JP3685511B2 - Purification method of aqueous oxyacetic acid solution - Google Patents

Purification method of aqueous oxyacetic acid solution Download PDF

Info

Publication number
JP3685511B2
JP3685511B2 JP00374195A JP374195A JP3685511B2 JP 3685511 B2 JP3685511 B2 JP 3685511B2 JP 00374195 A JP00374195 A JP 00374195A JP 374195 A JP374195 A JP 374195A JP 3685511 B2 JP3685511 B2 JP 3685511B2
Authority
JP
Japan
Prior art keywords
oxyacetic acid
aqueous solution
acid
aqueous
glyoxal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00374195A
Other languages
Japanese (ja)
Other versions
JPH08193045A (en
Inventor
忠光 清浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP00374195A priority Critical patent/JP3685511B2/en
Publication of JPH08193045A publication Critical patent/JPH08193045A/en
Application granted granted Critical
Publication of JP3685511B2 publication Critical patent/JP3685511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明はオキシ酢酸水溶液の精製方法、より詳細にはオキシ酢酸水溶液中に不純物として存在する蟻酸、シュウ酸を分解除去し、オキシ酢酸水溶液を精製する方法に関する。
【0002】
オキシ酢酸はグリコール酸とも云はれ、天然には砂糖きび、未熟な葡萄などの植物中に存在するアルフアーヒドロキシカルボン酸の一番単純な形態である。オキシ酢酸は遊離酸、またはナトリウム塩の型でキレート剤、清缶剤、洗浄剤等として広く使用されて来た。最近になり、この他に、化学合成の原料、ポリオキシ酢酸、またはオキシ酢酸と乳酸との共重合物のかたちで生分解性ポリマーとして使用される。
【0003】
【従来の技術】
オキシ酢酸は触媒の存在下にホルムアルデヒドを高温、高圧下でカルボニル化して製造する方法、モノクロル酢酸を水酸化ナトリウムで加水分解後中和して製造されている。最近グリオキサール水溶液をアルミニウム化合物等の触媒の存在下に加熱してカニッツァーロ反応により直接一段の反応でオキシ酢酸を得る簡便で収率の高い方法も開示された(特開昭61−277649)。
【0004】
【発明が解決しようとする課題】
上記の、従来多用されてきたオキシ酢酸の製造法には、例へばホルムアルデヒドのカルボニル化法では装置材料に高級材質が必要で建設費が大となり、中〜小規模の製造には適さない等の問題がある。モノクロル酢酸を原料とする方法では化学量論量の2倍の水酸化ナトリウムが副原料として消費され、有機物で汚染された塩化ナトリウムの廃棄物が大量に発生する問題がある。
【0005】
グリオキサールを出発原料とする方法では一段の反応操作で収率よくオキシ酢酸が生成する利点があり、上記した様な問題点のないオキシ酢酸の製造法である。
上記のオキシ酢酸の製造方法はいずれの場合にも副生物として小量の蟻酸、またはシユウ酸等が生成する。これらの副生物はグリオキサールを出発原料とする製造法では他の二法に比較すると発生量が多く、0.5〜1%程度に及ぶ。また、生成物水溶液が褐色に着色し、脱色が難しい等の難点がある。
【0006】
オキシ酢酸は蒸留により分離精製ができないため、オキシ酢酸を含む生成水溶液をそのままの状態で精製し製品とする必要がある。また、オキシ酢酸の製品形態は、一部は再結晶により精製し固体として使用されるが大部分は水溶液の形態で使用されるため水溶液の状態のままで精製する効率のよい方法が要望されている。
本発明の目的とするところは、上記したような、水溶液のままでオキシ酢酸を効率よく精製する方法を提供するところにある。
【0007】
【課題を解決するための手段】
本発明者はオキシ酢酸水溶液の精製方法、特に、グリオキサールから直接一段の反応操作で得られるオキシ酢酸水溶液の効率的精製法、脱色法について種々研究した。その結果、オキシ酢酸水溶液中に不純物として含有する蟻酸、またはシユウ酸等が該水溶液パラジウム及び/または白金触媒の存在下に水素と接触させることに依り、効果的にオキシ酢酸の水溶液を精製できることを見いだし本発明を完成するに至った。
【0008】
即ち、本発明は、オキシ酢酸水溶液中に不純物として存在する蟻酸、シユウ酸を除去しオキシ酢酸水溶液を精製するに際し、該水溶液パラジウム及び/または白金触媒の存在下、水素と接触させることを特徴とするオキシ酢酸水溶液の精製方法である。
【0009】
本発明の方法によればパラジウム等の貴金属触媒の作用により、また上記貴金属触媒と水素の作用で、蟻酸、シュウ酸等に対し、脱カルボニル化、または水素化分解などの反応が併発して生起し、CO,CO2、H2Oなどにまで分解され、オキシ酢酸水溶液の精製が行われる。更に、微量残存する未反応グリオキサールの分解も併発する。また同時に、オキシ酢酸水溶液の着色も低減され、吸着操作を併用する際の活性炭等の吸着材の負荷を低減することも可能となる。
【0010】
本発明の方法に依る精製、脱色法に供するオキシ酢酸水溶液は、ホルムアルデヒドのカルボニル化反応、及びモノクロル酢酸の加水分解反応に依る公知の方法、またはグリオキサールを原料として以下に述べる方法により得られる。
【0011】
原料グリオキサールはアセトアルデヒドの硝酸酸化、またはエチレングリコールを銀触媒の存在下に空気酸化して製造される化合物で工業的規模で大量に得られる。
【0012】
グリオキサールの製品形態は通常30〜50%の水溶液であり、これを適当に水で希釈しオキシ酢酸水溶液の製造に使用する。使用する触媒はアルミニウムの化合物、ジルコニウムの化合物、または錫の化合物等が多用される。反応を実施する際のグリオキサール水溶液の濃度は5〜40%、好ましくは10〜30%の範囲が多用される。
【0013】
触媒の使用量はグリオキサールに対し通常0.02wt%以上、好ましくは、0.2〜10wt%の範囲が多用される。反応を実施する際の温度は100〜300℃、特に150〜200℃が多用される。反応に要する時間は反応温度及び触媒の使用量等に依存するが、2分〜5時間の範囲が多用される。反応圧は上記反応温度で反応原料水溶液が液相を維持できる圧力以上であればよい。反応は回分式でも連続式でもよい。
【0014】
反応終了後のオキシ酢酸水溶液を、そのまま、または、吸着、キレート樹脂に依るイオン交換等の方法で触媒等を除去してから、本発明の方法である精製、脱色操作をおこなう。
【0015】
オキシ酢酸の精製、脱色処理に使用する触媒はパラジウム及び/または白金であつて、取扱いの簡便な担持触媒が多用される。担体としては、活性炭、アルミナ、シリカ、マグネシア、チタニア等である。担体上へのパラジウムまたは白金等の担持量は0.1〜5wt%の範囲が多用される。担持貴金属触媒の使用量は回分式反応の場合を例として示すと、反応終了後のオキシ酢酸を含有する水溶液に対し1〜10wt%の範囲である。回分式反応の場合には通常、粉末状〜顆粒状の担持触媒が使用され、連続式の反応の場合には、通常、充填層式の反応器が使用され、粒状、シリンダー状等に成型した触媒が多用される。
【0017】
上記の触媒存在下、反応終了水溶液を水素ガスと接触させる水素ガスの接触は、回分式反応では、水溶液に適当なガス吹き込み管で水素を導入する等の常法による。貴金属触媒存在下該水溶液と水素とを接触させる際の温度は室温〜200℃の範囲である。水素処理の際の圧力は大気圧〜20kgf/cm2G.の範囲である。該水溶液と水素との接触時間は回分式反応の場合を例示すれば、10分〜5時間の範囲である。反応が充填触媒層による連続式の際にはLHSVで0.1〜8l/hr.l−cat.の範囲である。
【0018】
上記処理を終了したオキシ酢酸水溶液から貴金属触媒を除去し、活性炭等の吸着剤による処理を適宜併用して、純度の高いオキシ酢酸水溶液を得ることができる。上記水溶液を適宜常法により濃縮等の方法で濃度調整し製品とする。または濃縮後結晶を析出させ、必要ならば再結晶処理により、固体状のオキシ酢酸とすることもできる。
【0019】
参考例
オキシ酢酸25wt%、蟻酸1.0%、シユウ酸0.35%を含有するモデル水溶液を調整した。本水溶液200mlを採り、ガラスライニングを施した300mlオートクレーブに充填した。これに活性炭粉末にパラジウム2wt%を担持した触媒5gを加え、オートクレーブの気相部分を窒素で置換、300rpmで攪はんし、180℃に加熱し5時間処理した。オートクレーブを冷却後内容物を分析した結果、蟻酸含有量0.21%、シユウ酸含有量0.11%にまで減少した。また、オキシ酢酸は実質的に減少していなかった。
【0020】
【実施例】
以下に実施例により本発明を具体的に説明する。
実施例
参考例で使用したモデル水溶液200mlを採り、300mlガラスライニングオートクレーブに充填した。これにパラジウム2wt%を担持した活性炭粉末触媒5gを加え、オートクレーブ気相部分に水素ガスを5kgf/cm2G.充填した。 オートクレーブを加熱し内温180℃で300rpmで攪はんし、5時間処理した。オートクレーブ内容物を分析した結果、蟻酸含有量0.05%、シュウ酸含有量0.07%にまで減少した。また、オキシ酢酸は実質的に減少していなかった。
【0021】
実施例
参考例で使用したモデル水溶液200mlを採り、300mlガラスライニングオートクレーブに充填した。これに白金1wt%を担持した活性炭粉末触媒5gを加え、オートクレーブ気相部分に水素ガスを5kgf/cm2G.充填した。オートクレーブを加熱し内温160℃で5時間、300rpmで攪はんした。オートクレブ内容物を分析した結果、蟻酸含有量0.07%、シユウ酸含有量0.08%にまで減少した。
【0022】
実施例グリオキサールの40%水溶液50g、脱イオン水100g、触媒として硝酸アルミニウム9水塩3gをグラスライニングした300mlオートクレーブに充填し、オートクレーブ気相部分を窒素で置換した。次いで、オートクレーブをオイルバス中で180℃に昇温し、30分間反応させた。反応生成物を分析した結果、グリオキサール転化率99%、選択率97%で、オキシ酢酸が生成した。また、副生物として蟻酸0.5%、シュウ酸0.3%が生成した。本水溶液にパラジウム2wt%を粉末活生炭に担持した触媒4gを加え、同様のオートクレーブに充填し、オートクレーブ気相部分に水素10kgf/cm2G.充填し、180℃で5時間300rpm.で攪はんした。オートクレーブ内容物の分析から、副生物の蟻酸が0.03%にまで、シユウ酸が0.07%にまで低減された。オキシ酢酸は実質的に変化していない。また、オキシ酢酸水溶液の精製前の色相はハーゼン色数で200〜250であったものが本精製処理によりハーゼン色数80〜100にまで脱色された。
【0023】
【発明の効果】
本発明の方法によりオキシ酢酸水溶液中に不純物として含有される蟻酸、またはシユウ酸を効果的に分解除去することができる。また着色したオキシ酢酸水溶液の脱色も同時におこなうことができる効率的なオキシ酢酸水溶液の精製法である。
[0001]
[Industrial application fields]
The present invention relates to a method for purifying an oxyacetic acid aqueous solution, and more particularly to a method for purifying an oxyacetic acid aqueous solution by decomposing and removing formic acid and oxalic acid present as impurities in the oxyacetic acid aqueous solution.
[0002]
Oxyacetic acid, also known as glycolic acid, is the simplest form of alpha hydroxycarboxylic acid present in plants such as sugar cane and immature grapes in nature. Oxyacetic acid has been widely used as a chelating agent, a canning agent, a cleaning agent, etc. in the form of a free acid or sodium salt. Recently, in addition to this, it is used as a biodegradable polymer in the form of a raw material for chemical synthesis, polyoxyacetic acid, or a copolymer of oxyacetic acid and lactic acid.
[0003]
[Prior art]
Oxyacetic acid is produced by carbonylating formaldehyde under high temperature and high pressure in the presence of a catalyst, and monochloroacetic acid is hydrolyzed with sodium hydroxide and then neutralized. Recently, there has also been disclosed a simple and high yield method in which an aqueous glyoxal solution is heated in the presence of a catalyst such as an aluminum compound to obtain oxyacetic acid by a direct one-step reaction by the Cannizzaro reaction (Japanese Patent Laid-Open No. 61-277649).
[0004]
[Problems to be solved by the invention]
The above-mentioned methods for producing oxyacetic acid, which have been widely used in the past, include, for example, the problem that the carbonylation method of formaldehyde requires a high-grade material for the equipment material, which increases construction costs and is not suitable for medium to small-scale production. There is. The method using monochloroacetic acid as a raw material has a problem that sodium hydroxide twice the stoichiometric amount is consumed as a secondary raw material and a large amount of sodium chloride waste contaminated with organic matter is generated.
[0005]
The method using glyoxal as a starting material has the advantage that oxyacetic acid is produced in a high yield by a single-stage reaction operation, and is a method for producing oxyacetic acid that does not have the above-mentioned problems.
In any of the above-described methods for producing oxyacetic acid, a small amount of formic acid or oxalic acid is produced as a by-product. These by-products are produced in a large amount in the production method using glyoxal as a starting material, and are about 0.5 to 1% compared to the other two methods. In addition, the product aqueous solution is colored brown and difficult to decolorize.
[0006]
Since oxyacetic acid cannot be separated and purified by distillation, it is necessary to purify the resulting aqueous solution containing oxyacetic acid as it is to obtain a product. In addition, the product form of oxyacetic acid is partially purified by recrystallization and used as a solid, but most of it is used in the form of an aqueous solution, so there is a need for an efficient method of purification in the form of an aqueous solution. Yes.
An object of the present invention is to provide a method for efficiently purifying oxyacetic acid in an aqueous solution as described above.
[0007]
[Means for Solving the Problems]
The present inventor has made various studies on a method for purifying an oxyacetic acid aqueous solution, in particular, an efficient purification method and a decolorizing method for an oxyacetic acid aqueous solution obtained from glyoxal by a one-step reaction operation directly. As a result, formic acid or oxalic acid contained as an impurity in the aqueous oxyacetic acid solution can be effectively purified by bringing the aqueous solution into contact with hydrogen in the presence of palladium and / or a platinum catalyst. As a result, the present invention has been completed.
[0008]
That is, the present invention is characterized in that when purifying an oxyacetic acid aqueous solution by removing formic acid and oxalic acid present as impurities in the oxyacetic acid aqueous solution, the aqueous solution is brought into contact with hydrogen in the presence of palladium and / or a platinum catalyst. The method for purifying an aqueous oxyacetic acid solution
[0009]
According to the method of the present invention, a reaction such as decarbonylation or hydrocracking occurs simultaneously with formic acid, oxalic acid, etc. by the action of a noble metal catalyst such as palladium and by the action of the noble metal catalyst and hydrogen. Then, it is decomposed to CO, CO 2 , H 2 O, etc., and the oxyacetic acid aqueous solution is purified. Furthermore, decomposition of unreacted glyoxal remaining in a trace amount also occurs. At the same time, the coloring of the oxyacetic acid aqueous solution is also reduced, and it is possible to reduce the load of the adsorbent such as activated carbon when using the adsorption operation together.
[0010]
The aqueous oxyacetic acid solution used for the purification and decolorization method according to the method of the present invention can be obtained by a known method based on a carbonylation reaction of formaldehyde and a hydrolysis reaction of monochloroacetic acid, or a method described below using glyoxal as a raw material.
[0011]
The raw material glyoxal is a compound produced by nitric acid oxidation of acetaldehyde or air oxidation of ethylene glycol in the presence of a silver catalyst, and is obtained in large quantities on an industrial scale.
[0012]
The product form of glyoxal is usually a 30-50% aqueous solution, which is appropriately diluted with water and used for the production of an aqueous oxyacetic acid solution. As the catalyst used, an aluminum compound, a zirconium compound, a tin compound, or the like is frequently used. The concentration of the aqueous solution of glyoxal in carrying out the reaction is frequently 5 to 40%, preferably 10 to 30%.
[0013]
The amount of the catalyst used is usually 0.02 wt% or more, preferably 0.2 to 10 wt%, based on glyoxal. The temperature at which the reaction is carried out is frequently 100 to 300 ° C, particularly 150 to 200 ° C. The time required for the reaction depends on the reaction temperature, the amount of catalyst used, etc., but a range of 2 minutes to 5 hours is frequently used. The reaction pressure should just be more than the pressure which the reaction raw material aqueous solution can maintain a liquid phase at the said reaction temperature. The reaction may be batch or continuous.
[0014]
After completion of the reaction, the catalyst is removed from the aqueous oxyacetic acid solution as it is or by adsorption, ion exchange using a chelate resin, and the like, and then the purification and decoloration operations, which are the methods of the present invention, are performed.
[0015]
The catalyst used for the purification and decolorization treatment of oxyacetic acid is palladium and / or platinum, and a supported catalyst that is easy to handle is often used. Examples of the carrier include activated carbon, alumina, silica, magnesia, titania and the like. The amount of palladium or platinum supported on the carrier is frequently in the range of 0.1 to 5 wt%. The amount of the supported noble metal catalyst is in the range of 1 to 10 wt% with respect to the aqueous solution containing oxyacetic acid after completion of the reaction, taking the case of batch reaction as an example. In the case of a batch reaction, a powdered to granular supported catalyst is usually used. In the case of a continuous reaction, a packed bed reactor is usually used, which is molded into a granular shape, a cylindrical shape, or the like. A catalyst is frequently used.
[0017]
The reaction-terminated aqueous solution is brought into contact with hydrogen gas in the presence of the catalyst . In the batch reaction, the hydrogen gas is contacted by a conventional method such as introducing hydrogen into the aqueous solution through a suitable gas blowing tube. The temperature at which the aqueous solution is brought into contact with hydrogen in the presence of a noble metal catalyst is in the range of room temperature to 200 ° C. The pressure during the hydrogen treatment is from atmospheric pressure to 20 kgf / cm 2 G.G. Range. If the contact time of this aqueous solution and hydrogen illustrates the case of a batch type reaction, it will be the range of 10 minutes-5 hours. When the reaction is continuous using a packed catalyst layer, the LHSV is 0.1 to 8 l / hr. l-cat. Range.
[0018]
The precious metal catalyst is removed from the oxyacetic acid aqueous solution after the above treatment, and a treatment with an adsorbent such as activated carbon is appropriately used in combination to obtain a high purity oxyacetic acid aqueous solution. The concentration of the above aqueous solution is appropriately adjusted by a method such as concentration by a conventional method to obtain a product. Alternatively, after concentration, crystals are precipitated, and if necessary, solid oxyacetic acid can be obtained by recrystallization treatment.
[0019]
[ Reference example ]
A model aqueous solution containing 25 wt% oxyacetic acid, 1.0% formic acid and 0.35% oxalic acid was prepared. 200 ml of this aqueous solution was taken and filled into a 300 ml autoclave with glass lining. To this was added 5 g of a catalyst in which 2 wt% palladium was supported on activated carbon powder, the gas phase part of the autoclave was replaced with nitrogen, stirred at 300 rpm, heated to 180 ° C. and treated for 5 hours. As a result of analyzing the contents after cooling the autoclave, the content was reduced to 0.21% formic acid content and 0.11% oxalic acid content. Further, oxyacetic acid was not substantially decreased.
[0020]
【Example】
The present invention will be specifically described below with reference to examples.
Example 1
200 ml of the model aqueous solution used in the reference example was taken and filled in a 300 ml glass-lined autoclave. To this was added 5 g of activated carbon powder catalyst supporting 2 wt% of palladium, and hydrogen gas was added to the autoclave gas phase portion at 5 kgf / cm 2 G.G. Filled. The autoclave was heated and stirred at an internal temperature of 180 ° C. at 300 rpm and treated for 5 hours. As a result of analyzing the contents of the autoclave, the formic acid content was reduced to 0.05% and the oxalic acid content was reduced to 0.07%. Further, oxyacetic acid was not substantially decreased.
[0021]
Example 2
200 ml of the model aqueous solution used in the reference example was taken and filled in a 300 ml glass-lined autoclave. To this was added 5 g of activated carbon powder catalyst supporting 1 wt% of platinum, and 5 kgf / cm 2 G. of hydrogen gas was added to the gas phase part of the autoclave. Filled. The autoclave was heated and stirred at an internal temperature of 160 ° C. for 5 hours at 300 rpm. As a result of analyzing the contents of the autoclave, it was reduced to a formic acid content of 0.07% and a oxalic acid content of 0.08%.
[0022]
Example 3 A glass-lined 300 ml autoclave was filled with 50 g of a 40% aqueous solution of glyoxal, 100 g of deionized water and 3 g of aluminum nitrate nonahydrate as a catalyst, and the autoclave gas phase portion was replaced with nitrogen. Next, the autoclave was heated to 180 ° C. in an oil bath and reacted for 30 minutes. As a result of analyzing the reaction product, oxyacetic acid was produced with a glyoxal conversion rate of 99% and a selectivity of 97%. Moreover, 0.5% formic acid and 0.3% oxalic acid were produced as by-products. The catalyst 4g carrying palladium 2 wt% to the powder active raw coal added to the aqueous solution was filled into same autoclave, hydrogen 10 kgf / cm 2 G. autoclave gaseous phase Filled and 300 rpm for 5 hours at 180 ° C. I stirred it. Analysis of the contents of the autoclave reduced the by-product formic acid to 0.03% and oxalic acid to 0.07%. The oxyacetic acid is not substantially changed. Further, the hue before purification of the oxyacetic acid aqueous solution having a Hazen color number of 200 to 250 was decolorized to a Hazen color number of 80 to 100 by this purification treatment.
[0023]
【The invention's effect】
By the method of the present invention, formic acid or oxalic acid contained as impurities in the aqueous oxyacetic acid solution can be effectively decomposed and removed. Further, this is an efficient method for purifying an aqueous oxyacetic acid solution, which can simultaneously perform decolorization of a colored aqueous oxyacetic acid solution.

Claims (3)

オキシ酢酸水溶液中に不純物として存在する蟻酸、シユウ酸を除去しオキシ酢酸水溶液を精製するに際し、該水溶液をパラジウム及び/または白金触媒の存在下、水素と接触させることを特徴とするオキシ酢酸水溶液の精製方法。An oxyacetic acid aqueous solution characterized by contacting the aqueous solution with hydrogen in the presence of palladium and / or a platinum catalyst when purifying the oxyacetic acid aqueous solution by removing formic acid and oxalic acid present as impurities in the oxyacetic acid aqueous solution. Purification method. オキシ酢酸水溶液が、グリオキサールまたはグリオキサールのアセタールの分子内カニッツァーロ反応によつて製造したオキシ酢酸水溶液である請求項1記載の方法。The method according to claim 1 , wherein the aqueous oxyacetic acid solution is an aqueous oxyacetic acid solution produced by an intramolecular cannizzaro reaction of glyoxal or an acetal of glyoxal. オキシ酢酸水溶液が、グリオキサールまたはグリオキサールのアセタールにアルミニウムの化合物、ジルコニウムの化合物または錫の化合物の存在下、カニッツァーロ反応により得られた物である請求項1記載の方法。The method according to claim 1 , wherein the aqueous oxyacetic acid solution is a product obtained by a Cannizzaro reaction in the presence of glyoxal or an acetal of glyoxal in the presence of an aluminum compound, a zirconium compound or a tin compound.
JP00374195A 1995-01-13 1995-01-13 Purification method of aqueous oxyacetic acid solution Expired - Lifetime JP3685511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00374195A JP3685511B2 (en) 1995-01-13 1995-01-13 Purification method of aqueous oxyacetic acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00374195A JP3685511B2 (en) 1995-01-13 1995-01-13 Purification method of aqueous oxyacetic acid solution

Publications (2)

Publication Number Publication Date
JPH08193045A JPH08193045A (en) 1996-07-30
JP3685511B2 true JP3685511B2 (en) 2005-08-17

Family

ID=11565644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00374195A Expired - Lifetime JP3685511B2 (en) 1995-01-13 1995-01-13 Purification method of aqueous oxyacetic acid solution

Country Status (1)

Country Link
JP (1) JP3685511B2 (en)

Also Published As

Publication number Publication date
JPH08193045A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
EP1153910B1 (en) Process for the preparation of (2r)-2-propyloctanoic acid
KR920005847B1 (en) Method and catalyst for the dehalogenation of alpha-halogenated carboxylic acids
EP0001070A1 (en) Process for producing pyruvic acid
RU1837963C (en) Process for rhodium extraction
KR100242369B1 (en) Catalyst for dehalogenating alpha-halogenated carboxylic acid
JP3685511B2 (en) Purification method of aqueous oxyacetic acid solution
US4483996A (en) Process for production of olefin oxides and ketones
EP0597298B1 (en) Process for producing alpha-hydroxyisobutyramide
JPS63295528A (en) Production of glyoxylic acids
EP0284816B1 (en) Method of producing aldehydes
ZA200106524B (en) Preparation of carvone.
JP4248051B2 (en) High purity monochloroacetic acid and process for producing the same
JPH01261368A (en) Method for purifying pyridine
JPH02121946A (en) Continuous production of succinic acid
JP2625490B2 (en) Purification method of pyruvate
JPS5929170B2 (en) Method for producing β-phenylethyl alcohol and β-phenylethyl acetate
JPH0235734B2 (en) KOJUNDOPARAJIUMUSHIBOZOKUKARUBONSANENNOSEIZOHO
EP0183160A1 (en) Preparation process of indole
JPS6092234A (en) Production of cyclopentanone
JP3541448B2 (en) Method for producing acetamide
JP2001278822A (en) Method for producing diol mixture
JP4066688B2 (en) Method for producing dialkyl peroxide
JPS6017780B2 (en) Method for producing 4-aminomethylbenzoic acid
EP0337246A1 (en) Process for preparing pyruvate
EP0431589A2 (en) Process for producing copper formate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term