JP3680182B2 - Moving coil type linear actuator - Google Patents

Moving coil type linear actuator Download PDF

Info

Publication number
JP3680182B2
JP3680182B2 JP03945295A JP3945295A JP3680182B2 JP 3680182 B2 JP3680182 B2 JP 3680182B2 JP 03945295 A JP03945295 A JP 03945295A JP 3945295 A JP3945295 A JP 3945295A JP 3680182 B2 JP3680182 B2 JP 3680182B2
Authority
JP
Japan
Prior art keywords
linear guide
guide body
movable coil
soft magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03945295A
Other languages
Japanese (ja)
Other versions
JPH08214528A (en
Inventor
貴俊 大山
信之 眞保
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP03945295A priority Critical patent/JP3680182B2/en
Publication of JPH08214528A publication Critical patent/JPH08214528A/en
Application granted granted Critical
Publication of JP3680182B2 publication Critical patent/JP3680182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、可動コイルへの通電により可動コイルを直線移動させることが可能な可動コイル型リニアアクチュエータに係り、とくに磁気ヘッド等の被駆動体の位置制御等に使用可能な可動コイル型リニアアクチュエータに関する。
【0002】
【従来の技術】
従来、この種の装置としては、実開平3−40876号のソレノイド装置が知られている。このソレノイド装置は、図8に示すように、断面コ字状の円筒形状の磁性体よりなる外部ヨーク1内に、同極対向された2個の永久磁石2,4を内部ヨーク3を挟んで固定配置し、さらにサブヨーク5及びこれと一体の軸8を前記永久磁石4上に固着し、前記外部ヨーク1と内部ヨーク3との隙間に筒状非磁性体の移動部材7を配置しかつ前記軸8にて移動自在にガイドされるようにし、移動部材7の挿入先端にコイル9を固定したものである。
【0003】
この場合、コイル9に通電することで、前記軸8をガイド軸としてコイル9と一体の移動部材7が直線的に移動する。
【0004】
【発明が解決しようとする課題】
ところで、上述の如き従来装置は、永久磁石及び内部ヨークの他に、動作出力を取り出すための移動部材を移動自在にガイドする軸にある程度の長さが必要となり、アクチュエータの全長を短く設計することができない。また、アクチュエータの端部にて出力をジョイントするために、アクチュエータを含むユニットとしても全長を短く設計することができない。さらに、永久磁石及び内部ヨークの他に移動部材をガイドする軸が必要不可欠であるため、部品点数も多くなる嫌いがある。
【0005】
本発明は、上記の点に鑑み、構造を簡略化し、部品点数の低減、小型化、並びに原価低減を図った可動コイル型リニアアクチュエータを提供することを目的とする。
【0006】
本発明のその他の目的や新規な特徴は後述の実施例において明らかにする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の可動コイル型リニアアクチュエータは、同極対向された少なくとも2個の永久磁石間に軟磁性体を設けた構造を有する直線ガイド体と、
該直線ガイド体の外周面に対し直接摺動するボビンに駆動コイルを巻装してなる可動コイル体と
該可動コイル体の外側を囲む軟磁性体の外部ヨークと、
前記直線ガイド体の両端面にそれぞれ固着されかつ前記外部ヨークの両端に固着された軟磁性体のサイドヨークと、を備え、
前記外部ヨークは前記直線ガイドの周囲を前記可動コイル体の移動空間を隔てて筒状に囲みかつ前記可動コイル体の外周側に延在する出力取出し部材の通過する部分に切り割りが設けられており、
前記可動コイル体が前記直線ガイド体の外周面を直接摺動することで直線移動するように案内されることを特徴としている。
【0008】
また、前記直線ガイド体は、前記永久磁石及び前記軟磁性体の外周面を非磁性材で覆ったものであってもよい。
【0009】
さらに、前記直線ガイド体が同極対向された2個の永久磁石間に軟磁性体を設けた構造を有し、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部が除去又は面積が減じられている構成、あるいは、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部のみが筒状に囲んでいる構成としてもよい。
【0011】
また、前記可動コイル体は速度検出用コイルをさらに備えるものであってもよい。
【0012】
【作用】
本発明の可動コイル型リニアアクチュエータにおいては、同極対向された少なくとも2個の永久磁石及びそれらの間の軟磁性体で、可動コイル体が摺動する直線ガイド体を構成でき、可動コイル体を直線移動自在に案内するガイド軸等を別に設ける必要がなく、構造を簡略化して部品点数の削減を図ることができる。また、前記永久磁石及び軟磁性体の他にガイド軸を設けることが不要であるため、全長を短縮して小型に構成でき、ひいては可動コイル型リニアアクチュエータを用いるユニットの長さを短縮して小型化を図ることもできる。
【0013】
また、前記直線ガイド体が、前記永久磁石及び前記軟磁性体の外周部を非磁性材で覆ったものである場合、非磁性材を適切に選択することで、非磁性材外周面を直接摺動する可動コイル体を円滑に移動させることができる。例えば、非磁性材として摩擦の少ない材質を選ぶことで可動コイル体の移動時の摩擦抵抗の低減を図ることができ、また耐摩耗性の材質を選ぶことで長寿命化を図ることができる。さらに、前記非磁性材を薄肉パイプとすることで、永久磁石及び軟磁性体を同軸上に組み立てることが容易となる。
【0014】
さらに、前記直線ガイド体が同極対向された2個の永久磁石間に軟磁性体を設けた構造を有し、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部が除去又は面積が減じられている構成、あるいは、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部のみが筒状に囲んでいる構成とした場合、可動コイル体の直線移動方向に垂直な磁界成分を均一化し、推力のフラット性を向上させることができる。すなわち、可動コイル体のストロークの広い範囲にわたり推力を実質的に一定にでき、位置制御の精度の向上及び信頼性の向上を図ることができる。
【0015】
また、前記可動コイル体の外周側に出力取出し部材を設ける構成とした場合、前記出力取出し部材は前記直線ガイド体の軸方向の延長線上に突出することがないため、全長を短く、小型化できる。
【0016】
また、前記可動コイル体が速度検出用コイルを有する場合、該速度検出用コイルの誘起電圧を利用して当該可動コイル体の移動速度や移動周期を検出できる。
【0017】
【実施例】
以下、本発明に係る可動コイル型リニアアクチュエータの実施例を図面に従って説明する。
【0018】
図1及び図2は本発明に係る可動コイル型リニアアクチュエータの第1実施例を示す。これらの図において、可動コイル型リニアアクチュエータは、2個の永久磁石11A,11B及びそれらに挟まれた軟磁性体12で構成された直線ガイド体10と、該直線ガイド体10に対し直接摺動するボビン21に駆動コイル22を巻装してなる可動コイル体20と、該可動コイル体20の移動空間を残して前記直線ガイド体10の外側を囲む外部ヨーク30と、外部ヨーク30の両端に固着されかつ永久磁石11A,11Bの外側端面に当接、固着されたサイドヨーク31とを備えている。
【0019】
前記永久磁石11A,11Bは、例えば、小型で強力な磁力を発生可能な希土類永久磁石であり、鉄等の軟磁性体12を挟んで同極対向配置となっており、永久磁石11A,11B及び軟磁性体12共に同一外径の円柱乃至円板形状である。従って、永久磁石11A,11B及び軟磁性体12の外周面は同一で段差の無いように揃っており、円柱形状の直線ガイド体10を構成している。この場合、直線ガイド体10の軸方向(可動コイル体20が直線移動する長手方向)と永久磁石11A,11Bの磁化方向とが一致している。なお、永久磁石11A,11B及び軟磁性体12相互の固着一体化は、接着剤等で行うことができる。
【0020】
前記円柱形状の直線ガイド体10の外周面上を摺動自在な可動コイル体20が有するボビン21は、例えば、耐摩耗性に優れた絶縁樹脂製であり、直線ガイド体10の外周面を環状に囲みかつ両端に鍔21aを持つ断面がコ字状である。そして、ボビン21の内周部(内周面)が直線ガイド体10の外周面をガイドとして直接摺動可能に配置されている。この結果、可動コイル体20は前記直線ガイド体10により直線移動するように案内されることになる。なお、前記駆動コイル22は前記直線ガイド体10を周回する向きでボビン21に巻かれている。また、可動コイル体20の外周近傍、例えばボビン21の両方の鍔21aの外側に、可動コイル体20の動きを外部に出力するための出力取出し部材23が取り付けられている(固着乃至連結されている)。この出力取出し部材23は可動コイル20の外周側、すなわち側方に延在しており、これを介し可動コイル体20は磁気ヘッド等の被駆動系に連結される。
【0021】
前記外部ヨーク30は鉄板等の軟磁性体で円筒状に形成したもので、直線ガイド体10の周囲を可動コイル体20の移動空間を隔てて囲むものであり、外部ヨーク30の両端には同材質の円板状のサイドヨーク31が固着、一体化されている。サイドヨーク31の内面中央には永久磁石11A,11Bの同極対向している磁極の反対側磁極が当接し、接着剤等で固着されている。なお、被駆動系に連結された出力取出し部材23が通過する部分、すなわち可動コイル体20の可動範囲における出力取出し部材23の移動部分には切り割り32が形成されている。なお、外部ヨーク30及びサイドヨーク31は磁気回路のパーミアンス向上(磁気抵抗の低減)と、磁気漏洩を防止するために設けられている。
【0022】
以上の第1実施例の構成によって、2個の永久磁石11A,11Bが同極(N極)対向で軟磁性体12を挟んで配置されていることにより、軟磁性体12の外周面と外部ヨーク30の内周面との間の円筒状空間(可動コイル体20の移動空間)に半径方向の磁束が発生し、すなわち、直線ガイド体10の軸方向(可動コイル体20の移動方向)に垂直な磁界成分が生じる。従って、駆動コイル22に電流を流すことにより、フレミングの左手の法則に基づく推力を可動コイル体20に発生することができ、該可動コイル体20を直線ガイド体10に沿って直線移動させることができ、出力取出し部材23を介し被駆動系を直線駆動可能である。
【0023】
図3は第1実施例の場合における可動コイル体20の軟磁性体12中間位置Pからの変位量X(mm)と推力(gf)との関係を曲線(イ)で示す。この曲線(イ)では変位量X=0で推力は24.20、変位量X=±4で推力は22.20であって推力は変位量X=0に対し8.3%低下しているが、変位量X=±3以内の範囲(駆動コイル22が永久磁石11A,11Bにかからない範囲)では実質的に平坦な推力特性となっている。
【0024】
この第1実施例によれば、次の通りの効果を得ることができる。
【0025】
(1) 同極対向された2個の永久磁石11A,11B間に軟磁性体12を設けた構造を有する直線ガイド体10が可動コイル体20を直線移動可能に案内するガイド軸として機能し、その直線ガイド体10の外周面上に対し可動コイル体20のボビン21を直接軸方向に摺動させることにより、ガイド軸や軸受部材を別途設ける必要がなく、全長の短縮、小型化を図ることができ、部品点数も少なくなり、構造の簡略化、原価低減を図ることができる。
【0026】
(2) 可動コイル体20の外周近傍に、磁気ヘッド等の被駆動系に連結される出力取出し部材23を設けており、可動コイル体20の可動範囲における出力取出し部材23の移動範囲について外部ヨーク30に切り割り32を設けて出力取出し部材23が外部ヨーク30の側方に(外周側に)突出した状態で移動可能とすることで、可動コイル型リニアアクチュエータを含むユニットの全長を短くすることが可能である。
【0027】
(3) 切り割り32の部分を除き、直線ガイド体10の周囲は外部ヨーク30及びサイドヨーク31で閉塞されており、漏洩磁束は少ない。
【0028】
図4は本発明の第2実施例を示す。この場合、直線ガイド体40は、同極対向された2個の永久磁石11A,11B間に軟磁性体12を設け、それらの外周面に非磁性材としての非磁性円筒パイプ13を被せ、それらを相互に固着一体化したものである。非磁性円筒パイプ13は段差の無い一様な外径であり、可動コイル体20のボビン21がその非磁性円筒パイプ13の外周面を軸方向に直接摺動するようにしている。非磁性円筒パイプ13としてはステンレス、真鍮、摩擦係数の小さな樹脂等の薄肉パイプが使用でき、とくに耐摩耗性に優れるステンレスが効果的である。
【0029】
また、円筒状軟磁性体である外部ヨーク50は、推力のフラット性向上のために中央部を除く部分に配置されている。これは、2個の永久磁石11A,11B及びそれらに挟まれた軟磁性体12の外周側に発生する磁界の垂直成分(直線ガイド体40の軸方向に垂直な成分)が比較的小さい端部領域に磁束を集中させて、直線ガイド体40の両端寄り部分での磁界の垂直成分の低下を補償するためである。これにより、直線ガイド体40の全長のうちの大部分の領域で前記磁界の垂直成分が実質的に一様となり、推力のフラット性を一層向上させることができる。
【0030】
なお、その他の構成は前述の第1実施例と同様であり、同一又は相当部分に同一符号を付した。
【0031】
図3の曲線(ロ)は図4の第2実施例の場合における可動コイル体20の軟磁性体12中間位置Pからの変位量X(mm)と推力(gf)との関係を示す。この曲線(ロ)では変位量X=0で推力は23.64、変位量X=±4で推力は22.64であって推力は変位量X=0に対し4.2%低下しているが、これは第1実施例の8.3%低下よりも低下量が少なく推力のフラット性が第2実施例の外部ヨーク50の配置で改善されていることが判る。
【0032】
この第2実施例によれば、永久磁石11A,11B及び軟磁性体12の外周面を非磁性円筒パイプ13で覆った直線ガイド体40を用いているため、可動コイル体20のボビン21の摺動性を良好とし、また組立が容易となり、可動コイル体20の円滑な直線移動動作を実現している。また、直線ガイド体40の中央部に対応する部分には外部ヨーク50が存在せず、外部ヨーク50が直線ガイド体40の両端寄り位置に設けられているため、通常直線ガイド体40の軸方向に垂直な磁界成分が低下しがちな領域に磁束を集中でき、広範囲にわたり前記軸方向に垂直な磁界成分が一様なものとなり推力のフラット性をいっそう良好にすることが可能である。なお、その他の作用効果は前述した第1実施例と同様である。
【0033】
さらに、図4の第2実施例では、直線ガイド体40の中央部に対応する部分には外部ヨーク50が存在しないとしたが、図1の第1実施例の全長にわたる外部ヨークの中央部に部分的に抜き穴をあけて、直線ガイド体40の中央部に対応(対面)するヨーク部分の面積を減じるようにしても差し支えない。
【0034】
図5は本発明の第3実施例を示す。この場合、直線ガイド体60は、同極対向された2個の円柱状の永久磁石11A,11B間に長い寸法の円柱状の軟磁性体62を設け、それらの外周面に非磁性材としての非磁性円筒パイプ63を被せ、それらを相互に固着一体化したものである。非磁性円筒パイプ63は段差の無い一様な外径であり、可動コイル体20のボビン21がその非磁性円筒パイプ63の外周面を軸方向に直接摺動するようにしている。非磁性円筒パイプ63の材質は、前述の第2実施例の場合の非磁性円筒パイプ13と同様である。
【0035】
また、円筒状軟磁性体の外部ヨーク70は、推力のフラット性向上のために直線ガイド体60の中央部に対応する部分のみを円環状に囲むように配置されている。これは、軟磁性体62が長いため、磁界の垂直成分(直線ガイド体60の軸方向に垂直な成分)が軟磁性体62の中間部で低下するので、そこに磁束を集中させて、直線ガイド体60の中央部での磁界の垂直成分の低下を補償するためである。これにより、長い寸法を持つ軟磁性体62を用いた直線ガイド体60であっても、その全長のうちの大部分の領域で前記磁界の垂直成分が実質的に一様となり、可動コイル体20のストロークを大きくするとともに、推力のフラット性を良好に維持することができる。但し、外部ヨーク70は両側のサイドヨーク31に連結するために細幅の延長部分70aを有している。出力取出し部材23を通過させるための切り割り72は例えば延長部分70aに沿って形成すればよい。
【0036】
なお、その他の構成は前述の第1実施例と同様であり、同一又は相当部分に同一符号を付した。
【0037】
この第3実施例によれば、直線ガイド体60の全長を長くして可動コイル体20のストロークを増大させることができ、しかも推力のフラット性を良好に維持することができる。また、前述した図4の第2実施例と同様に、非磁性円筒パイプ63で覆った直線ガイド体60を用いているため、可動コイル体20のボビン21の摺動性を良好とし、可動コイル体20の円滑な直線移動動作を実現可能である。
【0038】
図6は本発明の第4実施例を示す。この場合、2個の同極対向の永久磁石11A,11B及びそれらに挟まれた軟磁性体12で構成された直線ガイド体10の外周面を直接摺動して直線移動する可動コイル体90は、直線ガイド体10に対し直接摺動するボビン91に、駆動コイル92及び速度検出用コイル93をそれぞれ巻装したものである。すなわち、可動コイル体90が有するボビン91は、例えば、耐摩耗性に優れた絶縁樹脂製であり、直線ガイド体10の外周面を環状に囲みかつ両端に鍔91aを持つ断面がコ字状である。そして、ボビン91の内周部が直線ガイド体10の外周面をガイドとして直接摺動可能に配置されている。前記駆動コイル92はボビン91の下層に巻かれ、その上に速度検出用コイル93が巻かれている。なお、外部ヨーク及びサイドヨークの図示は省略したが、第1乃至第3実施例で用いた外部ヨーク及びサイドヨークの構造を利用可能である。
【0039】
この第4実施例によれば、可動コイル体90が駆動コイル92及び速度検出用コイル93を有する2層コイル構造となっており、可動コイル体90が直線ガイド体10上を移動することで速度検出用コイル93に誘起電圧が発生し、可動コイル体90の移動速度や移動周期を検出することができる。
【0040】
図7は本発明の第5実施例を示す。この場合、直線ガイド体100は、同極対向(N極同士の対向)の永久磁石11A,11B間に軟磁性体12Aを配置し、同極対向(S極同士の対向)の永久磁石11B,11C間に軟磁性体12Bを配置して外径が一様な直線棒状に構成したものである。また、直線ガイド体100の外周面を直接摺動して直線移動する可動コイル体110は、直線ガイド体100に対し直接摺動する2連ボビン111に、駆動コイル112A,112Bをそれぞれ巻装したものである。すなわち、可動コイル体110が有する2連ボビン111は、例えば、耐摩耗性に優れた絶縁樹脂製であり、直線ガイド体100の外周面を環状に囲みかつ両端及び中間に鍔111aを持つ断面がE字状である。そして、2連ボビン111の内周部が直線ガイド体100の外周面をガイドとして直接摺動可能に配置されている。なお、外部ヨーク30及びサイドヨーク31は第1実施例で用いた外部ヨーク及びサイドヨークの構造を利用可能である。
【0041】
この第5実施例によれば、駆動コイル112A,112Bに相互に逆向きの電流を通電することで、各コイルの推力が加算されるようにすることができ、推力の増大を図ることができる。その他の作用効果は、前述の第1実施例等と同様である。
【0042】
なお、第5実施例の外部ヨーク30、サイドヨーク31の代わりに第2乃至第3実施例で用いた外部ヨーク及びサイドヨークの構造を採用してもよい。
【0043】
なお、図4の第2実施例に示したように、同極対向された永久磁石間に軟磁性体を設け、それらの外周面に非磁性材としての非磁性円筒パイプを被せ、それらを相互に固着一体化して直線ガイド体とする構成は、第1、第4、第5実施例の直線ガイド体に適用することもできる。また、非磁性円筒パイプを被せる代わりに、前記永久磁石及び軟磁性体の外周面を非磁性材(例えば、摩擦係数が少なく、耐摩耗性に優れた樹脂等)でコーティングする構造としてもよい。
【0044】
前述の各実施例では、永久磁石及びその間に挟持された軟磁性体が円板乃至円柱状で、直線ガイド体全体も円柱状である場合を例示したが、永久磁石及びその間に挟持された軟磁性体が角板乃至角柱状で、直線ガイド体全体が角柱状であってもよい。
【0045】
以上本発明の実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0046】
【発明の効果】
以上説明したように、本発明の可動コイル型リニアアクチュエータによれば、同極対向された少なくとも2個の永久磁石間に軟磁性体を設けた構造を有する直線ガイド体と、該直線ガイド体の外周面に対し直接摺動するボビンに駆動コイルを巻装してなる可動コイル体とを備えているので、前記可動コイル体は前記直線ガイド体の外周面を直接摺動することで直線移動するように案内されることになる。従って、別途可動コイル体をガイドするガイド軸や軸受部品は不要であり、部品点数を削減して、構造の簡略化、小型化を図ることができ、原価低減にも有効である。
【図面の簡単な説明】
【図1】本発明に係る可動コイル型リニアアクチュエータの第1実施例を示す正断面図である。
【図2】同側断面図である。
【図3】可動コイル体の変位量と推力との関係を示すグラフである。
【図4】本発明の第2実施例を示す正断面図である。
【図5】本発明の第3実施例を示す正断面図である。
【図6】本発明の第4実施例を示す正断面図である。
【図7】本発明の第5実施例を示す正断面図である。
【図8】従来例の正断面図である。
【符号の説明】
10,40,60,100 直線ガイド体
11A,11B,11C 永久磁石
12,12A,12B,62 軟磁性体
13,63 非磁性円筒パイプ
20,90,110 可動コイル体
21,91,111 ボビン
22,92,112A,112B 駆動コイル
23 出力取出し部材
30,50,70 外部ヨーク
31 サイドヨーク
32,72 切り割り
93 速度検出用コイル
[0001]
[Industrial application fields]
The present invention relates to a movable coil linear actuator capable of linearly moving a movable coil by energizing the movable coil, and more particularly to a movable coil linear actuator that can be used for position control of a driven body such as a magnetic head. .
[0002]
[Prior art]
Conventionally, a solenoid device disclosed in Japanese Utility Model Laid-Open No. 3-40876 is known as this type of device. As shown in FIG. 8, this solenoid device has two permanent magnets 2, 4 facing the same pole in an outer yoke 1 made of a cylindrical magnetic body having a U-shaped cross section, with the inner yoke 3 interposed therebetween. Further, the sub-yoke 5 and the shaft 8 integral with the sub-yoke 5 are fixed onto the permanent magnet 4, the cylindrical non-magnetic moving member 7 is disposed in the gap between the outer yoke 1 and the inner yoke 3, and The coil 9 is guided by a shaft 8 so as to be movable, and a coil 9 is fixed to the insertion tip of the moving member 7.
[0003]
In this case, when the coil 9 is energized, the moving member 7 integrated with the coil 9 linearly moves using the shaft 8 as a guide shaft.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional apparatus as described above, a certain length is required for the shaft for movably guiding the moving member for taking out the operation output in addition to the permanent magnet and the inner yoke, and the total length of the actuator is designed to be short. I can't. Further, since the output is jointed at the end of the actuator, the entire length cannot be designed as a unit including the actuator. In addition to the permanent magnet and the inner yoke, a shaft for guiding the moving member is indispensable.
[0005]
An object of the present invention is to provide a moving coil linear actuator that has a simplified structure, a reduced number of parts, a reduced size, and a reduced cost.
[0006]
Other objects and novel features of the present invention will be clarified in Examples described later.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a moving coil linear actuator of the present invention includes a linear guide body having a structure in which a soft magnetic body is provided between at least two permanent magnets facing each other with the same polarity,
A movable coil body in which a drive coil is wound around a bobbin that slides directly on the outer peripheral surface of the linear guide body ;
An outer yoke of soft magnetic material surrounding the outside of the movable coil body;
A soft magnetic side yoke fixed to both ends of the linear guide body and fixed to both ends of the external yoke, and
The outer yoke surrounds the linear guide in a cylindrical shape with a moving space of the movable coil body interposed therebetween, and a cut is provided in a portion through which an output takeout member extending to the outer peripheral side of the movable coil body passes. ,
The movable coil body is guided so as to linearly move by directly sliding on the outer peripheral surface of the linear guide body.
[0008]
Further, the linear guide body may be one in which outer peripheral surfaces of the permanent magnet and the soft magnetic body are covered with a nonmagnetic material.
[0009]
Furthermore, the linear guide body has a structure in which a soft magnetic body is provided between two permanent magnets having the same polarity and the central portion of the outer yoke corresponding to the central portion of the linear guide body is removed or has an area. It is good also as a structure by which only the center part of the said external yoke corresponding to the center part of the said linear guide body is enclosed in the cylinder shape.
[0011]
The movable coil body may further include a speed detection coil.
[0012]
[Action]
In the movable coil type linear actuator of the present invention, a linear guide body on which the movable coil body slides can be constituted by at least two permanent magnets facing the same pole and a soft magnetic body therebetween. There is no need to provide a separate guide shaft or the like for guiding linear movement freely, and the structure can be simplified and the number of parts can be reduced. Further, since it is not necessary to provide a guide shaft in addition to the permanent magnet and the soft magnetic material, the overall length can be shortened and the structure can be reduced, and the length of the unit using the moving coil linear actuator can be reduced. Can also be achieved.
[0013]
In addition, when the linear guide body is formed by covering the outer periphery of the permanent magnet and the soft magnetic body with a nonmagnetic material, the nonmagnetic material outer peripheral surface is directly slid by appropriately selecting the nonmagnetic material. The moving movable coil body can be moved smoothly. For example, by selecting a material with less friction as the non-magnetic material, it is possible to reduce the frictional resistance during movement of the movable coil body, and it is possible to extend the life by selecting a wear-resistant material. Furthermore, it becomes easy to assemble a permanent magnet and a soft magnetic body coaxially by using the said nonmagnetic material as a thin-walled pipe.
[0014]
Furthermore, the linear guide body has a structure in which a soft magnetic body is provided between two permanent magnets having the same polarity and the central portion of the outer yoke corresponding to the central portion of the linear guide body is removed or has an area. Or a configuration in which only the central portion of the outer yoke corresponding to the central portion of the linear guide body is cylindrically surrounded, the magnetic field component perpendicular to the linear movement direction of the movable coil body Can be made uniform and the flatness of the thrust can be improved. That is, the thrust can be made substantially constant over a wide range of the stroke of the movable coil body, and the accuracy of position control and the reliability can be improved.
[0015]
Moreover, when it is set as the structure which provides an output extraction member in the outer peripheral side of the said movable coil body, since the said output extraction member does not protrude on the extension line | wire of the axial direction of the said linear guide body, full length can be shortened and can be reduced in size. .
[0016]
Moreover, when the said movable coil body has a coil for speed detection, the moving speed and the moving period of the said movable coil body can be detected using the induced voltage of this coil for speed detection.
[0017]
【Example】
Embodiments of a moving coil linear actuator according to the present invention will be described below with reference to the drawings.
[0018]
1 and 2 show a first embodiment of a moving coil linear actuator according to the present invention. In these drawings, the moving coil type linear actuator includes a linear guide body 10 composed of two permanent magnets 11A and 11B and a soft magnetic body 12 sandwiched between them, and slides directly with respect to the linear guide body 10. A movable coil body 20 formed by winding a drive coil 22 around a bobbin 21, an outer yoke 30 surrounding the linear guide body 10 leaving a moving space of the movable coil body 20, and both ends of the outer yoke 30. A side yoke 31 is provided which is fixed and is in contact with and fixed to the outer end surfaces of the permanent magnets 11A and 11B.
[0019]
The permanent magnets 11A and 11B are, for example, small-sized rare earth permanent magnets capable of generating a strong magnetic force, and are arranged opposite to each other with a soft magnetic body 12 such as iron interposed therebetween, and the permanent magnets 11A and 11B and Both the soft magnetic bodies 12 have a cylindrical or disk shape having the same outer diameter. Accordingly, the outer peripheral surfaces of the permanent magnets 11A and 11B and the soft magnetic body 12 are the same and are arranged so as not to have a step, and constitute a cylindrical linear guide body 10. In this case, the axial direction of the linear guide body 10 (longitudinal direction in which the movable coil body 20 moves linearly) coincides with the magnetization directions of the permanent magnets 11A and 11B. The permanent magnets 11A and 11B and the soft magnetic body 12 can be fixedly integrated with each other with an adhesive or the like.
[0020]
The bobbin 21 included in the movable coil body 20 that is slidable on the outer peripheral surface of the cylindrical linear guide body 10 is made of, for example, an insulating resin having excellent wear resistance, and the outer peripheral surface of the linear guide body 10 is annular. The cross section that surrounds and has ridges 21a at both ends is U-shaped. And the inner peripheral part (inner peripheral surface) of the bobbin 21 is arrange | positioned so that it can slide directly by using the outer peripheral surface of the linear guide body 10 as a guide. As a result, the movable coil body 20 is guided to move linearly by the linear guide body 10. The drive coil 22 is wound around the bobbin 21 so as to go around the linear guide body 10. Further, an output take-out member 23 for outputting the movement of the movable coil body 20 to the outside is attached to the vicinity of the outer periphery of the movable coil body 20, for example, outside the flanges 21a of both the bobbins 21 (fixed or connected). ) This output extraction member 23 extends to the outer peripheral side of the movable coil 20, that is, to the side, and the movable coil body 20 is connected to a driven system such as a magnetic head through this.
[0021]
The outer yoke 30 is formed of a soft magnetic material such as an iron plate in a cylindrical shape, and surrounds the periphery of the linear guide body 10 with a moving space of the movable coil body 20 therebetween. A disk-shaped side yoke 31 made of a material is fixed and integrated. A magnetic pole opposite to the magnetic poles of the permanent magnets 11A and 11B opposite to each other is in contact with the center of the inner surface of the side yoke 31, and is fixed by an adhesive or the like. A slit 32 is formed in a portion through which the output extraction member 23 connected to the driven system passes, that is, a moving portion of the output extraction member 23 in the movable range of the movable coil body 20. The external yoke 30 and the side yoke 31 are provided for improving the permeance of the magnetic circuit (reducing the magnetic resistance) and preventing magnetic leakage.
[0022]
With the configuration of the first embodiment described above, the two permanent magnets 11A and 11B are disposed so as to face the same pole (N pole) and sandwich the soft magnetic body 12, so that the outer peripheral surface of the soft magnetic body 12 and the outside A magnetic flux in the radial direction is generated in the cylindrical space between the inner peripheral surface of the yoke 30 (the moving space of the movable coil body 20), that is, in the axial direction of the linear guide body 10 (the moving direction of the movable coil body 20). A perpendicular magnetic field component is generated. Therefore, by applying a current to the drive coil 22, a thrust based on Fleming's left-hand rule can be generated in the movable coil body 20, and the movable coil body 20 can be linearly moved along the linear guide body 10. The driven system can be linearly driven via the output extraction member 23.
[0023]
FIG. 3 shows a relationship between the displacement amount X (mm) of the movable coil body 20 from the soft magnetic body 12 intermediate position P and the thrust (gf) in the case of the first embodiment with a curve (A). In this curve (A), the displacement X = 0, the thrust is 24.20, the displacement X = ± 4, the thrust is 22.20, and the thrust is decreased by 8.3% with respect to the displacement X = 0. However, in a range within the displacement amount X = ± 3 (a range where the drive coil 22 does not cover the permanent magnets 11A and 11B), the thrust characteristics are substantially flat.
[0024]
According to the first embodiment, the following effects can be obtained.
[0025]
(1) A linear guide body 10 having a structure in which a soft magnetic body 12 is provided between two permanent magnets 11A and 11B opposed to the same pole functions as a guide shaft for guiding the movable coil body 20 so as to be linearly movable; By sliding the bobbin 21 of the movable coil body 20 directly on the outer peripheral surface of the linear guide body 10 in the axial direction, there is no need to separately provide a guide shaft or a bearing member, and the overall length can be shortened and miniaturized. The number of parts can be reduced, the structure can be simplified, and the cost can be reduced.
[0026]
(2) An output extraction member 23 connected to a driven system such as a magnetic head is provided in the vicinity of the outer periphery of the movable coil body 20, and the movement range of the output extraction member 23 in the movable range of the movable coil body 20 is an external yoke. 30 is provided with a slit 32 so that the output take-out member 23 can move in a state of protruding to the side of the outer yoke 30 (to the outer peripheral side), thereby shortening the overall length of the unit including the movable coil type linear actuator. Is possible.
[0027]
(3) Except for the portion of the slit 32, the periphery of the linear guide body 10 is closed by the external yoke 30 and the side yoke 31, and the leakage magnetic flux is small.
[0028]
FIG. 4 shows a second embodiment of the present invention. In this case, the linear guide body 40 is provided with a soft magnetic body 12 between two permanent magnets 11A and 11B facing each other with the same polarity, and a nonmagnetic cylindrical pipe 13 serving as a nonmagnetic material is covered on the outer peripheral surface thereof. Are fixed and integrated with each other. The nonmagnetic cylindrical pipe 13 has a uniform outer diameter without a step, and the bobbin 21 of the movable coil body 20 is slid directly in the axial direction on the outer peripheral surface of the nonmagnetic cylindrical pipe 13. As the non-magnetic cylindrical pipe 13, a thin-walled pipe such as stainless steel, brass, or a resin having a small friction coefficient can be used, and stainless steel having excellent wear resistance is particularly effective.
[0029]
Further, the outer yoke 50, which is a cylindrical soft magnetic body, is disposed in a portion excluding the central portion in order to improve the flatness of the thrust. This is an end portion in which the vertical component (component perpendicular to the axial direction of the linear guide body 40) of the magnetic field generated on the outer peripheral side of the two permanent magnets 11A and 11B and the soft magnetic body 12 sandwiched between them is relatively small. This is because the magnetic flux is concentrated in the region to compensate for the decrease in the vertical component of the magnetic field at the portions near both ends of the linear guide body 40. As a result, the vertical component of the magnetic field is substantially uniform in the majority of the entire length of the linear guide body 40, and the flatness of the thrust can be further improved.
[0030]
Other configurations are the same as those of the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals.
[0031]
The curve (b) in FIG. 3 shows the relationship between the displacement X (mm) and the thrust (gf) of the movable coil body 20 from the soft magnetic body 12 intermediate position P in the case of the second embodiment of FIG. In this curve (b), the displacement X = 0, the thrust is 23.64, the displacement X = ± 4, the thrust is 22.64, and the thrust is 4.2% lower than the displacement X = 0. However, this shows that the amount of reduction is smaller than the 8.3% reduction of the first embodiment, and the flatness of the thrust is improved by the arrangement of the outer yoke 50 of the second embodiment.
[0032]
According to the second embodiment, since the linear guide body 40 in which the outer peripheral surfaces of the permanent magnets 11A and 11B and the soft magnetic body 12 are covered with the nonmagnetic cylindrical pipe 13 is used, the sliding of the bobbin 21 of the movable coil body 20 is performed. The mobility is good, the assembly is easy, and a smooth linear movement operation of the movable coil body 20 is realized. In addition, the outer yoke 50 does not exist in the portion corresponding to the central portion of the linear guide body 40, and the outer yoke 50 is provided at positions near both ends of the linear guide body 40. It is possible to concentrate the magnetic flux in a region where the magnetic field component perpendicular to the angle tends to decrease, and the magnetic field component perpendicular to the axial direction becomes uniform over a wide range, and the flatness of the thrust can be further improved. Other functions and effects are the same as those of the first embodiment described above.
[0033]
Further, in the second embodiment of FIG. 4, the outer yoke 50 does not exist in the portion corresponding to the central portion of the linear guide body 40. However, in the central portion of the outer yoke over the entire length of the first embodiment of FIG. It does not matter even if a hole is partially drilled to reduce the area of the yoke portion corresponding to (facing) the central portion of the linear guide body 40.
[0034]
FIG. 5 shows a third embodiment of the present invention. In this case, the linear guide body 60 is provided with a cylindrical soft magnetic body 62 having a long dimension between two cylindrical permanent magnets 11A and 11B opposed to each other with the same pole, and a nonmagnetic material is provided on the outer peripheral surface thereof. A non-magnetic cylindrical pipe 63 is covered and they are fixedly integrated with each other. The nonmagnetic cylindrical pipe 63 has a uniform outer diameter without a step, and the bobbin 21 of the movable coil body 20 is slid directly in the axial direction on the outer peripheral surface of the nonmagnetic cylindrical pipe 63. The material of the nonmagnetic cylindrical pipe 63 is the same as that of the nonmagnetic cylindrical pipe 13 in the case of the second embodiment described above.
[0035]
Further, the cylindrical soft magnetic outer yoke 70 is disposed so as to surround only the portion corresponding to the central portion of the linear guide body 60 in an annular shape in order to improve the flatness of the thrust. This is because, since the soft magnetic body 62 is long, the vertical component of the magnetic field (the component perpendicular to the axial direction of the linear guide body 60) decreases at the intermediate portion of the soft magnetic body 62. This is to compensate for a decrease in the vertical component of the magnetic field at the center of the guide body 60. Thereby, even in the linear guide body 60 using the soft magnetic body 62 having a long dimension, the vertical component of the magnetic field is substantially uniform in the most region of the entire length, and the movable coil body 20 And the flatness of the thrust can be maintained well. However, the outer yoke 70 has a narrow extension portion 70a for connecting to the side yokes 31 on both sides. The slit 72 for allowing the output extraction member 23 to pass through may be formed along the extended portion 70a, for example.
[0036]
Other configurations are the same as those of the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals.
[0037]
According to the third embodiment, the entire length of the linear guide body 60 can be increased to increase the stroke of the movable coil body 20, and the flatness of the thrust can be maintained well. In addition, since the linear guide body 60 covered with the nonmagnetic cylindrical pipe 63 is used as in the second embodiment of FIG. 4 described above, the slidability of the bobbin 21 of the movable coil body 20 is improved, and the movable coil A smooth linear movement operation of the body 20 can be realized.
[0038]
FIG. 6 shows a fourth embodiment of the present invention. In this case, the movable coil body 90 that linearly moves by sliding directly on the outer peripheral surface of the linear guide body 10 composed of the two permanent magnets 11A, 11B opposite to each other with the same polarity and the soft magnetic body 12 sandwiched between them. The drive coil 92 and the speed detection coil 93 are wound around the bobbin 91 that slides directly with respect to the linear guide body 10, respectively. That is, the bobbin 91 included in the movable coil body 90 is made of, for example, an insulating resin having excellent wear resistance, and has a U-shaped cross section that surrounds the outer circumferential surface of the linear guide body 10 and has flanges 91a at both ends. is there. And the inner peripheral part of the bobbin 91 is arrange | positioned so that a direct slide can be carried out by using the outer peripheral surface of the linear guide body 10 as a guide. The drive coil 92 is wound around a lower layer of the bobbin 91, and a speed detection coil 93 is wound thereon. Although illustration of the outer yoke and the side yoke is omitted, the structure of the outer yoke and the side yoke used in the first to third embodiments can be used.
[0039]
According to the fourth embodiment, the movable coil body 90 has a two-layered coil structure having the drive coil 92 and the speed detection coil 93, and the movable coil body 90 moves on the linear guide body 10 so that the speed is increased. An induced voltage is generated in the detection coil 93, and the moving speed and moving period of the movable coil body 90 can be detected.
[0040]
FIG. 7 shows a fifth embodiment of the present invention. In this case, in the linear guide body 100, the soft magnetic body 12A is disposed between the permanent magnets 11A and 11B facing the same pole (facing the N poles), and the permanent magnet 11B facing the same pole (facing the S poles). A soft magnetic body 12B is disposed between 11C and is configured in a straight bar shape with a uniform outer diameter. In addition, the movable coil body 110 that linearly moves by sliding directly on the outer peripheral surface of the linear guide body 100 has the drive coils 112A and 112B wound around the double bobbin 111 that slides directly on the linear guide body 100, respectively. Is. That is, the double bobbin 111 included in the movable coil body 110 is made of, for example, an insulating resin having excellent wear resistance, and has a cross section that surrounds the outer peripheral surface of the linear guide body 100 in an annular shape and has flanges 111a at both ends and in the middle. E-shaped. And the inner peripheral part of the double bobbin 111 is arrange | positioned so that direct sliding is possible by using the outer peripheral surface of the linear guide body 100 as a guide. The outer yoke 30 and the side yoke 31 can use the structure of the outer yoke and the side yoke used in the first embodiment.
[0041]
According to the fifth embodiment, the drive coils 112 </ b> A and 112 </ b> B are supplied with mutually opposite currents, so that the thrust of each coil can be added, and the thrust can be increased. . Other functions and effects are the same as those of the first embodiment.
[0042]
Instead of the outer yoke 30 and the side yoke 31 of the fifth embodiment, the structure of the outer yoke and the side yoke used in the second to third embodiments may be adopted.
[0043]
As shown in the second embodiment of FIG. 4, a soft magnetic material is provided between permanent magnets facing the same pole, and a non-magnetic cylindrical pipe as a non-magnetic material is covered on the outer peripheral surface thereof, and these are mutually attached. The configuration in which the linear guide body is fixedly integrated with the linear guide body can also be applied to the linear guide bodies of the first, fourth, and fifth embodiments. Further, instead of covering the non-magnetic cylindrical pipe, the outer peripheral surfaces of the permanent magnet and the soft magnetic body may be coated with a non-magnetic material (for example, a resin having a low friction coefficient and excellent wear resistance).
[0044]
In each of the above-described embodiments, the permanent magnet and the soft magnetic material sandwiched between the permanent magnets are disk or columnar and the entire linear guide body is also columnar. However, the permanent magnet and the soft magnet sandwiched between the permanent magnets are exemplified. The magnetic body may be a square plate or a prism, and the entire linear guide body may be a prism.
[0045]
Although the embodiments of the present invention have been described above, it will be apparent to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims.
[0046]
【The invention's effect】
As described above, according to the moving coil linear actuator of the present invention, a linear guide body having a structure in which a soft magnetic material is provided between at least two permanent magnets facing each other with the same polarity, and the linear guide body A movable coil body in which a drive coil is wound around a bobbin that directly slides with respect to the outer peripheral surface. Therefore, the movable coil body linearly moves by sliding directly on the outer peripheral surface of the linear guide body. Will be guided as follows. Therefore, a guide shaft and bearing parts for separately guiding the movable coil body are unnecessary, the number of parts can be reduced, the structure can be simplified and the size can be reduced, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a first embodiment of a moving coil linear actuator according to the present invention.
FIG. 2 is a cross-sectional side view of the same.
FIG. 3 is a graph showing a relationship between a displacement amount of a movable coil body and thrust.
FIG. 4 is a front sectional view showing a second embodiment of the present invention.
FIG. 5 is a front sectional view showing a third embodiment of the present invention.
FIG. 6 is a front sectional view showing a fourth embodiment of the present invention.
FIG. 7 is a front sectional view showing a fifth embodiment of the present invention.
FIG. 8 is a front sectional view of a conventional example.
[Explanation of symbols]
10, 40, 60, 100 Linear guide bodies 11A, 11B, 11C Permanent magnets 12, 12A, 12B, 62 Soft magnetic bodies 13, 63 Nonmagnetic cylindrical pipes 20, 90, 110 Movable coil bodies 21, 91, 111 Bobbins 22, 92, 112A, 112B Drive coil 23 Output extraction member 30, 50, 70 External yoke 31 Side yoke 32, 72 Split 93 Speed detection coil

Claims (5)

同極対向された少なくとも2個の永久磁石間に軟磁性体を設けた構造を有する直線ガイド体と、
該直線ガイド体の外周面に対し直接摺動するボビンに駆動コイルを巻装してなる可動コイル体と
該可動コイル体の外側を囲む軟磁性体の外部ヨークと、
前記直線ガイド体の両端面にそれぞれ固着されかつ前記外部ヨークの両端に固着された軟磁性体のサイドヨークと、を備え、
前記外部ヨークは前記直線ガイドの周囲を前記可動コイル体の移動空間を隔てて筒状に囲みかつ前記可動コイル体の外周側に延在する出力取出し部材の通過する部分に切り割りが設けられており、
前記可動コイル体が前記直線ガイド体の外周面を直接摺動することで直線移動するように案内されることを特徴とする可動コイル型リニアアクチュエータ。
A linear guide body having a structure in which a soft magnetic body is provided between at least two permanent magnets facing the same pole;
A movable coil body in which a drive coil is wound around a bobbin that slides directly on the outer peripheral surface of the linear guide body ;
An outer yoke of soft magnetic material surrounding the outside of the movable coil body;
A soft magnetic side yoke fixed to both ends of the linear guide body and fixed to both ends of the external yoke, and
The outer yoke surrounds the linear guide in a cylindrical shape with a moving space of the movable coil body interposed therebetween, and a cut is provided in a portion through which an output takeout member extending to the outer peripheral side of the movable coil body passes. ,
The moving coil linear actuator, wherein the moving coil body is guided so as to move linearly by directly sliding on an outer peripheral surface of the linear guide body.
前記直線ガイド体が同極対向された2個の永久磁石間に軟磁性体を設けた構造を有し、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部が除去又は面積が減じられている請求項1記載の可動コイル型リニアアクチュエータ。The linear guide body has a structure in which a soft magnetic body is provided between two permanent magnets having the same polarity and the central portion of the outer yoke corresponding to the central portion of the linear guide body is removed or the area is reduced. The moving coil type linear actuator according to claim 1. 前記直線ガイド体が同極対向された2個の永久磁石間に軟磁性体を設けた構造を有し、前記直線ガイド体の中央部に対応する前記外部ヨークの中央部のみが筒状に囲んでいる請求項1記載の可動コイル型リニアアクチュエータ。The linear guide body has a structure in which a soft magnetic body is provided between two permanent magnets having the same pole facing each other, and only the central portion of the outer yoke corresponding to the central portion of the linear guide body is enclosed in a cylindrical shape. The moving coil type linear actuator according to claim 1. 前記直線ガイド体は、前記永久磁石及び前記軟磁性体の外周面を非磁性材で覆ったものである請求項1,2又は3記載の可動コイル型リニアアクチュエータ。The movable coil type linear actuator according to claim 1 , wherein the linear guide body is obtained by covering outer peripheral surfaces of the permanent magnet and the soft magnetic body with a nonmagnetic material. 前記可動コイル体は速度検出用コイルをさらに備えている請求項1,2,3又は4記載の可動コイル型リニアアクチュエータ。  5. The movable coil linear actuator according to claim 1, wherein the movable coil body further includes a speed detection coil.
JP03945295A 1995-02-06 1995-02-06 Moving coil type linear actuator Expired - Lifetime JP3680182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03945295A JP3680182B2 (en) 1995-02-06 1995-02-06 Moving coil type linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03945295A JP3680182B2 (en) 1995-02-06 1995-02-06 Moving coil type linear actuator

Publications (2)

Publication Number Publication Date
JPH08214528A JPH08214528A (en) 1996-08-20
JP3680182B2 true JP3680182B2 (en) 2005-08-10

Family

ID=12553438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03945295A Expired - Lifetime JP3680182B2 (en) 1995-02-06 1995-02-06 Moving coil type linear actuator

Country Status (1)

Country Link
JP (1) JP3680182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225504B2 (en) * 2018-11-29 2023-02-21 株式会社プロテリアル flat voice coil motor

Also Published As

Publication number Publication date
JPH08214528A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JP2534586B2 (en) Small single-phase electromagnetic actuator
JPH0134326Y2 (en)
JP4734766B2 (en) Magnet movable electromagnetic actuator
JPS61229309A (en) Electromagnetic driving device
JPH03761B2 (en)
US20150340937A1 (en) Bistable electromagnetic actuator and surgical instrument
JP3348124B2 (en) Moving magnet type actuator
US6877391B2 (en) Gear change device
JP2005020901A (en) Linear actuator
JP3680182B2 (en) Moving coil type linear actuator
JP2004519981A (en) Long stroke linear voice coil actuator with proportional solenoid characteristics
US7453172B2 (en) Linear slide apparatus
KR20030020788A (en) A Linear Actuating Device Using Solenoid And Permanent Magnet
JP3669389B2 (en) Moving coil type linear actuator
JP3669393B2 (en) Linear actuator for disk drive
JPH03112354A (en) Linear actuator
JP3818910B2 (en) Magnet movable electromagnetic actuator
JPH07303363A (en) Linear actuator
JPH0549226A (en) Linear actuator
JP2005522176A (en) Linear voice coil actuator as a controllable compression spring by electromagnetic force
EP1265259A1 (en) Electromagnetic solenoid actuator
JPH0246707A (en) Electromagnet
JP4167029B2 (en) Electromagnetic spring
JP4304880B2 (en) Shifting operation device
JPH10225084A (en) Voice-coil type linear motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term