JP3678353B2 - Projector lighting system - Google Patents

Projector lighting system Download PDF

Info

Publication number
JP3678353B2
JP3678353B2 JP2001290441A JP2001290441A JP3678353B2 JP 3678353 B2 JP3678353 B2 JP 3678353B2 JP 2001290441 A JP2001290441 A JP 2001290441A JP 2001290441 A JP2001290441 A JP 2001290441A JP 3678353 B2 JP3678353 B2 JP 3678353B2
Authority
JP
Japan
Prior art keywords
light
conversion element
polarization conversion
polarization
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001290441A
Other languages
Japanese (ja)
Other versions
JP2003098598A (en
Inventor
秀樹 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001290441A priority Critical patent/JP3678353B2/en
Publication of JP2003098598A publication Critical patent/JP2003098598A/en
Application granted granted Critical
Publication of JP3678353B2 publication Critical patent/JP3678353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、投写光学系のプロジェクタにおける光学系に関するものであり、特に、液晶プロジェクタに好適に利用されうる偏光変換素子の設計に関する。
【0002】
【従来の技術】
従来、液晶表示素子に表示された画像を拡大投影する液晶プロジェクタには、白色光源からの光をレンズアレイにより液晶画像表示素子を均一に照明する照明光学系が用いられる。この照明光学系には特開平8−304739号公報等にて提案されるように、液晶表示素子の偏光特性に合わせて照明光の偏光方向を揃える偏光変換素子が用いられる。
【0003】
特開平8−304739号公報では、インテグレータ光学系と偏光変換光学系を組み合わせた光利用効率の高い偏光照明装置を小型でコンパクトに構成するため、偏光照明装置は、偏光方向がランダムな光を出射する光源部と、矩形状の外形を有する複数の矩形集光レンズから構成され、前記光源からの出射光を集光して、複数の2次光源像を形成するための第1のレンズ板と、前記複数の2次光源像が形成される位置の近傍に置かれ、集光レンズアレイ、偏光分離プリズムアレイ、λ/2位相差板、および出射側レンズを備えた第2のレンズ板とを有している。インテグレータ光学系を構成する第1のレンズ板によって、微小な2次光源像を生成した段階で、偏光光の分離が行なわれる。よって、偏光光の分離に伴う光路の空間的な広がりを抑制できるので、偏光変換光学系を備えているにもかかわらず、偏光照明装置の小型化を達成できるものである。
【0004】
図5に、従来例として上記の照明光学系を示す。2つのレンズアレイ401、402と偏光変換素子403とを組み合わせる場合、偏光の分離は第2レンズアレイ402の近傍にできる第1のレンズアレイ401の集光位置でP偏光成分とS偏光成分に分離される。
【0005】
また、特開平10−333097号公報においては、偏光方向の揃った光束を発する光源装置と、この光源装置からの光束を入射させる位置に配置された画像表示素子としての透過型の液晶パネル、そして液晶パネルを透過した光束をスクリーン上に投影する投影レンズとから構成される投射装置において、光源装置は、偏光状態がランダムな光源と、光源からの光を集光する凹面鏡と、光源から入射した光束の偏光方向を揃える偏光変換素子と、偏光変換素子から射出した偏光方向が揃った光束の強度分布を均一化するインテグレータとを備え、投影画像に発生する色ムラを防止している。
【0006】
さらに、特開平11−295658号公報においては、座標軸における一方の軸方向のみに偏芯したレンズを備えた第1マルチレンズアレイと、第1マルチレンズアレイの各レンズによって前記一方の軸方向に屈折された光を集光することができるレンズによって構成されている第2マルチレンズアレイを備え、色分離/合成や偏光分離を行なう光学薄膜に対する入射角度補正を行っている。
【0007】
【発明が解決しようとする課題】
ところで、液晶プロジェクタの永遠のテーマともいえるスクリーン輝度競争は年々激しくなってきている。スクリーン輝度を上げる手段の1つとして、パネル照射領域に対してより大きな入射角度、すなわちFナンバーの小さい照明光学系を作る必要性がある。しいては偏光変換素子に、より大きな入射角度の光を集める必要がある。しかし、偏光変換素子の分離面は、一般に入射角度に依存して分光透過率、反射率の分布が変化するので、入射角度が大きくなると偏光変換素子から出射する光が変化し、パネル等の画像表示素子を照射して、スクリーン上に色むらを発生させるという課題がある。
【0008】
また、図6に示すように、従来例での偏光変換素子502の分離面503により反射された光の出射角度は変らないが、光路が長い分、光の広がりが大きくなり、隣り合う偏光分離面での光のロスを発生させていた。
【0009】
図3及び図4に、入射角度45°で入射する光を偏光方向が直交する2つの直線偏光成分に分離するように設計された偏光分離面の分光反射率、分光透過率の分布を示す。図からS偏光成分については入射角度が45°から変化すると長波長側で反射率が増減し、P偏光成分については短波長側及び中間波長で透過率が減少する事がわかる。
【0010】
また、このように偏光変換素子への入射角度特性を補正する例として、特開平10−333097、特開平11−295658等があり、本発明とは違う観点から提案されている。
【0011】
【課題を解決するための手段】
上記課題を解決する為に、本発明によるプロジェクタの照明光学システムは、白色光を発生する光源と、光源からの光を分割集光するための複数のレンズから構成されている第1のレンズアレイと、第1のレンズアレイの焦点近傍に配置され、第1のレンズアレイの各レンズに対応するレンズから構成されている第2のレンズアレイと、前記白色光源からの光を単一偏光方向に変換する偏光変換素子を配置し、前記第2のレンズアレイの各レンズに対応する各偏光変換素子入射面及び出射面が特定の曲率を有しており、入射波長により異なる入射角度にて偏光変換素子へ入射されるほぼ全ての光を、主光線軸に対しほぼ平行とすることを特徴とする。
【0012】
さらに好ましくは、前記偏光変換素子入射面及び出射面の特定の曲率がほぼ同じであることを特徴とし、また、前記偏光変換素子入射面及び出射面の曲率方向を同一もしくは反対にする事を特徴とする。
【0013】
【発明の実施の形態】
図1及び図2を用いて、本発明における実施の形態を示す。図2は本願発明が好適に用いられるプロジェクタ光学系配置図であり、図1は図2の光学系配置図のうち、白色光源101からの光が、第1のレンズアレイ102を通過し、第2のレンズアレイ103近傍に集光され、該集光位置近傍に配置される偏光変換素子104の拡大図である。白色光源101からの光は、スクリーン上の光均一化のため、第1のレンズアレイ102のレンズ各々により、第2のレンズアレイ103近傍で集光されるが、その集光近傍位置の偏光変換素子104の入射面及び出射面が特定の曲率を有することが本願発明では重要である。
【0014】
図1を用いて、1つのレンズセルを通る3つの光線の動きにて、詳細に説明する。図1に示す3つの光線A、B(主光線)、Cは、この曲率105により偏光変換素子への入射角度は光線A,C共に、主光線であるBとほぼ平行になるように屈折され、偏光変換素子内部の偏光分離面106にそれぞれ約45°で入射されるような特定の曲率面を有する偏光変換素子である。偏光分離面106によりP偏光とS偏光に分離され、光の利用効率の向上を目的としている。光線を平行にする曲率rを以下の近似式で示す。偏光変換素子に入射する光線角度(AとBとの角度)をθ、A〜B間の距離高さをh、偏光変換素子の屈折率をnとすると、次式が成立する。
【0015】
r=−h*(n−1)/θ
このように設計することにより、レンズアレイへの光線入射位置による入射角度の違いをなくす(キャンセルする)ことができるため、最終的に画像が投影されたスクリーン上での色むらの原因となる、入射角度の違う各光線による分光特性の変化を無くす、若しくは低減することが可能となる。図3より、40度と50度に比べ45度の分光特性が600nm以上の赤色において、反射率の低下もしくは急な落ち込みが抑えられており、赤の明るさによる色むらを低減できる事がわかる。
【0016】
さらに、偏光分離面での高い透過率、反射率特性も維持できるため、光の利用効率を高めることが可能となる。この事は図4から、40度と50度に比べ45度の分光特性が400〜700nmの可視光全域において、反射率の低下がしていない事から読み取ることができる。また、各々の光線の入射角度を、ほぼ45°近傍にできるので、偏光変換素子内での光線の広がりが無くなり、隣の偏光分離面での干渉ロスを少なくすること、さらに、偏光分離面内での輝度むらの影響を抑えることが可能となる。言いかえると、前述のように光線の広がりを抑える事ができるので、偏光分離面内のコートむらの影響を受け難いものとできる。
【0017】
次に、偏光分離面106を反射した光線は偏光変換素子の出射面の曲率107により、入射状態の光線角度にそれぞれ戻され出射される。また、偏光分離面106を透過した光線は偏光変換素子の出射面の曲率107により、入射状態の光線角度に戻され出射する。この時、入射面と出射面の曲率105、107をほぼ同じにする事により、出射光線は入射光線の角度を維持し、その後の第1、第2のコンデンサーレンズ109、110のレンズ作用により、設計通りの光線が液晶パネル112に到達可能となる。
【0018】
図1の場合、入射面と出射面の曲率105、107は負の曲率である凹レンズで同一曲率方向になっているが、別の光線設計を行った場合、正の曲率である凸レンズで入射し、凹レンズで出射する反対曲率方向になる光学設計でも本発明が適用可能なことは言うまでも無い。
【0019】
偏光分離面106を反射した光は波長板108により、偏光分離面を透過した光と同一偏光方向に回転合成され、第1、第2のコンデンサーレンズ109、110と色分離手段111と液晶パネル112及び投影レンズ113により、スクリーン114上、明るく色むらの無い映像が得られる事となる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、偏光変換素子の入出射面に曲率を有する事によって、光の利用効率ロス及びスクリーン上の色むらを抑える事が可能となり、結果的にスクリーン投影時の明るさと品位の向上が図れる。
【図面の簡単な説明】
【図1】本発明にかかる偏光変換素子の光学設計図である。
【図2】本発明の投射型プロジェクタの偏光変換光学系の概略図である。
【図3】入射角度45°近傍における偏光分離面の分光反射率の分布図である。
【図4】入射角度45°近傍における偏光分離面の分光透過率の分布図である。
【図5】従来の照明光学系構成図である。
【図6】図5に示す偏光変換素子において行われる偏光変換の概略図である。
【符号の説明】
101 白色光源
102 第1のレンズアレイ
103 第2のレンズアレイ
104 偏光変換素子
105 偏光変換素子の入射曲率面
106 偏光分離面
107 偏光変換素子の出射曲率面
108 波長板
109 第1のコンデンサーレンズ
110 第2のコンデンサーレンズ
111 色分離手段
112 液晶パネル
113 投影レンズ
114 スクリーン
401 第1のレンズアレイ
402 第2のレンズアレイ
403 偏光変換素子
404 第1のコンデンサーレンズ
501 第2のレンズアレイ
502 偏光変換素子
503 偏光分離面
504 波長板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical system in a projector of a projection optical system, and particularly relates to a design of a polarization conversion element that can be suitably used for a liquid crystal projector.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a liquid crystal projector that enlarges and projects an image displayed on a liquid crystal display element uses an illumination optical system that uniformly illuminates the liquid crystal image display element with a lens array using light from a white light source. As this illumination optical system, a polarization conversion element that aligns the polarization direction of the illumination light in accordance with the polarization characteristics of the liquid crystal display element is used, as proposed in JP-A-8-304739.
[0003]
In JP-A-8-304739, a polarization illumination device that emits light with a random polarization direction is formed in a compact and compact configuration with a light illumination efficiency that combines an integrator optical system and a polarization conversion optical system. A first light source unit and a plurality of rectangular condenser lenses having a rectangular outer shape, and a first lens plate for condensing the emitted light from the light source to form a plurality of secondary light source images A second lens plate that is disposed in the vicinity of the position where the plurality of secondary light source images are formed, and includes a condenser lens array, a polarization separation prism array, a λ / 2 phase difference plate, and an exit side lens. Have. Polarized light is separated at the stage where a minute secondary light source image is generated by the first lens plate constituting the integrator optical system. Therefore, since the spatial expansion of the optical path accompanying the separation of the polarized light can be suppressed, the polarization illumination device can be reduced in size even though the polarization conversion optical system is provided.
[0004]
FIG. 5 shows the illumination optical system as a conventional example. When the two lens arrays 401 and 402 and the polarization conversion element 403 are combined, the polarization is separated into a P-polarized component and an S-polarized component at the condensing position of the first lens array 401 that can be in the vicinity of the second lens array 402. Is done.
[0005]
Japanese Patent Laid-Open No. 10-333097 discloses a light source device that emits a light beam with a uniform polarization direction, a transmissive liquid crystal panel as an image display element disposed at a position where the light beam from the light source device is incident, and In a projection apparatus configured with a projection lens that projects a light beam transmitted through a liquid crystal panel onto a screen, the light source apparatus is incident on the light source having a random polarization state, a concave mirror that collects light from the light source, and the light source. A polarization conversion element that aligns the polarization direction of the light beam and an integrator that equalizes the intensity distribution of the light beam that is emitted from the polarization conversion element and that has the same polarization direction are provided to prevent color unevenness occurring in the projected image.
[0006]
Further, in Japanese Patent Application Laid-Open No. 11-295658, a first multi-lens array having a lens that is eccentric only in one axial direction of the coordinate axes, and each lens of the first multi-lens array is refracted in the one axial direction. A second multi-lens array composed of lenses capable of condensing the emitted light, and correcting an incident angle with respect to an optical thin film that performs color separation / synthesis and polarization separation.
[0007]
[Problems to be solved by the invention]
By the way, screen brightness competition, which can be said to be the eternal theme of liquid crystal projectors, is getting stronger year by year. As one means for increasing the screen brightness, it is necessary to make an illumination optical system having a larger incident angle, that is, a smaller F number, with respect to the panel irradiation region. Therefore, it is necessary to collect light having a larger incident angle on the polarization conversion element. However, the separation surface of the polarization conversion element generally changes the spectral transmittance and reflectance distribution depending on the incident angle. Therefore, when the incident angle increases, the light emitted from the polarization conversion element changes, and the image of the panel or the like changes. There is a problem that color unevenness is generated on the screen by irradiating the display element.
[0008]
Further, as shown in FIG. 6, although the emission angle of the light reflected by the separation surface 503 of the polarization conversion element 502 in the conventional example does not change, the longer the optical path, the wider the light spread, and the adjacent polarization separation The light loss on the surface was generated.
[0009]
3 and 4 show the spectral reflectance and spectral transmittance distribution of a polarization separation surface designed to separate light incident at an incident angle of 45 ° into two linearly polarized light components having orthogonal polarization directions. From the figure, it can be seen that when the incident angle changes from 45 ° for the S-polarized component, the reflectance increases or decreases on the long wavelength side, and for the P-polarized component, the transmittance decreases on the short wavelength side and the intermediate wavelength.
[0010]
Further, examples of correcting the incident angle characteristic to the polarization conversion element as described above include JP-A-10-333097 and JP-A-11-295658, which have been proposed from a viewpoint different from the present invention.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, a lighting optical system for a projector according to the present invention includes a light source that generates white light and a first lens array that includes a plurality of lenses for dividing and condensing light from the light source. A second lens array arranged near the focal point of the first lens array and corresponding to each lens of the first lens array, and light from the white light source in a single polarization direction A polarization conversion element to be converted is arranged, and each polarization conversion element incident surface and output surface corresponding to each lens of the second lens array have specific curvatures, and polarization conversion is performed at different incident angles depending on the incident wavelength. It is characterized in that almost all light incident on the element is substantially parallel to the principal ray axis.
[0012]
More preferably, the specific curvatures of the polarization conversion element entrance surface and the exit surface are substantially the same, and the polarization directions of the polarization conversion element entrance surface and the exit surface are the same or opposite. And
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a layout diagram of a projector optical system in which the present invention is preferably used. FIG. 1 is a diagram of the optical system layout in FIG. 2, in which light from the white light source 101 passes through the first lens array 102, and FIG. 4 is an enlarged view of a polarization conversion element 104 that is focused near the second lens array 103 and disposed near the focused position. The light from the white light source 101 is condensed in the vicinity of the second lens array 103 by each lens of the first lens array 102 in order to make the light on the screen uniform. It is important in the present invention that the entrance surface and the exit surface of the element 104 have a specific curvature.
[0014]
The movement will be described in detail with reference to FIG. 1 by the movement of three light beams passing through one lens cell. The three rays A, B (chief rays) and C shown in FIG. 1 are refracted by the curvature 105 so that the incident angles to the polarization conversion element are substantially parallel to the principal ray B. The polarization conversion element has a specific curvature surface that is incident at about 45 ° on the polarization separation surface 106 inside the polarization conversion element. The light is separated into P-polarized light and S-polarized light by the polarization separation surface 106, and the purpose is to improve the light utilization efficiency. The curvature r that makes the light rays parallel is shown by the following approximate expression. If the angle of light incident on the polarization conversion element (angle between A and B) is θ, the distance height between A and B is h, and the refractive index of the polarization conversion element is n, the following equation is established.
[0015]
r = −h * (n−1) / θ
By designing in this way, it is possible to eliminate (cancel) the difference in incident angle depending on the light beam incident position on the lens array, which eventually causes color unevenness on the screen on which the image is projected. It is possible to eliminate or reduce changes in spectral characteristics due to light beams having different incident angles. As can be seen from FIG. 3, in the red having a spectral characteristic of 45 degrees as compared with 40 degrees and 50 degrees of 600 nm or more, a decrease in reflectance or a sudden drop is suppressed, and color unevenness due to the brightness of red can be reduced. .
[0016]
Furthermore, since the high transmittance and reflectance characteristics on the polarization separation surface can be maintained, the light utilization efficiency can be increased. This can be read from FIG. 4 because the reflectance is not lowered in the entire visible light region having a spectral characteristic of 45 degrees compared to 40 degrees and 50 degrees of 400 to 700 nm. In addition, since the incident angle of each light beam can be approximately 45 °, the spread of the light beam in the polarization conversion element is eliminated, the interference loss in the adjacent polarization separation surface is reduced, and further, in the polarization separation surface. Therefore, it is possible to suppress the influence of uneven brightness. In other words, since the spread of the light beam can be suppressed as described above, it is difficult to be affected by the coating unevenness in the polarization separation plane.
[0017]
Next, the light beams reflected by the polarization separation surface 106 are respectively returned to the incident light beam angle by the curvature 107 of the output surface of the polarization conversion element and emitted. Further, the light beam that has passed through the polarization separation surface 106 is returned to the incident light beam angle by the curvature 107 of the output surface of the polarization conversion element, and then emitted. At this time, by making the curvatures 105 and 107 of the entrance surface and the exit surface substantially the same, the exit ray maintains the angle of the incident ray, and the lens action of the first and second condenser lenses 109 and 110 thereafter, The designed light beam can reach the liquid crystal panel 112.
[0018]
In the case of FIG. 1, the curvatures 105 and 107 of the entrance surface and the exit surface are the same curvature direction with a concave lens having a negative curvature, but when another light beam design is performed, it is incident with a convex lens having a positive curvature. Needless to say, the present invention can be applied to an optical design in which the concave lens emits light in the opposite curvature direction.
[0019]
The light reflected from the polarization separation surface 106 is rotated and synthesized in the same polarization direction as the light transmitted through the polarization separation surface by the wave plate 108, and the first and second condenser lenses 109 and 110, the color separation means 111, and the liquid crystal panel 112 are combined. In addition, the projection lens 113 provides a bright and uniform image on the screen 114.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress the light use efficiency loss and the color unevenness on the screen by having the curvature at the entrance / exit surface of the polarization conversion element. Can improve brightness and quality.
[Brief description of the drawings]
FIG. 1 is an optical design diagram of a polarization conversion element according to the present invention.
FIG. 2 is a schematic diagram of a polarization conversion optical system of the projection type projector of the present invention.
FIG. 3 is a distribution diagram of spectral reflectance of a polarization separation surface in the vicinity of an incident angle of 45 °.
FIG. 4 is a distribution diagram of spectral transmittance of a polarization separation surface in the vicinity of an incident angle of 45 °.
FIG. 5 is a configuration diagram of a conventional illumination optical system.
6 is a schematic diagram of polarization conversion performed in the polarization conversion element shown in FIG. 5. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 White light source 102 1st lens array 103 2nd lens array 104 Polarization conversion element 105 Incident curvature surface 106 of a polarization conversion element Polarization separation surface 107 Output curvature surface 108 of a polarization conversion element Wavelength plate 109 1st condenser lens 110 1st Second condenser lens 111 Color separation means 112 Liquid crystal panel 113 Projection lens 114 Screen 401 First lens array 402 Second lens array 403 Polarization conversion element 404 First condenser lens 501 Second lens array 502 Polarization conversion element 503 Polarization Separation surface 504 Wave plate

Claims (3)

白色光を発生する光源と、光源からの光を分割集光するための複数のレンズから構成されている第1のレンズアレイと、第1のレンズアレイの焦点近傍に配置され、第1のレンズアレイの各レンズに対応するレンズから構成されている第2のレンズアレイと、前記白色光源からの光を単一偏光方向に変換する偏光変換素子を配置し、前記第2のレンズアレイの各レンズに対応する各偏光変換素子入射面及び出射面が特定の曲率を有しており、入射波長により異なる入射角度にて偏光変換素子へ入射されるほぼ全ての光を、主光線軸に対しほぼ平行とすることを特徴とするプロジェクタの照明光学システム。A first lens array comprising a light source that generates white light, a plurality of lenses for dividing and condensing light from the light source, and a first lens disposed near a focal point of the first lens array; A second lens array composed of lenses corresponding to the lenses of the array, and a polarization conversion element for converting light from the white light source into a single polarization direction, and each lens of the second lens array The incident surface and the exit surface of each polarization conversion element corresponding to the above have a specific curvature, and almost all light incident on the polarization conversion element at an incident angle that varies depending on the incident wavelength is substantially parallel to the principal ray axis. An illumination optical system for a projector. 請求項1において、前記偏光変換素子入射面及び出射面の特定の曲率がほぼ同じであることを特徴とするプロジェクタの照明光学システム。2. The illumination optical system for a projector according to claim 1, wherein the specific curvatures of the incident surface and the exit surface of the polarization conversion element are substantially the same. 請求項1において、前記偏光変換素子入射面及び出射面の曲率方向を同一もしくは反対にする事を特徴とするプロジェクタの照明光学システム。2. The illumination optical system for a projector according to claim 1, wherein the direction of curvature of the polarization conversion element entrance surface and the exit surface is the same or opposite.
JP2001290441A 2001-09-25 2001-09-25 Projector lighting system Expired - Fee Related JP3678353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290441A JP3678353B2 (en) 2001-09-25 2001-09-25 Projector lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290441A JP3678353B2 (en) 2001-09-25 2001-09-25 Projector lighting system

Publications (2)

Publication Number Publication Date
JP2003098598A JP2003098598A (en) 2003-04-03
JP3678353B2 true JP3678353B2 (en) 2005-08-03

Family

ID=19112744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290441A Expired - Fee Related JP3678353B2 (en) 2001-09-25 2001-09-25 Projector lighting system

Country Status (1)

Country Link
JP (1) JP3678353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217822B2 (en) * 2008-09-17 2013-06-19 株式会社ニコン Projector device

Also Published As

Publication number Publication date
JP2003098598A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP3666339B2 (en) projector
JP3635867B2 (en) Projection type liquid crystal display device
US7935920B2 (en) Illumination optical system including luminous flux conversion system
TW200424560A (en) Projecting type image display apparatus
JP4880957B2 (en) Illumination optical system and projection display device using the same
JP3473075B2 (en) Lighting device and projection display device
JP3972680B2 (en) Lighting optical unit, liquid crystal projector
JP2004078159A (en) Projection display device
JP3951180B2 (en) Polarization conversion element, illumination optical system, and projector
JP2001021997A (en) Illuminating optical system and projection type display device using the same
JP2005031108A (en) Projection video display device
JP3678353B2 (en) Projector lighting system
JP2008268243A (en) Illumination optical system and projection type display device
JP3652305B2 (en) Optical unit
JP4939070B2 (en) Illumination optical system and image projection apparatus
JP2002311382A (en) Illumination optical device and projective display device
JP2003121811A (en) Liquid crystal rear projection television
JP3684127B2 (en) Illumination device and projection device
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
JP2000241917A (en) Illuminator and projecting device provided therewith
JP2001249405A (en) Illumination apparatus and projector equipped with the same
JP2008203888A (en) Projector
JP2008507717A (en) Imager illumination system and corresponding projector
JP5247867B2 (en) Illumination optical system and projection display device using the same
JP2007025309A (en) Projection video display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20051213

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees