JP3678625B2 - Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance - Google Patents

Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance Download PDF

Info

Publication number
JP3678625B2
JP3678625B2 JP2000098300A JP2000098300A JP3678625B2 JP 3678625 B2 JP3678625 B2 JP 3678625B2 JP 2000098300 A JP2000098300 A JP 2000098300A JP 2000098300 A JP2000098300 A JP 2000098300A JP 3678625 B2 JP3678625 B2 JP 3678625B2
Authority
JP
Japan
Prior art keywords
hoop
concrete
steel pipe
main
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098300A
Other languages
Japanese (ja)
Other versions
JP2001279865A (en
Inventor
一男 久保田
康生 一戸
弘樹 上田
圭一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000098300A priority Critical patent/JP3678625B2/en
Publication of JP2001279865A publication Critical patent/JP2001279865A/en
Application granted granted Critical
Publication of JP3678625B2 publication Critical patent/JP3678625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、建築・土木分野で使用される耐火性を考慮した鉄筋補強型コンクリート充填鋼管柱に関するものである。
【0002】
【従来の技術】
従来の鉄筋補強型コンクリート充填鋼管柱としては、以下のようなものがある。
【0003】
特開昭61−126259号公報には、鉄筋コンクリート柱の外側に捨型枠兼補強用の鋼管を有する構造物の柱が記載されている。この鋼管は、鉄筋コンクリート柱の靱性向上を目的とした補強用であり、柱断面を円形、フープ筋をスパイラルフープとすることで靱性の向上を期待している。
【0004】
実開平1−118520号公報には、主筋がなく、スパイラルフープ筋のみでコンクリートを拘束するコンクリート充填鋼管柱が記載されている。
【0005】
特公平8−33049号公報には、内周面にU型横補強鉄筋が溶接された4面ボックス鋼管にコンクリートを打設充填したコンクリート充填鋼管柱が記載されている。U型横補強鉄筋には、鋼管内のコンクリートを拘束し、コンクリートの耐力と靱性を向上させ、かつ鋼管の局部座屈による耐力の減少を防止することを期待している。
【0006】
特開平5−280096号公報には、先組した鉄筋ユニットを配筋した後、コンクリートを充填するコンクリート充填鋼管柱及びその構築方法が記載されている。発明の効果としては、表面の鋼管が長時間の火災により劣化した場合でも、コンクリート内部に配筋、埋設された鉄筋により、急激な耐力の低下が生じないことと、先組した鉄筋ユニットによる施工性の向上が記載されている。
【0007】
【発明が解決しようとする課題】
鉄筋補強のない一般的なコンクリート充填鋼管柱の耐火性能評価に関しては、多くの実験結果からコンクリート耐力(充填コンクリートの断面積×コンクリートの強度)に対する作用軸力の比(以下、軸力比と記述する)と崩壊時間の関係が導かれている。
【0008】
例えば、財団法人新都市ハウジング協会の「CFT構造技術指針・同解説」においては、軸力比と崩壊時間の関係を、鋼管形状、コンクリート強度及び載荷状態の違いに応じて実験値を安全側に評価したコンクリート充填鋼管の耐火性能評価式が示されている。
【0009】
その一方で、鉄筋補強型コンクリート充填鋼管柱の耐火性能に関しては、適切かつ安全な補強鉄筋量やその配置を与える評価方法が確立されておらず、上述した特開平5−280096号公報にあるような漠然とした耐火性能が期待され、あるいは個々の対象について実験的な評価が行われているに過ぎない。
【0010】
本願発明は、このような背景のもとに発明されたものであり、鉄筋補強型コンクリート充填鋼管柱を構成する部材ごとの断面や配置、強度と所定の耐火時間での性能との関係を総合的に評価し、主筋及びフープ筋が安全かつ適切に配筋された耐火性能に優れる鉄筋補強型コンクリート充填鋼管柱を提供することを目的としている。
【0011】
【課題を解決するための手段】
本願の請求項1に係る鉄筋補強型コンクリート充填鋼管柱は、コンクリート補強用の主筋及びフープ筋を挿入した鋼管内にコンクリートを充填してなる鉄筋補強型コンクリート充填鋼管柱において、当該柱に作用する軸力が、主筋及びフープ筋がない場合のコンクリート充填鋼管柱の所定の耐火時間経過後における軸力負担分Nc、前記主筋の所定の耐火時間経過後における軸力負担分Ns、前記フープ筋の所定の耐火時間経過後における軸力負担分Nf との総和を下回るように、前記主筋及びフープ筋の配筋を設定してあり、前記主筋と前記フープ筋の比率が、主筋重量強度=(主筋重量)×(主筋の降伏強度)と、フープ筋重量強度=(フープ筋重量)×(フープ筋の降伏強度)との関係において、主筋重量強度:フープ筋重量強度=5:5〜9:1の範囲で組み合わせられ、かつ、かぶり厚の下限を50mmとしたことを特徴とするものである。
【0012】
すなわち、上記のNc 、Ns 、Nf の総和を、所定の耐火時間経過後において鉄筋補強型コンクリート充填鋼管柱が保持し得る限界軸力として評価し、鉄筋補強型コンクリート充填鋼管柱に作用する軸力が上記限界軸力を下回るように、鋼管内の主筋及びフープ筋の配筋を定めるものである。
【0013】
請求項2は、請求項1に係る鉄筋補強型コンクリート充填鋼管柱において、前記主筋の軸力負担分Ns を、Ns =(主筋断面積)×(主筋の常温時降伏強度)×(所定の耐火時間経過後における主筋温度により決定される低減係数)によって求め、前記フープ筋の軸力負担分Nfを、Nf =(フープ筋で囲まれるコアコンクリートの断面積)×(コンクリートの拘束係数)×2×(フープ筋の断面積)×(フープ筋の常温時降伏強度)×(所定の耐火時間経過後におけるフープ筋温度により決定される低減係数)÷(フープ筋の補強間隔)÷(フープ筋の外径)によって求めたものである。
【0014】
鉄筋補強型コンクリート充填鋼管柱の限界軸力の算定において、鉄筋を除いたコンクリート充填鋼管柱の軸力負担分Nc は、コンクリート充填鋼管の載荷加熱実験結果などに基づき、例えば、従来の技術の項で述べた「CFT構造技術指針・同解説」に記載のCFT柱の耐火設計式を用いて定めることができる。
【0015】
また、主筋の軸力負担分Ns に対し、フープ筋の効果は、フープ筋がコアコンクリートを拘束することによるコアコンクリートの耐力上昇分として軸方向力に累加して評価することとしたものである。
【0016】
請求項1において、主筋とフープ筋の比率が、主筋重量強度=(主筋重量)×(主筋の降伏強度)と、フープ筋重量強度=(フープ筋重量)×(フープ筋の降伏強度)との関係において、主筋重量強度:フープ筋重量強度=5:5〜9:1の範囲で組み合わせられ、かつ、かぶり厚の下限を50mmとしたのは、鉄筋補強型コンクリート充填鋼管柱における鉄筋補強の効果を効率良く発揮できる範囲を、発明の実施の形態の項で後述するように、主筋重量強度とフープ筋重量強度の関係、及びかぶり厚から求めたものである。
【0017】
【発明の実施の形態】
図1は本願発明に係る鉄筋補強型コンクリート充填鋼管柱に円形鋼管を用いた場合の一実施形態を充填コンクリートを省略して示した鉛直断面(右半分のみ)図、図2はその水平断面図である。
【0018】
鉄筋補強型コンクリート充填鋼管柱1を構成する円形鋼管2は、柱梁接合部において、円形鋼管2とほぼ等しい径で内フランジ及び外フランジを有する上下一対のダイアフラム3に溶接接合されている。さらに、ダイアフラム3には、H形鋼梁6のフランジが接合されている。
【0019】
なお、円形鋼管を上階から下階まで貫通させ、柱梁接合部において円形鋼管を外ダイアフラムにより補強する場合、あるいはノンダイアフラムとする場合も、本願発明の技術範囲に属することは言うまでもない。
【0020】
本実施形態では、この円形鋼管2の内部に柱材軸方向に配筋された主筋4と主筋4に対して等間隔に緊結されたフープ筋5からなる鉄筋籠が挿入されている。
【0021】
この鉄筋籠の主筋4とフープ筋5の重量強度は、主筋重量強度:フープ筋重量強度=5:5〜9:1の範囲となるように選択されている。また、鉄筋籠とコンクリート外縁との間隔(かぶり厚)aは、a≧50mmを確保している。
【0022】
図3は本願発明に係る鉄筋補強型コンクリート充填鋼管柱に角形鋼管を用いた場合の一実施形態を充填コンクリートを省略して示した鉛直断面(右半分のみ)図、図4はその水平断面図である。
【0023】
角形鋼管7は、柱梁接合部においてH形鋼梁6のフランジが取り付く部分を、コンクリート補強用鉄筋籠を連通させるべく設けられた開口部10と、コンクリートの充填性を助けるため、必要に応じて設けられた複数個の連通口9を有する内ダイアフラム8により、その内部から補強されている。
【0024】
角形鋼管7内の補強鉄筋は、柱の形状に合わせ四角形に配筋しても良いが、図4に示すように同心円上に配筋した方が、コアコンクリートを拘束するという面で有利である。
【0025】
図3及び図4の鉄筋籠も、図1及び図2の鉄筋籠同様に、主筋重量強度:フープ筋重量強度で、5:5〜9:1の範囲で選択し、かぶり厚bは、b≧50mmを確保している。
【0026】
は本願発明による鉄筋補強型コンクリート充填鋼管柱における耐火性能に関する限界軸力評価値と、鉄筋補強型コンクリート充填鋼管柱の複合載荷加熱実験の結果を比較した場合の一例を示したものである。
【0027】
実験及び限界軸力評価の対象とした鉄筋補強型コンクリート充填鋼管柱は、鋼管が径318.5mm、管厚6.9mm、主筋が径16mm、10本、フープ筋が径6mm、50mm間隔の場合である。
【0028】
本願発明において、所定の耐火時間における主筋及びフープ筋を除いたコンクリート充填鋼管柱の軸力負担分Nc と、所定の耐火時間経過後における主筋の軸力負担分Nsと、所定の耐火時間経過後におけるフープ筋の軸力負担分Nf の総和として評価される限界軸力を算出することで、所定の耐火時間における限界軸力を適切かつ安全側に評価できることがわかる。
【0029】
は柱径が700mm程度の鉄筋補強型コンクリート充填鋼管柱(RCFT柱)の加熱1〜3時間における許容軸力比を、複合載荷加熱実験(柱径318.5mm)の結果を基に決定した場合と、本願発明の限定条件から算出した場合とを比較して示したものである。
【0030】
一般に、柱径が大きくなると熱容量が大きくなることから、部材の温度上昇が緩やかとなり、耐火性能が向上するが、本願発明に従って鉄筋補強の効果を適切に評価することにより、この柱サイズの影響を取り入れることが可能となり、実験値をそのまま用いる場合に比べ、鉄筋補強型コンクリート充填鋼管柱をより高い軸力に適用することが可能である。
【0031】
は鉄筋補強型コンクリート充填鋼管柱(RCFT柱)の加熱載荷実験の崩壊軸力と、鉄筋補強のないコンクリート充填鋼管柱(CFT柱)の崩壊軸力評価値の比と鉄筋重量強度との関係を示したものである。
【0032】
全鉄筋重量強度に対する主筋重量強度が、0.5〜0.9(主筋重量強度:フープ筋重量強度=5:5〜9:1)の範囲にある鉄筋補強型コンクリート充填鋼管柱の崩壊軸力は、鉄筋補強していないコンクリート充填鋼管柱の崩壊軸力よりも、40%以上向上している。
【0033】
また、常温時においては、施工上の不具合が生じない限り、かぶり厚を小さくとる方が鉄筋補強の効果が期待できるが、加熱時においては、ある程度のかぶり厚が必要である。
【0034】
は、本願発明における設計概念を用いた数値実験により求めた限界軸力比と鉄筋のかぶり厚の関係を示したものである。
【0035】
ある範囲までは、かぶり厚を小さくすると限界軸力比が増加するが、極端にかぶり厚を小さくすると、限界軸力比が低下している。そこで、本願発明に係る鉄筋補強型コンクリート充填鋼管柱では、柱サイズによらず、かぶり厚の下限値を50mmに設定することで、効率の良い鉄筋補強効果を可能にしている。
【0036】
【発明の効果】
(1) 本願発明によれば、コンクリート充填鋼管の耐火性能を向上する目的で挿入される充填コンクリート補強用の鉄筋について、所定の耐火時間に必要とされる主筋とフープ筋を適切に配筋することが可能となる。
【0037】
(2) 主筋及びフープ筋が適切に配筋された鉄筋補強型コンクリート充填柱は、長時間の火災加熱を受けても、効率的かつ適切に配筋された補強鉄筋の効果により、鉄筋補強していないコンクリート充填鋼管に比較して高い軸力を長時間にわたって保持することができる。その結果、耐火被覆の省略・低減、さらにコンクリート充填鋼管柱の断面寸法を小さくすることが可能である。
【図面の簡単な説明】
【図1】 本願発明に係る鉄筋補強型コンクリート充填鋼管柱の一実施形態を充填コンクリートを省略して示した鉛直断面図である。
【図2】 図1に対応する水平断面図である。
【図3】 本願発明に係る鉄筋補強型コンクリート充填鋼管柱の他の実施形態を充填コンクリートを省略して示した鉛直断面図である。
【図4】 図3に対応する水平断面図である。
【図5】限界軸力評価値と、複合載荷加熱実験結果との比較のグラフである。
【図6】 スケール効果を取り入れた限界軸力評価値と、実験結果を用いた設計との比較を示す棒グラフである。
【図7】 最適範囲にある重量強度比で実施された鉄筋補強型コンクリート充填鋼管柱(RCFT柱)の加熱載荷実験の崩壊軸力と、コンクリート充填鋼管柱(CFT柱)の崩壊軸力評価値との比較を示すグラフである。
【図8】 かぶり厚と限界軸力の関係を示すグラフである。
【符号の説明】
1…鉄筋補強型コンクリート充填鋼管柱、2…円形鋼管、3…ダイアフラム、4…主筋、5…フープ筋、6…H形鋼梁、7…角形鋼管、8…内ダイアフラム、9…連通孔、10…開口
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a reinforced concrete-filled steel pipe column considering fire resistance used in the field of construction and civil engineering.
[0002]
[Prior art]
Examples of conventional reinforcing steel reinforced concrete-filled steel pipe columns include the following.
[0003]
Japanese Patent Application Laid-Open No. 61-126259 describes a column of a structure having a steel frame for forming and reinforcing a frame outside a reinforced concrete column. This steel pipe is for reinforcement with the aim of improving the toughness of reinforced concrete columns, and is expected to improve toughness by making the column cross section circular and the hoop bars spiral.
[0004]
Japanese Utility Model Laid-Open No. 1-1118520 discloses a concrete-filled steel pipe column that has no main bar and that constrains concrete only with a spiral hoop bar.
[0005]
Japanese Examined Patent Publication No. 8-33049 describes a concrete-filled steel pipe column in which concrete is cast and filled in a four-sided box steel pipe having a U-shaped lateral reinforcing steel bar welded to its inner peripheral surface. It is expected that U-shaped lateral reinforcing bars will constrain the concrete in the steel pipe, improve the strength and toughness of the concrete, and prevent a decrease in the strength due to local buckling of the steel pipe.
[0006]
Japanese Laid-Open Patent Publication No. 5-280096 describes a concrete-filled steel pipe column that fills concrete after a pre-assembled reinforcing bar unit is arranged and a construction method thereof. The effect of the invention is that even if the steel pipe on the surface is deteriorated by a long-time fire, there is no sudden decrease in the proof stress due to the reinforcing bars embedded and embedded in the concrete, and the construction by the pre-assembled reinforcing bar unit The improvement of the property is described.
[0007]
[Problems to be solved by the invention]
Regarding the fire resistance performance evaluation of general concrete-filled steel pipe columns without reinforcement, the ratio of the acting axial force to the concrete strength (filled concrete cross-sectional area x concrete strength) from many experimental results (hereinafter referred to as axial force ratio) ) And the decay time.
[0008]
For example, in the “CFT Structural Technology Guidelines / Explanation” of the New City Housing Association, the relationship between the axial force ratio and the collapse time is set to the safe side according to the difference in steel pipe shape, concrete strength and loading condition. An evaluation formula for the fire resistance performance of the evaluated concrete-filled steel pipe is shown.
[0009]
On the other hand, regarding the fire resistance performance of the reinforcing steel-reinforced concrete-filled steel pipe columns, an evaluation method for providing an appropriate and safe reinforcing steel bar amount and its arrangement has not been established, as described in Japanese Patent Laid-Open No. 5-280096 described above. A vague fireproof performance is expected, or only an experimental evaluation is performed on individual objects.
[0010]
The present invention was invented based on such a background, and comprehensively analyzed the relationship between the cross-section, arrangement, strength, and performance at a predetermined fireproof time for each member constituting a reinforced concrete-filled steel pipe column. It is an object of the present invention to provide a reinforced concrete-filled steel pipe column with excellent fire resistance in which main bars and hoop bars are arranged safely and appropriately.
[0011]
[Means for Solving the Problems]
A reinforcing steel-reinforced concrete-filled steel pipe column according to claim 1 of the present application is a reinforcing steel-reinforced concrete-filled steel pipe column in which concrete is filled in a steel pipe into which a main reinforcing reinforcing bar and a hoop are inserted, and acts on the column. axial force, mainly muscle and the axial force share N c after a predetermined refractory time course of concrete filled steel tube column in the absence of the hoop, before Symbol axial force share N s after the lapse of a predetermined refractory time main reinforcement When, as below the sum of the axial force share N f after the lapse of a predetermined refractory time before Symbol hoop, said main reinforcements and Ri tare set the reinforcement of hoop, the hoop and the main reinforcement The ratio of main muscle weight strength = (main muscle weight) × (main muscle yield strength) and hoop muscle weight strength = (hoop muscle weight) × (hoop muscle yield strength). Strength = 5 : 5-9: 1, and the lower limit of the cover thickness is 50 mm .
[0012]
That is, the above N c, N s, the sum of N f, and evaluated as the limit axial force capable of retaining the rebars reinforced concrete filled steel tube column after a lapse of a predetermined refractory time, the rebar reinforced concrete filled steel tube column The arrangement of the main reinforcement and the hoop reinforcement in the steel pipe is determined so that the acting axial force is less than the limit axial force.
[0013]
Claim 2 is the rebar reinforced concrete filled steel tube column according to claim 1, the axial force share N s of the main reinforcement, N s = (at ordinary temperature yield strength of main reinforcement) (main reinforcement cross-sectional area) × × (predetermined determination by reduction factor) determined by the main reinforcement temperature after the refractory time, the axial force share N f of the hoop, N f = (restraint of the core cross-sectional area of the concrete) × (concrete surrounded by the hoop Coefficient) x 2 x (cross-sectional area of hoop muscle) x (yield strength of hoop muscle at normal temperature) x (reduction factor determined by hoop muscle temperature after elapse of predetermined fireproof time) ÷ (hoop reinforcement interval) ÷ (The outer diameter of the hoop muscle).
[0014]
In the calculation of the critical axial force of a reinforced concrete-filled steel pipe column, the axial force share N c of the concrete-filled steel pipe column excluding the reinforcing bar is based on the results of loading heating experiments on the concrete-filled steel pipe. This can be determined by using the CFT column fire resistance design formula described in the section “CFT structural technical guidelines and explanation”.
[0015]
In addition, the effect of the hoop reinforcement on the axial load share N s of the main reinforcement was evaluated by accumulating the axial force as an increase in the strength of the core concrete due to the hoop reinforcement restraining the core concrete. is there.
[0016]
And have you to claim 1, the ratio of main reinforcements and hoops muscle, the main reinforcement strength by weight = (main reinforcement weight) × (yield strength of main reinforcement), the hoop strength by weight = (yield strength of the hoop) (hoop weight) × In the relationship, the reinforcement strength in the reinforcing steel-reinforced concrete-filled steel pipe column is that the main reinforcement weight strength: the hoop reinforcement weight strength is combined in the range of 5: 5 to 9: 1 and the lower limit of the cover thickness is 50 mm. As described later in the section of the embodiment of the present invention, the range in which the above effect can be exhibited efficiently is obtained from the relationship between the main bar weight strength and the hoop muscle weight strength, and the cover thickness.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a vertical cross-sectional view (only the right half) showing an embodiment in which a circular steel pipe is used as a reinforcing steel-reinforced concrete-filled steel pipe column according to the present invention, with the filled concrete omitted, and FIG. 2 is a horizontal cross-sectional view thereof. It is.
[0018]
The circular steel pipe 2 constituting the reinforcing steel-reinforced concrete-filled steel pipe column 1 is welded and joined to a pair of upper and lower diaphragms 3 having an inner flange and an outer flange with a diameter substantially equal to that of the circular steel pipe 2 at the column beam joint. Further, the flange of the H-shaped steel beam 6 is joined to the diaphragm 3.
[0019]
Needless to say, a case where the circular steel pipe is penetrated from the upper floor to the lower floor and the circular steel pipe is reinforced with an outer diaphragm at the beam-column joint portion or a non-diaphragm is included in the technical scope of the present invention.
[0020]
In the present embodiment, a reinforcing bar rod composed of a main bar 4 arranged in the column material axis direction and a hoop bar 5 tightly connected to the main bar 4 at an equal interval is inserted into the circular steel pipe 2.
[0021]
The weight strength of the main bar 4 and the hoop bar 5 of the reinforcing bar is selected to be in the range of main bar weight strength: hoop muscle weight strength = 5: 5 to 9: 1. In addition, the distance (cover thickness) a between the reinforcing bar rod and the concrete outer edge ensures a ≧ 50 mm.
[0022]
FIG. 3 is a vertical cross-sectional view (only the right half) showing an embodiment in which a square steel pipe is used as a reinforcing steel-reinforced concrete-filled steel pipe column according to the present invention, with the filled concrete omitted, and FIG. 4 is a horizontal cross-sectional view thereof. It is.
[0023]
The square steel pipe 7 is provided with an opening 10 provided for communicating the reinforcing steel bar for concrete reinforcement at the part where the flange of the H-shaped steel beam 6 is attached at the column beam joint, and in order to assist the filling of the concrete. An inner diaphragm 8 having a plurality of communication ports 9 provided from the inside is reinforced from the inside.
[0024]
Reinforcing bars in the square steel pipe 7 may be arranged in a quadrilateral shape in accordance with the shape of the column. However, it is advantageous in terms of constraining the core concrete that the reinforcing bars are arranged concentrically as shown in FIG. .
[0025]
3 and 4 are selected in the range of 5: 5 to 9: 1 in terms of the main bar weight strength: hoop muscle weight strength, and the cover thickness b is b. ≧ 50 mm is secured.
[0026]
FIG. 5 shows an example in the case of comparing the critical axial force evaluation value regarding the fire resistance performance of the reinforced concrete-filled steel tube column according to the present invention and the result of the combined loading heating experiment of the reinforced concrete-filled steel tube column. .
[0027]
Reinforcement-reinforced concrete-filled steel pipe columns subject to experiment and critical axial force evaluation are steel pipes with a diameter of 318.5 mm, pipe thickness of 6.9 mm, main bars with a diameter of 16 mm, 10 bars, hoop bars with a diameter of 6 mm and intervals of 50 mm It is.
[0028]
In the present invention, the axial force share N c of the concrete-filled steel pipe column excluding the main reinforcement and the hoop reinforcement in the predetermined fire resistance time, the axial force share N s of the main reinforcement after the predetermined fire resistance time has elapsed, and the predetermined fire resistance time It can be seen that by calculating the limit axial force evaluated as the sum of the axial force share N f of the hoop muscle after the passage, the limit axial force in a predetermined fireproof time can be evaluated appropriately and safely.
[0029]
Fig. 6 shows the allowable axial force ratio in the 1 to 3 hour heating of a reinforced concrete-filled steel pipe column (RCFT column) with a column diameter of about 700 mm based on the results of a combined loading heating experiment (column diameter 318.5 mm). This is a comparison between the case where the calculation is made and the case where the calculation is made based on the limiting condition of the present invention.
[0030]
In general, since the heat capacity increases as the column diameter increases, the temperature rise of the member is moderated and the fire resistance performance is improved.By appropriately evaluating the effect of reinforcing the reinforcing bars according to the present invention, the influence of this column size is reduced. In comparison with the case where the experimental values are used as they are, it is possible to apply the reinforced concrete-filled steel pipe column to a higher axial force.
[0031]
Fig. 7 shows the ratio of the collapse axial force in the heating loading test of a reinforced concrete-filled steel pipe column (RCFT column) to the ratio of the evaluation value of the collapse axial force of a concrete-filled steel tube column (CFT column) without reinforcement and the reinforcing bar weight strength. It shows the relationship.
[0032]
Collapse axial force of rebar-reinforced concrete-filled steel tubular columns with main bar weight strength in the range of 0.5 to 0.9 (main bar weight strength: hoop weight strength = 5: 5 to 9: 1) Is improved by 40% or more than the collapse axial force of the concrete-filled steel pipe column not reinforced with reinforcing bars.
[0033]
Further, at room temperature, unless the problem in construction occurs, the effect of reinforcing the reinforcing bars can be expected by reducing the cover thickness. However, a certain amount of cover thickness is required during heating.
[0034]
FIG. 8 shows the relationship between the limiting axial force ratio and the cover thickness of the reinforcing bar obtained by a numerical experiment using the design concept in the present invention.
[0035]
Up to a certain range, when the cover thickness is reduced, the limit axial force ratio increases. However, when the cover thickness is extremely reduced, the limit axial force ratio decreases. Therefore, in the reinforcing bar-reinforced concrete-filled steel pipe column according to the present invention, an efficient reinforcing bar reinforcing effect is made possible by setting the lower limit value of the cover thickness to 50 mm regardless of the column size.
[0036]
【The invention's effect】
(1) According to the gun onset bright, the reinforcing bar for compacting concrete reinforcement to be inserted for the purpose of improving the fire resistance of the concrete filled steel tube, appropriately distributing the main reinforcements and the hoop that is required for a given refractory time It becomes possible to streak.
[0037]
(2) Reinforced concrete-filled columns with properly reinforced main bars and hoop bars will be reinforced by the effect of reinforced bars that are efficiently and properly laid even under prolonged fire heating. High axial force can be maintained for a long time compared with the concrete filled steel pipe which is not. As a result, the fireproof coating can be omitted and reduced, and the cross-sectional dimension of the concrete-filled steel pipe column can be reduced.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an embodiment of a reinforcing steel-reinforced concrete-filled steel pipe column according to the present invention, omitting filled concrete.
FIG. 2 is a horizontal sectional view corresponding to FIG.
FIG. 3 is a vertical cross-sectional view showing another embodiment of a reinforcing steel-reinforced concrete-filled steel pipe column according to the present invention, omitting the filled concrete.
FIG. 4 is a horizontal sectional view corresponding to FIG. 3;
FIG. 5 is a graph showing a comparison between a critical axial force evaluation value and a combined loading heating experiment result.
FIG. 6 is a bar graph showing a comparison between a critical axial force evaluation value incorporating a scale effect and a design using experimental results.
[Fig. 7] Collapse axial force of heating loading test of reinforced concrete-filled steel tube column (RCFT column) conducted with weight-to-strength ratio in optimum range and evaluation value of collapse axial force of concrete filled steel tube column (CFT column) It is a graph which shows the comparison with.
FIG. 8 is a graph showing the relationship between the cover thickness and the limit axial force.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reinforcement-reinforced concrete filled steel pipe column, 2 ... Circular steel pipe, 3 ... Diaphragm, 4 ... Main reinforcement, 5 ... Hoop reinforcement, 6 ... H-shaped steel beam, 7 ... Square steel pipe, 8 ... Inner diaphragm, 9 ... Communication hole, 10 ... opening

Claims (2)

コンクリート補強用の主筋及びフープ筋を挿入した鋼管内にコンクリートを充填してなる鉄筋補強型コンクリート充填鋼管柱において、当該柱に作用する軸力が、主筋及びフープ筋がない場合のコンクリート充填鋼管柱の所定の耐火時間経過後における軸力負担分Nc、前記主筋の所定の耐火時間経過後における軸力負担分Ns、前記フープ筋の所定の耐火時間経過後における軸力負担分Nf との総和を下回るように、前記主筋及びフープ筋の配筋を設定してあり、前記主筋と前記フープ筋の比率が、主筋重量強度=(主筋重量)×(主筋の降伏強度)と、フープ筋重量強度=(フープ筋重量)×(フープ筋の降伏強度)との関係において、主筋重量強度:フープ筋重量強度=5:5〜9:1の範囲で組み合わせられ、かつ、かぶり厚の下限を50mmとしたことを特徴とする耐火性を考慮した鉄筋補強型コンクリート充填鋼管柱。In rebar reinforced concrete filled steel tube columns formed by filling concrete into the steel tube was inserted main reinforcements and the hoop for concrete reinforcement, concrete filled steel tube when the axial force acting on the pillar, there is no major muscle and hoop axial force and the axial force share N c after the lapse of a predetermined refractory time of the pillar, in the previous Symbol and the axial force share N s after the lapse of a predetermined refractory time of the main reinforcement, before Symbol after the lapse of a predetermined refractory time of the hoop as below the sum of the share of N f, the main reinforcement and sets the reinforcement of hoop tare is, the ratio of the hoop and the main reinforcement is the main reinforcement strength by weight = (main reinforcement weight) × (yield of main reinforcement Strength) and hoop muscle weight strength = (hoop muscle weight) × (hoop muscle yield strength), and main muscle weight strength: hoop muscle weight strength = 5: 5 to 9: 1 Lower limit of cover thickness Reinforcement-reinforced concrete-filled steel pipe column in consideration of fire resistance, characterized in that is 50 mm . 前記主筋の軸力負担分Ns が、Ns =(主筋断面積)×(主筋の常温時降伏強度)×(所定の耐火時間経過後における主筋温度により決定される低減係数)によって求まるものであり、前記フープ筋の軸力負担分Nfが、Nf =(フープ筋で囲まれるコアコンクリートの断面積)×(コンクリートの拘束係数)×2×(フープ筋の断面積)×(フープ筋の常温時降伏強度)×(所定の耐火時間経過後におけるフープ筋温度により決定される低減係数)÷(フープ筋の補強間隔)÷(フープ筋の外径)によって求まるものである請求項1記載の鉄筋補強型コンクリート充填鋼管柱。The axial force share N s of the main muscle is obtained by N s = (main muscle cross-sectional area) × (main muscle yield strength at normal temperature) × (reduction factor determined by the main muscle temperature after a predetermined fire resistance time). Yes, the axial force share N f of the hoop is N f = (cross-sectional area of core concrete surrounded by hoop) × (concrete coefficient of concrete) × 2 × (cross-sectional area of hoop) × (hoop) 2. Yield strength at normal temperature) × (reduction factor determined by hoop muscle temperature after elapse of a predetermined fireproof time) ÷ (reinforcement interval of hoop muscles) ÷ (outer diameter of hoop muscles) Reinforced reinforced concrete filled steel pipe columns.
JP2000098300A 2000-03-31 2000-03-31 Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance Expired - Fee Related JP3678625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098300A JP3678625B2 (en) 2000-03-31 2000-03-31 Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098300A JP3678625B2 (en) 2000-03-31 2000-03-31 Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance

Publications (2)

Publication Number Publication Date
JP2001279865A JP2001279865A (en) 2001-10-10
JP3678625B2 true JP3678625B2 (en) 2005-08-03

Family

ID=18612800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098300A Expired - Fee Related JP3678625B2 (en) 2000-03-31 2000-03-31 Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance

Country Status (1)

Country Link
JP (1) JP3678625B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052283A (en) * 2007-08-27 2009-03-12 Ihi Corp Method and apparatus for connecting between steel member and concrete member
US8484915B1 (en) 2012-07-11 2013-07-16 King Saud University System for improving fire endurance of concrete-filled steel tubular columns
CN111877188A (en) * 2020-07-25 2020-11-03 杨国丽 Bridge reinforcing and supporting mechanism for building construction
JP2022139039A (en) * 2021-03-11 2022-09-26 Jfeシビル株式会社 Steel pipe concrete column, junction structure of steel pipe concrete column and steel beam, and its construction method
JP7498160B2 (en) * 2021-09-07 2024-06-11 Jfeシビル株式会社 Steel pipe concrete column, steel pipe concrete column and steel beam joint structure and construction method
CN114215271B (en) * 2022-01-15 2023-03-21 福建省川工建设工程有限公司 Improved steel structure upright post
CN116335342B (en) * 2022-12-21 2024-04-30 安徽吾兴新材料有限公司 Configuration strengthening rib post component based on high-strength longitudinal rib
CN118013174B (en) * 2024-04-09 2024-06-25 安徽吾兴新材料有限公司 Method for calculating anchoring length of reinforced concrete straight anchoring member provided with high-strength steel bars

Also Published As

Publication number Publication date
JP2001279865A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP2020002610A (en) Exposed column base structure
KR101415253B1 (en) Hollow Core PC Composite Column for SRC Columns and SRC Structures Using the Same
DK2379821T3 (en) Reinforced concrete piece
JP3678625B2 (en) Reinforced reinforced concrete-filled steel pipe columns and concrete-filled double steel pipe columns considering fire resistance
CN102900169A (en) Concrete-filled steel tube combined shear wall and construction process thereof
JP6796335B2 (en) Reinforcing support member for reinforcing bar cage, reinforcing bar cage using this, and structure of reinforcing bar cage
JP6646206B2 (en) Joint structure of RC members
JP2958880B1 (en) Seismic reinforcement method
JP2018003556A (en) Fire-resisting structure
JP5036065B2 (en) Pile head joint structure
CN216276409U (en) End connection reinforcing structure of steel pipe bundle concrete combined shear wall
JP2005155036A (en) Column of building and rigid-frame structure using this column
JP6478832B2 (en) Seismic reinforcement structure
JP4515437B2 (en) Method for producing filled steel pipe concrete column
JP5301746B1 (en) Buildings using steel columns with seismic prestressing
JP6733905B2 (en) Double pipe structure of pile head and its designing method
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JP2004052494A (en) Rc beam damper
JPH0972044A (en) Concrete filled and covered steel pipe-reinforced concrete tower shape structure
JP5509527B2 (en) Beam or slab design method, building
CN115288289B (en) Large eccentric beam column reinforcing node without armpit and design method
JP7127244B2 (en) Seismic reinforcement structure
JP6067343B2 (en) Reinforcement structure and reinforcement method for existing beam members
CN212927132U (en) Anti-seismic reinforcing structure of frame structure filled ductile anti-seismic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Ref document number: 3678625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees