして、上記実施形態において、車両12の走行速度の高速、中速、低速、超低速の4つの各速度範囲と夫々対応する4つの各軸重値演算手段により静的軸重値W0 を演算する構成としたが、走行速度を4つ以外の2以上の速度範囲に区分して、各速度範囲と夫々対応する4つ以外の2以上の各軸重値演算手段により静的軸重値W0 を演算する構成としてもよい。即ち、上記4つの速度範囲のうち例えば高速、中速、低速の3つの各速度範囲と夫々対応する3つの高速、中速、低速用の各軸重値演算手段により静的軸重値W0 を演算する構成としてもよい。
【0055】
また、中速、低速、超低速の3つの各速度範囲で走行する車両12の静的軸重値を計測する軸重計測装置とする場合は、高速用軸重値演算手段と第3の荷重検出部10を省略することができる。
【0056】
更に、上記実施形態では、高速範囲と中速範囲の境界速度を時速40km、中速範囲と低速範囲の境界速度を時速23km、低速範囲と超低速範囲の境界速度を時速10kmとしたが、各境界速度は第1乃至第3の各荷重検出部8、9、10の間隔d1 、d2 や載荷板14の走行方向の長さに応じて変更する必要がある。つまり、上記各境界速度は、第1乃至第3の各荷重検出部8、9、10の間隔d1 、d2 や載荷板14の走行方向の長さ、及び車両12が第1乃至第3の各荷重検出部8、9、10上を通過する時間帯の中で少なくとも動的軸重値検出時刻T1 、T2 、T3 が、車両12の上下振動の1周期の範囲内に入り、かつ、各時刻T1 、T2 、T3 における動的軸重値W1 、W2 、W3 のばらつきが大きくなる各時刻T1 、T2 、T3 を選択することができるように決定する。
【0057】
そして、上記実施形態では、図3に示すように、第1乃至第3の各荷重検出部8、9、10が車両12の両輪の合計輪重を計測して静的軸重値W0 を演算して求める構成としたが、これに代えて、第1乃至第3の各荷重検出部8、9、10が車両12の左側又は右側の車輪の荷重、即ち動的輪重値W1 ’、W2 ’、W3 ’を計測して静的輪重値W0 ’を演算して求める構成としてもよい。
【0058】
また、上記実施形態では、振動波形の周波数fを3Hzとし、3つの各時刻T1 、T2 、T3 における動的軸重値W1 、W2 、W3 を式(20)、(21)に代入して式(22)により静的軸重値W0 を求めたが、振動波形の周波数fを未知数とし、4つの各時刻T1 、T2 、T3 、T4 における動的軸重値W1 、W2 、W3 、W4 を式(20)、(21)に代入して式(22)により静的軸重値W0 を求めてもよい。なお、時刻T1 、T2 、T3 、T4 は、車両の振動波形の略1周期の範囲内に入り、かつ、各時刻T1 、T2 、T3 、T4 における動的軸重値W1 、W2 、W3 、W4 のばらつきが大きくなる各時刻T1 、T2 、T3 、T4 を選択することとする。
【0059】
【発明の効果】
第1の発明によると、車両の通過する路面に互いに間隔を隔てて2台以上の荷重検出手段を設け、選択手段が車両の走行速度に応じて自動的にその走行速度に適した第1の輪重値演算手段を選択し、その選択された第1の輪重値演算手段が、対応する速度に応じて予め定めた荷重検出手段の検出した動的荷重値に基づいて車両の静的輪重値を演算する構成であるので、例えば低速から高速までの比較的広い速度範囲内のいずれの速度で走行する車両の静的輪重であっても自動的に精度良く計測することができるという効果がある。そして、荷重検出手段が車両の左右の動的荷重値を計測する構成とすることにより、輪重値演算手段がその動的荷重値に基づいて車両の静的軸重値を正確に演算することができる。また、比較的高速で走行する車両の静的輪重値を計測する場合は、第1の輪重値演算手段が、互いに異なる時刻T1、T2、T3における動的荷重値W1、W2、W3に基づいて静的輪重値W0を演算する方式を採用しているので、時刻T1、T2、T3の間隔を適切に長くとるように荷重検出手段を選択することにより各動的荷重値W1、W2、W3どうしの偏差|W1−W2|、|W2−W3|、|W1−W3|が各種の誤差やノイズの大きさよりも比較的大きくなり、これによって静的輪重値W0を正確に計測することができるという効果がある。
【0060】
第2の発明によると、比較的低速で走行する車両の静的輪重値を計測する場合は、第2の輪重値演算手段が、車両の上下振動の略1周期に亘って逐次検出された複数の動的荷重値の平均値に基づいて静的輪重値W0を演算する方式を採用しているので、静的輪重値W0を正確に計測することができるという効果がある。
【0061】
第3の発明の選択手段は、速度検出手段が検出した検出速度に基づいて、車両が荷重検出手段上を通過する時間帯の中で少なくとも各時刻T1 、T2 、T3 が、車両の上下振動の略1周期の範囲内に入り、かつ、各時刻における動的荷重値W1 、W2 、W3 のばらつきが大きくなる各時刻を選択する構成である。従って、これら少なくとも各時刻T1 、T2 、T3 における動的荷重値W1 、W2 、W3 に基づいて、比較的広い速度範囲内における任意の速度で走行中の車両の静的輪重値W0 を正確に演算することができるという効果がある。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る車両の軸重計測装置の電気回路を示すブロック図である。
【図2】同実施形態の荷重検出部を車両の走行方向と平行する方向に切断した縦断面図である。
【図3】同実施形態の第1乃至第3の荷重検出部を示す平面図である。
【図4】同実施形態の軸重計測装置により静的軸重値を演算する手順を示すフローチャートである。
【図5】同実施形態の高速用軸重値演算手段が車両の動的軸重値を計測するタイミングを示す図である。
【図6】同実施形態の中速用軸重値演算手段が車両の動的軸重値を計測するタイミングを示す図である。
【図7】同実施形態の中速用軸重値演算手段が車両の動的軸重値を計測する他のタイミングを示す図である。
【図8】同実施形態の低速用軸重値演算手段が車両の動的軸重値を計測するタイミングを示す図である。
【図9】同実施形態の超低速用軸重値演算手段が車両の動的軸重値を計測するタイミングを示す図である。
【図10】(a)は車輪が従来の荷重検出器上を通過する状態を示す図、(b)は同従来の荷重検出器の上を車輪が通過するときのその荷重検出器の出力波形を示す図である。
【図11】(a)及び(b)は車両振動の位相が相違する荷重検出器の出力波形を示す図である。
【図12】従来の軸重計測装置により車両の動的軸重値を計測するタイミングを示す図である。
【符号の説明】
8 第1の荷重検出部
9 第2の荷重検出部
10 第3の荷重検出部
12 車両
22 演算制御部
24 記憶部
26、27、28、29 車両の振動波形

Claims (3)

  1. 車両の通過する路面に互いに間隔を隔てて設けた2台以上の荷重検出手段と、
    これら荷重検出手段上を通過する車両の速度を検出する速度検出手段と、
    上記速度が2以上の速度範囲に区分されて、これら区分された各速度範囲ごとに対応して定めた2つ以上の第1の輪重値演算手段と、
    これら2つ以上の第1の輪重値演算手段のうちから、上記速度検出手段が検出した上記車両の検出速度と対応する第1の輪重値演算手段を選択して、上記車両の静的輪重値をその選択した第1の輪重値演算手段に演算させる選択手段とを、
    具備する車両の輪重計測装置において、
    上記各第1の輪重値演算手段は、上記車両の上下振動のほぼ1周期の範囲内にあり、ばらつきが大きい複数の動的荷重値と、これら動的荷重値の取得時点とに基づいて上記車両の静的輪重値を演算するように、上記各荷重検出手段のうち、上記各第1の輪重値演算手段に対応する速度に応じて予め定めた台数のものからの上記動的荷重値が供給され、上記2つ以上の速度範囲のうち速い速度範囲に対応する第1の輪重値演算手段には多くの上記荷重検出手段から上記動的荷重値が供給される車両の輪重計測装置。
  2. 請求項1記載の車両の輪重計測装置において、
    上記各第1の輪重値演算手段が対応する上記車両の速度よりも遅い速度範囲に対応して第2の輪重値演算手段が設けられ、第2の輪重値演算手段は、上記車両の上下振動のほぼ1周期にわたって検出された複数の動的荷重値の平均値に基づいて静的輪重値を演算するように1台の上記荷重検出手段の動的荷重値が供給される車両の輪重計測装置。
  3. 車両の通過する路面に互いに間隔を隔てて設けた2台以上の荷重検出手段と、
    これら荷重検出手段上を通過していく車両の速度を検出する速度検出手段と、
    互いに異なる少なくとも時刻T=0、T=t、T3=t と、これら時刻における上記荷重検出手段の動的荷重値W、W、Wを下記(4)式と(5)式に代入し、下記(4)乃至(6)式に基づいて静的輪重値Wを演算する輪重値演算手段と、
    Figure 0003686184
    を有する車両の輪重計測装置において、
    上記車両が上記各荷重検出手段上を通過していく時間帯の中で少なくとも上記各時刻T 、T 、T3が、上記車両の上下振動のほぼ1周期の範囲内に入り、かつ、上記各時刻T 、T 、T3における検出動的荷重値W 、W 、W のばらつきが大きくなるように、上記速度検出手段が検出した速度に応じて予め定めた台数の上記荷重検出手段が検出した上記検出動的荷重値を選択して、上記輪重値演算手段に供給する選択手段が設けられ、上記選択手段は、上記速度検出手段によって検出された上記車両の速度が、予め定めた2以上の速度範囲のいずれに属するかによって上記検出動的荷重値を供給する上記荷重検出手段を決定し、上記2つ以上の速度範囲のうち速い速度範囲ほど多くの上記荷重検出手段から上記動的荷重値が上記輪重値演算手段に供給される車両の輪重計測装置。
JP26251396A 1996-09-10 1996-09-10 車両の輪重計測装置 Expired - Fee Related JP3686184B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26251396A JP3686184B2 (ja) 1996-09-10 1996-09-10 車両の輪重計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26251396A JP3686184B2 (ja) 1996-09-10 1996-09-10 車両の輪重計測装置

Publications (2)

Publication Number Publication Date
JPH1090043A JPH1090043A (ja) 1998-04-10
JP3686184B2 true JP3686184B2 (ja) 2005-08-24

Family

ID=17376851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26251396A Expired - Fee Related JP3686184B2 (ja) 1996-09-10 1996-09-10 車両の輪重計測装置

Country Status (1)

Country Link
JP (1) JP3686184B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872005A (zh) * 2017-02-20 2017-06-20 广西交通科学研究院有限公司 基于桥梁动应变识别车队单车车重的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059519B2 (ja) * 2007-08-22 2012-10-24 大和製衡株式会社 軸重計測装置
JP5191856B2 (ja) * 2008-10-07 2013-05-08 大和製衡株式会社 車輪・車軸重量測定システム
JP5191855B2 (ja) * 2008-10-07 2013-05-08 大和製衡株式会社 車輪・車軸重量測定システム
JP5456433B2 (ja) * 2009-10-21 2014-03-26 大和製衡株式会社 車輪または車軸の重量測定システム
KR101192421B1 (ko) 2011-12-26 2012-10-17 유니슨이테크 주식회사 스트레인게이지를 사용하는 중량센서용 고속 동적하중 측정 장치 및 방법
CN114212082A (zh) * 2021-12-22 2022-03-22 三一汽车起重机械有限公司 一种工程车辆及其行驶速度控制方法、装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872005A (zh) * 2017-02-20 2017-06-20 广西交通科学研究院有限公司 基于桥梁动应变识别车队单车车重的方法
CN106872005B (zh) * 2017-02-20 2019-08-23 广西交通科学研究院有限公司 基于桥梁动应变识别车队单车车重的方法

Also Published As

Publication number Publication date
JPH1090043A (ja) 1998-04-10

Similar Documents

Publication Publication Date Title
US6618954B2 (en) Longitudinal profile measuring apparatus
CN112816045B (zh) 一种车辆的动态称重方法及动态称重装置
JP3686184B2 (ja) 車両の輪重計測装置
HU200432B (en) Measuring method and apparatus for qualifying the condition of railway tracks
CN108860011A (zh) 一种车辆超载识别方法及***
JP5191856B2 (ja) 車輪・車軸重量測定システム
JP5254081B2 (ja) 車輪または車軸の重量値測定システム
JP3467906B2 (ja) 軸重計測装置
JP4800025B2 (ja) 車両の荷重状態推定方法およびタイヤ空気圧低下警報方法
JPH11148852A (ja) 車両重量計測方法および車両重量計測装置
KR101192421B1 (ko) 스트레인게이지를 사용하는 중량센서용 고속 동적하중 측정 장치 및 방법
CN101900600A (zh) 轴重测量装置以及轴重测量方法
JP2001133314A (ja) 車重計測装置及び車重計測方法
JP2002031566A (ja) 車重計測装置
JPH11232586A (ja) 車輪間隔算出装置
JP2010216828A (ja) 車輪または車軸の重量値測定システム
CN104929023B (zh) 一种路面弯沉的快速检测方法
CN110268237A (zh) 用于检测移动到秤上的负载的重量的方法和设备
RU2239798C2 (ru) Способ поэлементного взвешивания автомобилей
KR100651187B1 (ko) 도시철도 차량의 운행중 진동 시험장치 및 그 방법
JP5191855B2 (ja) 車輪・車軸重量測定システム
JP2710785B2 (ja) 走行中車両の静止重量計測方法およびその装置
JPH03107712A (ja) 路面計測法
JP3484686B2 (ja) 軸重計測方法および軸重計測装置
JP3700705B2 (ja) 軸重計の配置方法、および軸重計測装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees