JP3685501B2 - Electronic circuit equipment - Google Patents

Electronic circuit equipment Download PDF

Info

Publication number
JP3685501B2
JP3685501B2 JP18841892A JP18841892A JP3685501B2 JP 3685501 B2 JP3685501 B2 JP 3685501B2 JP 18841892 A JP18841892 A JP 18841892A JP 18841892 A JP18841892 A JP 18841892A JP 3685501 B2 JP3685501 B2 JP 3685501B2
Authority
JP
Japan
Prior art keywords
resistor
circuit board
circuit
resistors
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18841892A
Other languages
Japanese (ja)
Other versions
JPH0636908A (en
Inventor
斎藤  光弘
伴  博行
長坂  崇
賢吾 岡
祐司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP18841892A priority Critical patent/JP3685501B2/en
Priority to US08/091,718 priority patent/US5483217A/en
Publication of JPH0636908A publication Critical patent/JPH0636908A/en
Application granted granted Critical
Publication of JP3685501B2 publication Critical patent/JP3685501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、電子回路装置に関し、詳しくは樹脂モールドハイブリッドICに関する。
【0002】
【従来の技術】
従来のハイブリッドICは、リード取り出し構造によりSIPタイプ及びDIPタイプに分類されるが、いずれも樹脂モールド(封止)の場合は、注型法、浸漬法、トランスファ法などにより金型又はケースに回路基板を予め挿入しておき、液状又は粉体状の熱硬化性樹脂(例えばエポキシ樹脂やシリコーン樹脂)をモールドしている。
【0003】
【発明が解決しようとする課題】
しかしながら上記した従来のハイブリッドICでは、主としてモールド樹脂部の加熱硬化やその後の冷却により樹脂が収縮する過程で応力が発生し、又、モールド樹脂部と回路基板との間の収縮率や熱膨張率の差によっても両者間に残留応力が発生する。としてこれらの応力が回路基板に固定された抵抗器に作用し、その結果、この抵抗器の抵抗値が受承する応力に応じて変化してしまう。
【0004】
本発明者らの試験、解析によれば、モールド樹脂部の収縮により回路基板には圧縮応力及び面直方向の曲げ応力が作用し、この曲げ応力により上記抵抗器に圧縮あるいは引張応力が掛かることがわかった。上記曲げ応力は回路基板各部においてばらつくので、回路基板上の抵抗体形成位置によって抵抗器の抵抗値がばらつき、その結果、抵抗値を用いた回路の出力がばらつく。
【0005】
また、ハイブリットIC外部から加わる応力によっても抵抗器の抵抗値がばらついてしまうことも確認した。
本発明は、上記問題点に鑑みなされたものであり、モールド樹脂部と回路基板との間に生じる硬化収縮応力、熱膨張率差に起因する応力、外部応力等による抵抗器の抵抗値変動によって、回路の出力がばらつくのを低減可能な電子回路装置を提供することを、その目的としている。
【0006】
【課題を解決するための手段】
各発明の電子回路装置は、ケース内に収納された回路基板と、前記ケースの内面に配設されて前記回路基板の短辺を保持する一対のガイド突起と、前記回路基板に固定されそれぞれ1個以上の抵抗器からなる第1、第2抵抗器(群)を含み前記回路基板に配設された回路と、前記ケース内に充填されたモールド樹脂部と、一端が前記回路基板に固定され他端が前記モールド樹脂部を貫通して外部に突出するリードとを備える電子回路装置において、
応力に起因する前記両抵抗器(群)の抵抗値変化による前記回路の出力変化が互いに相殺し合う位置に、前記両抵抗器(群)が配設されることを特徴としている。
【0007】
本発明でいう抵抗器として、印刷、焼成で形成された厚膜抵抗体の他、各種PVD法やCVD法で形成された薄膜抵抗体を採用することができる。これら抵抗器は、回路基板に導電ペーストや接着剤や半田などにより接着、固定されることができ、その他、回路基板上に直接形成される抵抗器も包含される。そして、これら抵抗器は、コンデンサなどの他の受動回路素子やIC及びトランジスタなどの能動回路素子とともに回路基板に搭載される。
【0008】
好適には、前記回路の出力は前記両抵抗値の積又は和の関数となり、かつ、前記両抵抗器はそれぞれ1個の抵抗器で構成され、前記両抵抗器が受承する応力による前記両抵抗値の変化率の絶対値は略等しく設定される。
【0010】
好適には、前記両抵抗器は、回路基板の一短辺から等距離の位置に配設される。
好適には、前記両抵抗器は、前記回路基板の両短辺からそれぞれ等距離の位置に配設される。
好適には、前記両抵抗器は、前記基板の辺縁部に配置される。
【0011】
1の発明では特に、前記第1抵抗器としての抵抗器R1及び前記第2抵抗器としての抵抗器R2は、前記回路基板の短辺から前記回路基板の長手方向における等距離位置にて前記回路基板の表裏に個別に固定されるとともに、前記抵抗器R1と前記抵抗R2は同一の構成を有する抵抗器であり、前記回路の出力は、前記抵抗器R1の抵抗値をr1、前記抵抗器R2の抵抗値をr2とした場合に、(r1×r2)又は(r1+r2)を変数とする関数値とされる。
第2の発明では特に、前記回路は、オペアンプOP及び前記第1の抵抗器群としての抵抗器R1、R3、前記第2の抵抗器群としての抵抗器R2、R4を有するオペアンプ電圧増幅回路からなるとともに、少なくとも前記抵抗器R1と前記抵抗R2及び前記抵抗器R3と前記抵抗器R4は同一の構成を有する抵抗器であり、前記オペアンプ電圧増幅回路の第一の入力端とオペアンプOPの−入力端とを接続する抵抗器R1の抵抗値をr1、その帰還抵抗器R2の抵抗値をr2、その第二の入力端とオペアンプOPの+入力端とを接続する抵抗器R3の抵抗値をr3、オペアンプOPの+入力端と接地端との間のバイアス抵抗器R4の抵抗値をr4とする場合に、抵抗器R1、R2は、前記回路基板の短辺から前記回路基板の長手方向へ等距離に固定され、抵抗器R3、R4は、前記回路基板の短辺から前記回路基板の長手方向へ等距離に固定される。
【0012】
【作用及び発明の効果】
モールド樹脂部の硬化収縮により回路基板に応力が発生する。あるいは、モールド樹脂と回路基板の熱膨張率差、外部要因により応力は発生する。この応力はモールド樹脂部と回路基板に固定された第1、第2抵抗器群に作用し、両抵抗器群の抵抗値が変化する。
【0013】
この発明では、第1抵抗器群の上記抵抗値変化による回路の出力変化による回路出力の変化量と、第2抵抗器群の上記抵抗値変化による回路出力の変化量が等しく、かつ、変化方向(増減方向)が反対となる回路基板上の固定位置を選定し、これらの固定位置に両抵抗器群を固定している。
その結果、上記応力による両抵抗器群の抵抗値変化にかかわらず、回路出力の変動はほぼ相殺され、高精度の電子回路装置を実現することができる。
【0014】
【実施例】
参考例1)
本発明の電子回路装置の参考例1を図1〜図4に示す。
この電子回路装置はハイブリッドICであって、ケ−ス1と、ケ−ス1内に収容された回路基板2と、ケ−ス1内に充填されたモールド樹脂部3と、一端が回路基板2に固定され他端がモールド樹脂部3を貫通して外部に突出するリード4とを備えている。なお、図1では回路基板2の主面上のモールド樹脂部3は剥離して図示している。
【0015】
ケ−ス1は、縦、横、高さが50mm×6mm×18mmの直方中空体形状を有し、底面が開口されている。ケ−ス1の壁厚は約1mmで、PBT樹脂の射出成形により形成されている。ケ−ス1の長手方向両端に位置する両内端面には、回路基板2の位置決め、案内用の一対のガイド突起11が互いに平行に突設されている。
【0016】
回路基板2はアルミナを素材とする多層基板であって、回路基板2の両短辺21、22はそれぞれガイド突起対11の間にゆるやかに嵌入されて保持されている。回路基板2の寸法は、縦、横、厚さ13mm×47.5mm×0.8mmであり、その線膨張率は約7.5×10-6/℃である。回路基板2には多層の配線パタン(図示せず)が形成されている。回路基板2の一面には、各種回路部品が固定され、電気接続されている。特にこの実施例では、回路基板2の短辺21に近接しかつ短辺21から約2mmの距離に抵抗器R1、R2が固定され、同様に、回路基板2の短辺21に近接しかつ短辺21からから約4.6mmの距離に抵抗器R3、R4が固定されている。
【0017】
抵抗器R1、R2は、縦、横、厚さが1.5mm×0.85mm×10μmの直方体形状を有し、抵抗器R1、R2の長手方向は短辺21と平行となっている。抵抗器R1〜R4は、その一部を図4に拡大図示するようにRuO2 を素材とした厚膜抵抗体であって、回路基板2上に印刷、焼成により形成されている。5はAg系からなる厚さ約10μmの配線層である。
【0018】
モールド樹脂部3は、ケ−ス1内へ回路基板2を挿入後、溶融エポキシ樹脂(摂氏約40度)を常温のケ−ス1内に注入し、熱硬化させ、冷却して形成される。このエポキシ樹脂の線膨張率は約51×10-6/℃、溶融状態から硬化後常温復帰状態した場合、体積収縮率は約96%である。
上記した回路基板2上の回路は、モノリシックのオペアンプOPと、抵抗器R1、2からなる初段センスアンプ(図5参照)を有し、このオペアンプ増幅回路の電圧増幅率kは、(1+R2/R1)となる。
【0019】
上記したハイブリッドICは、モールド樹脂部3の硬化冷却時の収縮により図6に略示するように回路素子搭載面A側へ反る。これは、回路素子搭載面A側のモールド樹脂量が、裏面側のモールド樹脂量よりも多いために、回路基板2の回路素子搭載面Aに掛かる圧縮力(特にその長手方向における)が、裏面Bのそれに優り、そのために、回路基板2の中央部が回路基板2の両短辺21、22に対して回路素子搭載面Aを窪ませる方向に反るためである。なお、この反り量すなわち残留応力は当然、温度変化に応じても変化する。また、回路基板2の中央部は回路基板2の両長辺23、24に対しても回路素子搭載面Aを窪ませる方向に反るが、この反り量は比較的小さいので、この実施例では無視するものとする。
【0020】
また、回路素子搭載面A上に固定した各回路素子により回路基板2の各部は局部的に剛性強化され、各部の反り量及び応力分布はばらつくが、この実施例では無視する。
このような回路基板2の反り(すなわち回路基板2の面直方向の曲げ応力)により、その上に固定された抵抗器R1、R2に圧縮応力が加えられる。
【0021】
回路基板2に加えられる応力と回路基板に固定された抵抗器の抵抗値変化との関係を調べた。試験用の回路基板20は、図7に示すように、縦、横、厚さが13mm×47.5mm×0.8mmの寸法を有し、台座90で回路基板2の長手方向の両端部を支持した。抵抗器Rは回路基板20の短辺21から0.153mmの位置に固定され、回路基板2の中央を回路基板2に向けて押圧して、抵抗値の変化を調べた。その結果を図8に示す。
【0022】
図8から、押圧力(曲げ応力)ΔFと抵抗値の変化ΔRとはほぼ直線関係にあり、この押圧力による回路基板2の湾曲により、抵抗器R1に圧縮応力が生じる場合には抵抗減少、抵抗器R1に引っ張り応力が生じる場合には抵抗増加が生じることがわかった。なお、この実施例では、抵抗器R1の長手方向すなわち通電方向は回路基板2の長手方向としたが、抵抗器R1の長手方向すなわち通電方向を回路基板2の長手方向との角度を変えても、抵抗器R1に圧縮応力が生じる場合には抵抗減少、抵抗器R1に引っ張り応力が生じる場合には抵抗増加が生じることがわかった。
【0023】
次に、図7の回路基板20における反り量(変位量)と抵抗値変化量との関係を調べた。その結果を図9に示す。ただし、反り量は基板中央部の最大変位量とした。
なお、回路基板2の両短辺21、22を支持して中央部を押圧した場合、回路基板2の弾性変形により回路基板2の長手方向各部に作用する圧縮あるいは引張り応力は図10に示すように、中央部が最大で両短辺21、22でほぼ0となり、連続的に(略直線的に)変化する。
【0024】
次に、抵抗器Rが上記位置に固定された回路基板20をケ−ス1に収容し、モールド樹脂部で全面モールドした場合の抵抗器Rの抵抗値変化を調べた。その結果、この抵抗器R1の抵抗値変化率の平均値は室温状態で約−0.7%であった。
以下、この参考例1の特徴点を説明する。
【0025】
以上説明したようにこの参考例1では、抵抗器R1、R2が短辺21から回路基板2の長手方向に等距離位置に固定されている。その結果、上記した回路基板2を通じて抵抗器R1、R2に作用する圧縮応力は等しくなり、その結果、抵抗器R1、R2の抵抗値変化率が等しくなる。
抵抗器R1、R2を用いたオペアンプ電圧増幅回路の電圧増幅率kは(1+R2/R1)であるので、このオペアンプ電圧増幅回路の出力特性(電圧増幅率k)から回路基板2の反りの影響がキャンセルされる。
【0026】
またこの参考例1では、抵抗器R1、R2を短辺21に近接して配置するため、回路基板2の曲げ応力に比例する抵抗器R1、R2に作用する圧縮応力も小さく、圧縮応力の差も小さくできる。その結果、このオペアンプ電圧増幅回路の出力特性(電圧増幅率k)から回路基板2の反りの影響が低減される。
更にこの参考例1では、抵抗器R1、R2の長手方向が短辺21と平行に配置されている。このようにすれば、抵抗器R1、R2の各部に作用する圧縮応力のばらつきが小さく、両抵抗器R1、R2の抵抗値のばらつきも小さくなる。
【0027】
以上の結果として、このオペアンプ電圧増幅回路からなる初段センスアンプの電圧増幅率のばらつきを大幅に低減することができた。通常、微小な入力信号電圧又は信号電流を増幅する初段センスアンプの電圧増幅率はより大きな信号電圧を扱うその後の回路段に比べて格段に高い安定度が要求されるが、本参考例によれば電圧増幅率のばらつきを大幅に低減でき、このような初段センスアンプに好適である。
【0028】
なお、抵抗器R1、R2の各長手方向を回路基板2の長辺23、24と平行とすることも可能であり(図11参照)、また抵抗器R1、R2の長手方向と回路基板2の長手方向との角度を所定値としてもよく(図12参照)、更に抵抗器R1、R2が回路基板2の長手方向の基準線を中心として鏡像関係にあるように配設してもよい(図13参照)。
【0029】
特に、図11、図13では、抵抗器R1、R2が回路基板2の長手方向に延びる中央線Cを基準として対称配置されており、中央線Cに対する回路基板2の長辺23、24の湾曲変形に対する両抵抗器R1、R2の増加率が等しくなるという効果も生じる。
参考例2)
上記参考例1では回路基板2及びその上の回路素子と直接接触してエポキシ樹脂を素材とするモールド樹脂部3を形成したが、図14に示すように抵抗器R1、R2を含む回路素子を軟質のゲル状シリコン樹脂層8で被覆した後、モールド樹脂部3を形成してもよい。このようにすれば、抵抗器R1、R2に作用する圧縮応力を減らすことができる。5は配線電極である。
【0030】
すなわち、回路基板2が湾曲するのは、回路素子搭載面A側のモールド樹脂量が裏面B側のモールド樹脂量より多い分、その回路素子搭載面Aに作用する収縮力が優り、そのために回路基板2が回路素子搭載面A側に湾曲することがわかった。したがって、ゲル状シリコン樹脂層8で回路素子搭載面Aを被覆することにより回路素子搭載面Aに作用するモールド樹脂部3の収縮力(曲げ応力)を緩和すれば、回路基板2の湾曲が減少あるいは解消され、参考例1の抵抗器R1、R2のペア配置効果と相まって、安定した電圧増幅率が得られる。
【0031】
参考例3)
他の参考例を図15に示す。
この参考例では、抵抗器R1、R2をレーザートリミングし、かつ、レーザートリミングによる溶断領域Awの短辺21からの距離をほぼ等しくしたものである。
【0032】
このようにすれば、レーザートリミング後においても、短辺21からの抵抗器R1、R2の実質距離は等しくなり、回路基板2の上記湾曲に伴う抵抗値増加率がほぼ等しくなり、両抵抗値のばらつきをキャンセルすることができる。
参考例4)
他の参考例を図16に示す。
【0033】
この参考例では、短辺21からの抵抗器R1の距離と、短辺22からの抵抗器R2の距離とを等しく配置したものである。
このようにしても抵抗器R1、R2の抵抗値変化率はほぼ等しくなり、上記抵抗値のばらつきをキャンセルが可能となる。
(実施例
実施例を図17に示す。
【0034】
この実施例では、抵抗器R1、R2を、短辺21から回路基板2の長手方向へ等距離位置において、回路基板2の表裏に個別に固定している。
そして、この抵抗器R1、R2を用いた回路の出力(出力電圧又は出力電流又は出力周波数)は、抵抗器R1の抵抗値をr1、抵抗器R2の抵抗値をr2とした場合に、(r1×r2)又は(r1+r2)を変数とする任意の関数値とする。
【0035】
このようにすれば、抵抗器R1の抵抗値増加率と、抵抗器R2の抵抗値減少率とがそれらの積又は和によりキャンセルされる。
参考例5)他の参考例を図18に示す。
この参考例では、抵抗器R1、R2を、短辺21から回路基板2の長手方向へ等距離位置において、厚さ方向に重ねて固定している。すなわち、回路基板2上に抵抗器R1を固定した後、回路基板2上に層間ガラス膜7をコートし、その上に抵抗器R2を固定している。層間ガラス膜7の厚さは約0.05mmとした。なお、回路基板2の厚さ0.8mmに対して層間ガラス膜7は充分薄いので、両抵抗器R1、R2に掛かる圧縮応力はほぼ等しいと近似することができる。なお、内側の抵抗器R1に作用する圧縮応力は外側の抵抗器R2に作用する圧縮応力より僅かに小さいので、内側の抵抗器R1を外側の抵抗器R2より回路基板2の長手方向中央寄りに僅かに変位させてもよい。
【0036】
この参考例によれば、回路基板2の長辺23からの距離が等しくなるので、回路基板2の短辺21、22の湾曲方向への曲げ応力により抵抗器R1、R2に作用する短辺平行方向の圧縮応力もキャンセルすることができる。
参考例6
他の参考例を図19に示す。
【0037】
この参考例では、抵抗器R1を短辺21から回路基板2の長手方向へ距離L1の位置に固定し、抵抗器R2を短辺21(又は短辺22)から回路基板2の長手方向へ距離L2の位置に固定している、そして、この抵抗器R1、R2を用いた回路の出力(出力電圧又は出力電流又は出力周波数)は、抵抗器R1の抵抗値をr1、抵抗器R2の抵抗値をr2とした場合に、(r1−a×r2)を変数とする任意の関数値とする。なお、aは、抵抗器R1の抵抗値増加量Δr1/抵抗器R2の抵抗値増加量Δr2に等しい定数値としている。このようにすれば、上記変数(r1−a×r2)は(r1+Δr1−a×r2−a×Δr2)となり、Δr1=a×Δr2であるから、抵抗器R1、R2の抵抗値の変化は相殺される。
【0038】
なおこの参考例では、短辺21からの距離と抵抗器R1、R2の抵抗値増加率とは直線比例する場合である。
参考例7
他の参考例を図20に示す。この参考例は、参考例6において、抵抗器R2を回路基板2の裏面に固定したものであり、そして、この抵抗器R1、R2を用いた回路の出力(出力電圧又は出力電流又は出力周波数)は、抵抗器R1の抵抗値をr1、抵抗器R2の抵抗値をr2とした場合に、(r1+a×r2)を変数とする任意の関数値とする。なお、aは、抵抗器R1の抵抗値増加量Δr1/抵抗器R2の抵抗値減少率に等しい定数値としている。このようにすれば、上記変数(r1+a×r2)は(r1+Δr1+a×r2−a×Δr2)となり、Δr1−a×Δr2=0であるから、抵抗器R1、R2の抵抗値の変化は相殺される。
【0039】
(実施例)他の実施例を図21、図22に示す。
この実施例は、抵抗器R1〜R4を用いたオペアンプ電圧増幅回路からなる初段センスアンプであって、抵抗器R1〜R4の配置は図1と同じく、抵抗器R1、R2は短辺21から回路基板2の長手方向へ等距離、抵抗器R3、R4は短辺21から回路基板2の長手方向へ等距離となっている。また、このセンスアンプの電圧増幅率Kは、抵抗器R1の抵抗値をr1、抵抗器R2の抵抗値をr2、抵抗器R3の抵抗値をr3、抵抗器R4の抵抗値をr4とした場合に、

Figure 0003685501
となる。
【0040】
したがって、回路基板2の歪みによる各抵抗値r1〜r4のばらつきが電圧増幅率Kに与える影響は相殺される。
参考例8
他の参考例を図23に示す。
この参考例は、実施例において、抵抗器R1〜R4の配置を変更したものである。すなわち、この参考例では、抵抗器R2は短辺21からL1に距離に固定され、抵抗器R1、R4は短辺21からL2に距離に固定され、抵抗器R3は短辺21からL3に距離に固定されている。
【0041】
そして、L1/L2=L2/L3に設定されている。なお、回路基板2の湾曲変形により抵抗器R1〜R4に加わる圧縮応力は短辺21で0、短辺21から回路基板2の長手方向への距離に略比例して増大するものとする。この場合にも当然、増幅率Kは変化しないことがわかる。この参考例からわかることは、回路基板2の湾曲に伴う第1の抵抗器群(ここでは抵抗器R1、R2)の変化が回路の出力特性に与える影響により、回路基板2の湾曲に伴う第2の抵抗器群(ここでは抵抗器R3、R4)の変化が回路の出力特性に与える影響をキャンセルするように、回路基板2上における第1、第2の抵抗器群の配置パタンを設定することにより、多数の抵抗器からなる抵抗器群の抵抗値変化を相殺できることである。
【0042】
また上記実施例ではオペアンプ電圧増幅回路への応用例を説明したが、本発明は電流増幅、波形処理、周波数処理、デジタル処理、コンパレータ、A/D変換、D/A変換などの諸回路に広く応用できることは当然であり、特に最も高精度を要求されるこれら回路の初段部分に好適である。上記実施例では圧縮応力が0となる短辺端を基準位置としてL1 −L3等を設定したが、逆に、最大となる位置を基準位置にして考えるようにしてもよい。
【図面の簡単な説明】
【図1】参考例1を示す断面図、
【図2】参考例1を示す断面図、
【図3】参考例1を示す断面図、
【図4】参考例1の抵抗器の拡大断面図、
【図5】参考例1の一部回路図、
【図6】回路基板の反りを示す模式図、
【図7】回路基板への曲げ力と抵抗器の抵抗値変化率との関係を試験するための試験装置を示す模式図、
【図8】図6の試験装置による試験結果を示す特性図、
【図9】回路基板の変位量と抵抗器の抵抗値変化量との関係を示す特性図、
【図10】回路基板の湾曲に伴い抵抗器に加わる応力の回路基板の長手方向への変化を示す特性図、
【図11】参考例1の変形態様を示す平面図、
【図12】参考例1の変形態様を示す平面図、
【図13】参考例1の変形態様を示す平面図、
【図14】参考例2を示す断面図、
【図15】参考例3を示す平面図、
【図16】参考例4を示す平面図、
【図17】実施例1を示す正面図、
【図18】参考例5を示す断面図、
【図19】参考例6を示す正面図、
【図20】参考例7を示す正面図、
【図21】実施例の回路図、
【図22】実施例を示す平面図、
【図23】参考例8を示す平面図。
【符号の簡単な説明】
1はケース、2は回路基板、3はモールド樹脂部、4はリード、R1、R2は抵抗器、[0001]
[Industrial application fields]
The present invention relates to an electronic circuit device, and more particularly to a resin mold hybrid IC.
[0002]
[Prior art]
Conventional hybrid ICs are classified into SIP type and DIP type depending on the lead take-out structure. In the case of resin molding (sealing), the circuit is applied to the mold or case by the casting method, immersion method, transfer method, etc. A substrate is inserted in advance, and a liquid or powdery thermosetting resin (for example, epoxy resin or silicone resin) is molded.
[0003]
[Problems to be solved by the invention]
However, in the conventional hybrid IC described above, stress is generated mainly in the process in which the resin shrinks due to the heat curing of the mold resin portion and the subsequent cooling, and the shrinkage rate and thermal expansion coefficient between the mold resin portion and the circuit board. Residual stress is generated between the two due to the difference. These stresses act on the resistor fixed to the circuit board, and as a result, the resistance value of the resistor changes according to the stress received.
[0004]
According to the test and analysis by the present inventors, the compression stress and the bending stress in the direction perpendicular to the surface act on the circuit board due to the shrinkage of the mold resin portion, and the bending stress causes the resistor to be compressed or tensile. I understood. Since the bending stress varies in each part of the circuit board, the resistance value of the resistor varies depending on the position where the resistor is formed on the circuit board, and as a result, the output of the circuit using the resistance value varies.
[0005]
It was also confirmed that the resistance value of the resistor varies depending on the stress applied from the outside of the hybrid IC.
The present invention has been made in view of the above problems, and is caused by a change in the resistance value of a resistor due to a curing shrinkage stress generated between a mold resin portion and a circuit board, a stress caused by a difference in thermal expansion coefficient, an external stress, and the like. An object of the present invention is to provide an electronic circuit device capable of reducing variations in circuit output.
[0006]
[Means for Solving the Problems]
The electronic circuit device of each invention includes a circuit board housed in a case, a pair of guide protrusions disposed on an inner surface of the case and holding a short side of the circuit board, and fixed to the circuit board. A circuit including first and second resistors (groups) composed of one or more resistors and disposed on the circuit board, a mold resin portion filled in the case, and one end fixed to the circuit board. In an electronic circuit device comprising a lead having the other end penetrating the mold resin portion and projecting outside,
The resistors (group) are arranged at positions where the output changes of the circuit due to changes in resistance values of the resistors (group) caused by stress cancel each other.
[0007]
As the resistor referred to in the present invention, thin film resistors formed by various PVD methods and CVD methods can be employed in addition to thick film resistors formed by printing and baking. These resistors can be bonded and fixed to the circuit board with a conductive paste, adhesive, solder, or the like, and other resistors formed directly on the circuit board are also included. These resistors are mounted on a circuit board together with other passive circuit elements such as capacitors and active circuit elements such as ICs and transistors.
[0008]
Preferably, the output of the circuit is a function of the product or sum of both resistance values, and the two resistors are each composed of a single resistor, the due to the stress which the two resistors to nest both absolute value of the change rate of the resistance Ru is substantially equal to.
[0010]
Preferably, the two resistors are arranged at a position equidistant from one short side of the circuit board.
Preferably, the resistors are arranged at equidistant positions from both short sides of the circuit board.
Preferably, both the resistors are arranged at the edge of the substrate.
[0011]
In the first invention, in particular, the resistor R1 as the first resistor and the resistor R2 as the second resistor are the equidistant positions in the longitudinal direction of the circuit board from the short side of the circuit board. fixed individually to the front and back of the circuit board Rutotomoni, the resistor R1 and the resistor R2 is a resistor having the same configuration, the output of the circuit, the resistance value of the resistor R1 r1, the resistor When the resistance value of R2 is r2, it is a function value with (r1 × r2) or (r1 + r2) as a variable.
In the second invention , in particular, the circuit includes an operational amplifier OP and an operational amplifier voltage amplification circuit having resistors R1 and R3 as the first resistor group and resistors R2 and R4 as the second resistor group. a Rutotomoni, is the resistor R4 least the resistor R1 and the resistor R2 and the resistor R3 is a resistor having the same configuration, the first input terminal and an operational amplifier OP of the operational amplifier voltage amplifier circuit - The resistance value of the resistor R1 that connects the input terminal is r1, the resistance value of the feedback resistor R2 is r2, and the resistance value of the resistor R3 that connects the second input terminal and the + input terminal of the operational amplifier OP. r3, when the resistance value of the bias resistor R4 between the positive input terminal of the operational amplifier OP and the ground terminal is r4, the resistors R1 and R2 are from the short side of the circuit board to the longitudinal direction of the circuit board. Equidistant The resistors R3 and R4 are fixed at an equal distance from the short side of the circuit board in the longitudinal direction of the circuit board.
[0012]
[Operation and effect of the invention]
Stress is generated in the circuit board due to cure shrinkage of the mold resin portion. Alternatively, stress is generated due to a difference in coefficient of thermal expansion between the mold resin and the circuit board, or external factors. This stress acts on the first and second resistor groups fixed to the mold resin portion and the circuit board, and the resistance values of both resistor groups change.
[0013]
In the present invention, the change amount of the circuit output due to the change in the circuit output due to the change in the resistance value of the first resistor group is equal to the change amount of the circuit output due to the change in the resistance value of the second resistor group, and the change direction. The fixed positions on the circuit board with opposite (increase / decrease directions) are selected, and both resistor groups are fixed to these fixed positions.
As a result, regardless of changes in the resistance values of the two resistor groups due to the stress, fluctuations in the circuit output are almost canceled and a highly accurate electronic circuit device can be realized.
[0014]
【Example】
( Reference Example 1)
Reference Example 1 of the electronic circuit device of the present invention is shown in FIGS.
This electronic circuit device is a hybrid IC, and includes a case 1, a circuit board 2 accommodated in the case 1, a mold resin portion 3 filled in the case 1, and one end of the circuit board. 2 and a lead 4 that protrudes to the outside through the mold resin portion 3. In FIG. 1, the mold resin portion 3 on the main surface of the circuit board 2 is separated and shown.
[0015]
The case 1 has a rectangular hollow body shape of 50 mm × 6 mm × 18 mm in height, width, and height, and the bottom surface is opened. The wall thickness of the case 1 is about 1 mm, and is formed by injection molding of PBT resin. A pair of guide projections 11 for positioning and guiding the circuit board 2 are provided in parallel with each other on both inner end surfaces located at both longitudinal ends of the case 1.
[0016]
The circuit board 2 is a multilayer board made of alumina, and both short sides 21 and 22 of the circuit board 2 are gently fitted and held between the pair of guide protrusions 11. The dimensions of the circuit board 2 are length, width, thickness 13 mm × 47.5 mm × 0.8 mm, and its linear expansion coefficient is about 7.5 × 10 −6 / ° C. A multilayer wiring pattern (not shown) is formed on the circuit board 2. Various circuit components are fixed and electrically connected to one surface of the circuit board 2. In particular, in this embodiment, resistors R1 and R2 are fixed at a distance of about 2 mm from the short side 21 and close to the short side 21 of the circuit board 2, and similarly, close to the short side 21 of the circuit board 2 and short. Resistors R3 and R4 are fixed at a distance of about 4.6 mm from the side 21.
[0017]
The resistors R1 and R2 have a rectangular parallelepiped shape with a length, width, and thickness of 1.5 mm × 0.85 mm × 10 μm, and the longitudinal directions of the resistors R1 and R2 are parallel to the short side 21. Resistors R1 to R4 are thick film resistors made of RuO 2 as partly enlarged in FIG. 4, and are formed on the circuit board 2 by printing and baking. Reference numeral 5 denotes a wiring layer made of Ag and having a thickness of about 10 μm.
[0018]
The mold resin portion 3 is formed by inserting the circuit board 2 into the case 1 and then injecting molten epoxy resin (about 40 degrees Celsius) into the case 1 at room temperature, thermosetting, and cooling. . The linear expansion coefficient of the epoxy resin is about 51 × 10 −6 / ° C., and the volume shrinkage ratio is about 96% when the resin is restored from the molten state to the normal temperature.
The circuit on the circuit board 2 has a monolithic operational amplifier OP and a first-stage sense amplifier (see FIG. 5) composed of resistors R1 and R2. The operational amplifier amplifier circuit has a voltage amplification factor k of (1 + R2 / R1). )
[0019]
The hybrid IC described above warps toward the circuit element mounting surface A as schematically shown in FIG. 6 due to shrinkage of the mold resin portion 3 during curing and cooling. This is because the amount of mold resin on the circuit element mounting surface A side is larger than the amount of mold resin on the back surface side, so that the compressive force (particularly in the longitudinal direction) applied to the circuit element mounting surface A of the circuit board 2 is reduced. This is because the center portion of the circuit board 2 is warped in the direction in which the circuit element mounting surface A is depressed with respect to both short sides 21 and 22 of the circuit board 2. Note that the amount of warpage, that is, the residual stress, naturally changes depending on the temperature change. In addition, the center portion of the circuit board 2 warps in the direction in which the circuit element mounting surface A is depressed with respect to both the long sides 23 and 24 of the circuit board 2, but this warpage amount is relatively small. Ignored.
[0020]
Further, each part of the circuit board 2 is locally strengthened by each circuit element fixed on the circuit element mounting surface A, and the amount of warpage and stress distribution of each part varies, but in this embodiment it is ignored.
Due to the warp of the circuit board 2 (that is, the bending stress in the direction perpendicular to the surface of the circuit board 2), compressive stress is applied to the resistors R1 and R2 fixed thereon.
[0021]
The relationship between the stress applied to the circuit board 2 and the change in the resistance value of the resistor fixed to the circuit board was examined. Circuit board 20 for testing, as shown in FIG. 7, the vertical, horizontal, having dimensions of 13 mm × 47.5 mm × 0.8 mm thickness, longitudinal ends of the circuit board 2 0 pedestal 90 Was supported. Resistor R is fixed from the short side 21 of the circuit board 20 to position the 0.153Mm, and presses the center of the circuit board 2 0 to the circuit board 2 0, investigating changes in the resistance value. The result is shown in FIG.
[0022]
From FIG. 8, the pressing force (bending stress) ΔF and the change in resistance value ΔR are in a substantially linear relationship. When the circuit board 2 is bent by this pressing force, the resistance decreases when the resistor R1 generates a compressive stress. It has been found that when a tensile stress is generated in the resistor R1, an increase in resistance occurs. In this embodiment, the longitudinal direction of the resistor R1, that is, the energizing direction is the longitudinal direction of the circuit board 2. However, the longitudinal direction of the resistor R1, that is, the energizing direction, may be changed by changing the angle with the longitudinal direction of the circuit board 2. It has been found that the resistance decreases when a compressive stress occurs in the resistor R1, and the resistance increases when a tensile stress occurs in the resistor R1.
[0023]
Next, the relationship between the warpage amount (displacement amount) and the resistance value change amount in the circuit board 20 of FIG. 7 was examined. The result is shown in FIG. However, the amount of warpage was the maximum displacement at the center of the substrate.
In the case of pressing the central portion and supports the both short sides 21, 22 of the circuit board 2 0, compressive or tensile stress acting in longitudinal direction each part of the circuit board 2 0 by the elastic deformation of the circuit board 2 0 10 As shown in FIG. 5, the central portion is maximum at both short sides 21 and 22 and is almost zero, and changes continuously (substantially linearly).
[0024]
Next, the change in the resistance value of the resistor R when the circuit board 20 having the resistor R fixed at the above-described position was accommodated in the case 1 and molded entirely with the mold resin portion was examined. As a result, the average value of the resistance value change rate of the resistor R1 was about -0.7% at room temperature.
Hereinafter, the characteristic points of the reference example 1 will be described.
[0025]
As described above, in the first reference example , the resistors R1 and R2 are fixed at equidistant positions from the short side 21 in the longitudinal direction of the circuit board 2. As a result, the compressive stress acting on the resistors R1 and R2 through the circuit board 2 described above becomes equal, and as a result, the resistance value change rates of the resistors R1 and R2 become equal.
Since the voltage amplification factor k of the operational amplifier voltage amplification circuit using the resistors R1 and R2 is (1 + R2 / R1), the influence of the warp of the circuit board 2 is based on the output characteristic (voltage amplification factor k) of the operational amplifier voltage amplification circuit. Canceled.
[0026]
In Reference Example 1 , since the resistors R1 and R2 are arranged close to the short side 21, the compressive stress acting on the resistors R1 and R2 proportional to the bending stress of the circuit board 2 is small, and the difference in compressive stress Can also be reduced. As a result, the influence of the warp of the circuit board 2 is reduced from the output characteristics (voltage amplification factor k) of the operational amplifier voltage amplification circuit.
Furthermore, in this reference example 1 , the longitudinal directions of the resistors R1 and R2 are arranged in parallel with the short side 21. In this way, variation in compressive stress acting on each part of resistors R1 and R2 is small, and variation in resistance values of both resistors R1 and R2 is also small.
[0027]
As a result, the variation in the voltage amplification factor of the first-stage sense amplifier composed of the operational amplifier voltage amplifier circuit can be greatly reduced. Normally, much higher stability compared to the subsequent circuit stage to handle a larger signal voltage voltage gain of the first stage sense amplifier for amplifying a small input signal voltage or signal current is required, according to this reference example Therefore, the variation in voltage amplification factor can be greatly reduced, which is suitable for such a first-stage sense amplifier.
[0028]
The longitudinal directions of the resistors R1 and R2 can be parallel to the long sides 23 and 24 of the circuit board 2 (see FIG. 11), and the longitudinal directions of the resistors R1 and R2 and the circuit board 2 The angle with the longitudinal direction may be set to a predetermined value (see FIG. 12), and the resistors R1 and R2 may be arranged so as to have a mirror image relationship with respect to the longitudinal reference line of the circuit board 2 (see FIG. 12). 13).
[0029]
In particular, in FIGS. 11 and 13, the resistors R <b> 1 and R <b> 2 are symmetrically arranged with respect to the center line C extending in the longitudinal direction of the circuit board 2, and the long sides 23 and 24 of the circuit board 2 are curved with respect to the center line C. There is also an effect that the increasing rates of both resistors R1 and R2 with respect to deformation become equal.
( Reference Example 2)
In the reference example 1 , the mold resin portion 3 made of epoxy resin is formed by directly contacting the circuit board 2 and the circuit elements on the circuit board 2, but the circuit elements including resistors R1 and R2 are formed as shown in FIG. After covering with the soft gel-like silicon resin layer 8, the mold resin portion 3 may be formed. If it does in this way, the compressive stress which acts on resistor R1, R2 can be reduced. Reference numeral 5 denotes a wiring electrode.
[0030]
That is, the circuit board 2 is curved because the amount of the mold resin on the circuit element mounting surface A side is larger than the amount of the mold resin on the back surface B side, and the contraction force acting on the circuit element mounting surface A is excellent. It turned out that the board | substrate 2 curves to the circuit element mounting surface A side. Therefore, if the contraction force (bending stress) of the mold resin portion 3 acting on the circuit element mounting surface A is reduced by covering the circuit element mounting surface A with the gel-like silicon resin layer 8, the bending of the circuit board 2 is reduced. Alternatively, the stable voltage amplification factor is obtained in combination with the pair arrangement effect of the resistors R1 and R2 of Reference Example 1.
[0031]
( Reference Example 3)
Another reference example is shown in FIG.
In this reference example, the resistors R1 and R2 are subjected to laser trimming, and the distance from the short side 21 of the fusing region Aw by laser trimming is approximately equal.
[0032]
In this way, even after laser trimming, the substantial distances of the resistors R1 and R2 from the short side 21 are equal, the rate of increase in resistance value associated with the curve of the circuit board 2 is substantially equal, and both resistance values are Variations can be canceled.
( Reference Example 4)
Another reference example is shown in FIG.
[0033]
In this reference example, the distance of the resistor R1 from the short side 21 and the distance of the resistor R2 from the short side 22 are equally arranged.
Even if it does in this way, the resistance value change rate of resistor R1, R2 becomes substantially equal, and it becomes possible to cancel the dispersion | variation in the said resistance value.
(Example 1 )
Example 1 is shown in FIG.
[0034]
In this embodiment, the resistors R1 and R2 are individually fixed to the front and back of the circuit board 2 at equidistant positions from the short side 21 in the longitudinal direction of the circuit board 2.
The output (output voltage or output current or output frequency) of the circuit using the resistors R1 and R2 is (r1) when the resistance value of the resistor R1 is r1 and the resistance value of the resistor R2 is r2. * R2) or an arbitrary function value having (r1 + r2) as a variable.
[0035]
In this way, the resistance value increase rate of the resistor R1 and the resistance value decrease rate of the resistor R2 are canceled by their product or sum.
Reference Example 5 Another reference example is shown in FIG.
In this reference example, the resistors R1 and R2 are fixed in an overlapping manner in the thickness direction at equidistant positions from the short side 21 in the longitudinal direction of the circuit board 2. That is, after the resistor R1 is fixed on the circuit board 2, the interlayer glass film 7 is coated on the circuit board 2, and the resistor R2 is fixed thereon. The thickness of the interlayer glass film 7 was about 0.05 mm. Since the interlayer glass film 7 is sufficiently thin with respect to the thickness of the circuit board 2 of 0.8 mm, it can be approximated that the compressive stress applied to both resistors R1 and R2 is substantially equal. Since the compressive stress acting on the inner resistor R1 is slightly smaller than the compressive stress acting on the outer resistor R2, the inner resistor R1 is placed closer to the longitudinal center of the circuit board 2 than the outer resistor R2. It may be slightly displaced.
[0036]
According to this reference example, since the distance from the long side 23 of the circuit board 2 becomes equal, the short side parallel acting on the resistors R1 and R2 by the bending stress in the bending direction of the short sides 21 and 22 of the circuit board 2 is obtained. The compressive stress in the direction can also be canceled.
( Reference Example 6 )
Another reference example is shown in FIG.
[0037]
In this reference example, the resistor R1 is fixed at a distance L1 from the short side 21 in the longitudinal direction of the circuit board 2, and the resistor R2 is distanced from the short side 21 (or the short side 22) in the longitudinal direction of the circuit board 2. The position of the circuit using the resistors R1 and R2 (output voltage or output current or output frequency) is fixed at the position of L2, and the resistance value of the resistor R1 is r1 and the resistance value of the resistor R2 Where r2 is an arbitrary function value having (r1−a × r2) as a variable. Note that a is a constant value equal to the resistance value increase amount Δr1 of the resistor R1 and the resistance value increase amount Δr2 of the resistor R2. In this way, the variable (r1−a × r2) becomes (r1 + Δr1−a × r2−a × Δr2), and Δr1 = a × Δr2, so that the change in the resistance values of the resistors R1 and R2 is canceled out. Is done.
[0038]
In this reference example, the distance from the short side 21 and the resistance value increase rate of the resistors R1 and R2 are linearly proportional.
( Reference Example 7 )
Another reference example is shown in FIG. In this reference example, the resistor R2 is fixed to the back surface of the circuit board 2 in the reference example 6 , and the output (output voltage or output current or output frequency) of the circuit using the resistors R1 and R2 is used. Is an arbitrary function value with (r1 + a × r2) as a variable, where r1 is the resistance value of the resistor R1 and r2 is the resistance value of the resistor R2. Note that a is a constant value equal to the resistance value increase amount Δr1 / resistance value decrease rate of the resistor R2 of the resistor R1. In this way, the variable (r1 + a × r2) becomes (r1 + Δr1 + a × r2-a × Δr2), and Δr1−a × Δr2 = 0, so that changes in the resistance values of the resistors R1 and R2 are canceled out. .
[0039]
(Embodiment 2 ) Another embodiment is shown in FIGS.
This embodiment is a first-stage sense amplifier composed of an operational amplifier voltage amplification circuit using resistors R1 to R4. The arrangement of resistors R1 to R4 is the same as in FIG. Equal distance in the longitudinal direction of the substrate 2, the resistors R <b> 3 and R <b> 4 are equidistant from the short side 21 in the longitudinal direction of the circuit board 2. Further, the voltage amplification factor K of the sense amplifier is such that the resistance value of the resistor R1 is r1, the resistance value of the resistor R2 is r2, the resistance value of the resistor R3 is r3, and the resistance value of the resistor R4 is r4. In addition,
Figure 0003685501
It becomes.
[0040]
Therefore, the influence of variations in the resistance values r1 to r4 due to the distortion of the circuit board 2 on the voltage amplification factor K is offset.
( Reference Example 8 )
Another reference example is shown in FIG.
This reference example is obtained by changing the arrangement of the resistors R1 to R4 in the second embodiment. That is, in this reference example, the resistor R2 is fixed at a distance from the short side 21 to L1, the resistors R1 and R4 are fixed at a distance from the short side 21 to L2, and the resistor R3 is a distance from the short side 21 to L3. It is fixed to.
[0041]
L1 / L2 = L2 / L3 is set. The compressive stress applied to the resistors R <b> 1 to R <b> 4 due to the curved deformation of the circuit board 2 is 0 at the short side 21, and increases in proportion to the distance from the short side 21 to the longitudinal direction of the circuit board 2. In this case as well, it is obvious that the amplification factor K does not change. It can be understood from this reference example that the first resistor group (resistors R1 and R2 in this case) due to the curvature of the circuit board 2 has an influence on the output characteristics of the circuit, so The arrangement pattern of the first and second resistor groups on the circuit board 2 is set so as to cancel the influence of the change of the two resistor groups (here, the resistors R3 and R4) on the output characteristics of the circuit. Thus, it is possible to cancel a change in resistance value of a resistor group including a plurality of resistors.
[0042]
In the above embodiment , the application example to the operational amplifier voltage amplification circuit has been described. However, the present invention is widely applied to various circuits such as current amplification, waveform processing, frequency processing, digital processing, comparator, A / D conversion, and D / A conversion. Naturally, it can be applied, and is particularly suitable for the first stage portion of these circuits that require the highest precision. In the above embodiment , L 1 -L 3 and the like are set with the short side end where the compressive stress is 0 as the reference position, but conversely, the maximum position may be considered as the reference position.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing Reference Example 1.
FIG. 2 is a sectional view showing Reference Example 1.
3 is a cross-sectional view showing Reference Example 1. FIG.
FIG. 4 is an enlarged cross-sectional view of the resistor of Reference Example 1,
FIG. 5 is a partial circuit diagram of Reference Example 1.
FIG. 6 is a schematic diagram showing warpage of a circuit board;
FIG. 7 is a schematic diagram showing a test apparatus for testing a relationship between a bending force to a circuit board and a resistance value change rate of a resistor;
FIG. 8 is a characteristic diagram showing a test result by the test apparatus of FIG.
FIG. 9 is a characteristic diagram showing the relationship between the displacement amount of the circuit board and the resistance value change amount of the resistor;
FIG. 10 is a characteristic diagram showing the change in the longitudinal direction of the circuit board of the stress applied to the resistor as the circuit board is curved;
11 is a plan view showing a modification of Reference Example 1, FIG.
12 is a plan view showing a modified embodiment of Reference Example 1, FIG.
13 is a plan view showing a modification of Reference Example 1, FIG.
14 is a cross-sectional view showing Reference Example 2. FIG.
FIG. 15 is a plan view showing Reference Example 3,
16 is a plan view showing Reference Example 4, FIG.
FIG. 17 is a front view showing Example 1;
18 is a sectional view showing Reference Example 5 , FIG.
19 is a front view showing Reference Example 6 , FIG.
20 is a front view showing Reference Example 7 , FIG.
FIG. 21 is a circuit diagram of Example 2 ,
FIG. 22 is a plan view showing Example 2 ;
23 is a plan view showing Reference Example 8. FIG.
[Brief description of symbols]
1 is a case, 2 is a circuit board, 3 is a mold resin part, 4 is a lead, R1 and R2 are resistors,

Claims (2)

ケース内に収納された回路基板と、前記ケースの内面に配設されて前記回路基板の短辺を保持する一対のガイド突起と、前記回路基板に固定され第1、第2抵抗器を含み前記回路基板に配設された回路と、前記ケース内に充填されたモールド樹脂部と、一端が前記回路基板に固定され他端が前記モールド樹脂部を貫通して外部に突出するリードとを備える電子回路装置において、
応力に起因する前記両抵抗器の抵抗値変化による前記回路の出力変化が互いに相殺し合う位置に、前記両抵抗器が配設され、
前記第1抵抗器としての抵抗器R1及び前記第2抵抗器としての抵抗器R2は、前記回路基板の短辺から前記回路基板の長手方向における等距離位置にて前記回路基板の表裏に個別に固定されるとともに、前記抵抗器R1と前記抵抗R2は同一の構成を有する抵抗器であり
前記回路の出力は、前記抵抗器R1の抵抗値をr1、前記抵抗器R2の抵抗値をr2とした場合に、(r1×r2)又は(r1+r2)を変数とする関数値とされることを特徴とする電子回路装置。
A circuit board housed in a case; a pair of guide protrusions disposed on an inner surface of the case to hold a short side of the circuit board; and first and second resistors fixed to the circuit board. An electronic device comprising a circuit disposed on a circuit board, a mold resin portion filled in the case, and a lead having one end fixed to the circuit board and the other end penetrating the mold resin portion and projecting outside. In the circuit device,
A position change in the output of the circuit the by resistance change of the two resistors due to stress cancel each other, the two resistor is arranged,
The resistor R1 as the first resistor and the resistor R2 as the second resistor are individually provided on the front and back of the circuit board at equidistant positions in the longitudinal direction of the circuit board from the short side of the circuit board. fixed Rutotomoni, the resistor R2 and the resistor R1 is a resistor having the same configuration,
The output of the circuit is a function value with (r1 × r2) or (r1 + r2) as a variable, where r1 is the resistance value of the resistor R1 and r2 is the resistance value of the resistor R2. Electronic circuit device characterized.
ケース内に収納された回路基板と、前記ケースの内面に配設されて前記回路基板の短辺を保持する一対のガイド突起と、前記回路基板に固定され第1、第2抵抗器群を含み前記回路基板に配設された回路と、前記ケース内に充填されたモールド樹脂部と、一端が前記回路基板に固定され他端が前記モールド樹脂部を貫通して外部に突出するリードとを備える電子回路装置において、
応力に起因する前記両抵抗器群の抵抗値変化による前記回路の出力変化が互いに相殺し合う位置に、前記両抵抗器群が配設され、
前記回路は、オペアンプOP及び前記第1の抵抗器群としての抵抗器R1、R3、前記第2の抵抗器群としての抵抗器R2、R4を有するオペアンプ電圧増幅回路からなるとともに、少なくとも前記抵抗器R1と前記抵抗R2及び前記抵抗器R3と前記抵抗器R4は同一の構成を有する抵抗器であり
前記オペアンプ電圧増幅回路の第一の入力端とオペアンプOPの−入力端とを接続する抵抗器R1の抵抗値をr1、その帰還抵抗器R2の抵抗値をr2、その第二の入力端とオペアンプOPの+入力端とを接続する抵抗器R3の抵抗値をr3、オペアンプOPの+入力端と接地端との間のバイアス抵抗器R4の抵抗値をr4とする場合に、抵抗器R1、R2は、前記回路基板の短辺から前記回路基板の長手方向へ等距離に固定され、抵抗器R3、R4は、前記回路基板の短辺から前記回路基板の長手方向へ等距離に固定されることを特徴とする電子回路装置。
A circuit board housed in the case; a pair of guide protrusions disposed on an inner surface of the case to hold a short side of the circuit board; and first and second resistor groups fixed to the circuit board. A circuit disposed on the circuit board; a mold resin part filled in the case; and a lead having one end fixed to the circuit board and the other end penetrating the mold resin part and projecting to the outside. In an electronic circuit device,
The two resistor groups are arranged at a position where the output changes of the circuit due to the resistance value changes of the two resistor groups due to stress cancel each other,
The circuit includes an operational amplifier OP and the first resistor R1, R3 as resistor group, the second resistor R2 as resistor group, R4 such an operational amplifier voltage amplifier having Rutotomoni, at least the resistance The resistor R1 and the resistor R2, and the resistor R3 and the resistor R4 are resistors having the same configuration .
The resistance value of the resistor R1 connecting the first input terminal of the operational amplifier voltage amplifier circuit and the negative input terminal of the operational amplifier OP is r1, the resistance value of the feedback resistor R2 is r2, and the second input terminal and the operational amplifier. When the resistance value of the resistor R3 connecting the + input terminal of OP is r3, and the resistance value of the bias resistor R4 between the + input terminal of the operational amplifier OP and the ground terminal is r4, the resistors R1 and R2 Are fixed equidistant from the short side of the circuit board in the longitudinal direction of the circuit board, and the resistors R3 and R4 are fixed equidistant from the short side of the circuit board in the longitudinal direction of the circuit board. An electronic circuit device characterized by the above.
JP18841892A 1992-07-15 1992-07-15 Electronic circuit equipment Expired - Fee Related JP3685501B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18841892A JP3685501B2 (en) 1992-07-15 1992-07-15 Electronic circuit equipment
US08/091,718 US5483217A (en) 1992-07-15 1993-07-15 Electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18841892A JP3685501B2 (en) 1992-07-15 1992-07-15 Electronic circuit equipment

Publications (2)

Publication Number Publication Date
JPH0636908A JPH0636908A (en) 1994-02-10
JP3685501B2 true JP3685501B2 (en) 2005-08-17

Family

ID=16223320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18841892A Expired - Fee Related JP3685501B2 (en) 1992-07-15 1992-07-15 Electronic circuit equipment

Country Status (1)

Country Link
JP (1) JP3685501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116409A (en) * 2012-12-07 2014-06-26 Denso Corp Electronic device

Also Published As

Publication number Publication date
JPH0636908A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
US7441467B2 (en) Compression strain sensor
US5945601A (en) Acceleration sensor with temperature resistor elements
KR900004369B1 (en) Bridge circuit
US4443729A (en) Piezoceramic bender element having an electrode arrangement suppressing signal development in mount region
US5761957A (en) Semiconductor pressure sensor that suppresses non-linear temperature characteristics
EP1677089B1 (en) Integrated pressure sensor and method of manufacture
JPH02238365A (en) Temperature compensating circuit
US7394610B2 (en) Acceleration sensor and magnetic disk device using the same
JP3685501B2 (en) Electronic circuit equipment
JPH01311712A (en) Thin profile piezoelectric vibrator unit
JPH0797117B2 (en) A circuit device for generating an output signal that is non-linearly dependent on temperature
JP3628028B2 (en) Electronic circuit equipment
US5483217A (en) Electronic circuit device
JPH08304447A (en) Semiconductor accelerometer and its manufacture
JP3070272B2 (en) Electronic circuit device
US6490926B2 (en) Acceleration sensor module
JP3047632B2 (en) Electronic circuit device
US20240059554A1 (en) Mems module
JP2877173B2 (en) Semiconductor pressure sensor and method of forming protective film therefor
JPH04131721A (en) Stress sensor
KR900004739B1 (en) Load cell having a thin film strain-inducible element
JP2003207406A (en) Semiconductor sensor device
JPS6321125B2 (en)
JPH05296706A (en) Shape measurement sensor
JP2627279B2 (en) Magnetoresistive element assembly

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees