JP3677858B2 - Membrane deaerator - Google Patents

Membrane deaerator Download PDF

Info

Publication number
JP3677858B2
JP3677858B2 JP06626996A JP6626996A JP3677858B2 JP 3677858 B2 JP3677858 B2 JP 3677858B2 JP 06626996 A JP06626996 A JP 06626996A JP 6626996 A JP6626996 A JP 6626996A JP 3677858 B2 JP3677858 B2 JP 3677858B2
Authority
JP
Japan
Prior art keywords
membrane
deaeration
degassing
stage
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06626996A
Other languages
Japanese (ja)
Other versions
JPH09253459A (en
Inventor
洋 白澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP06626996A priority Critical patent/JP3677858B2/en
Publication of JPH09253459A publication Critical patent/JPH09253459A/en
Application granted granted Critical
Publication of JP3677858B2 publication Critical patent/JP3677858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は膜脱気装置に係り、特に、脱気膜モジュールの配列を改良することにより脱気効率を高めた膜脱気装置に関する。
【0002】
【従来の技術】
膜脱気装置は、脱気膜で仕切られた脱気膜モジュールの一方の室に原水を導入し、多方の室を真空状態とすることにより、原水中の溶存気体を除去するものであり、溶存酸素等の溶存気体の除去に利用されている。
【0003】
従来、膜脱気装置により、高濃度に溶存酸素を含有する水を処理して低溶存酸素濃度の処理水を得る場合には、図3に示す如く、複数(N個)の脱気膜モジュール1,2,………Nを直列に接続した多段膜脱気装置で処理を行っている。このような多段膜脱気装置で高流速処理を行う必要がある場合には、図4に示す如く、このような多段膜脱気装置を複数列設置し(図4においては、脱気膜モジュール1,2,3を3段に接続した多段膜脱気装置を6個並列に配置している。)、原水を複数の多段膜脱気装置に分割導入して並列処理する。
【0004】
【発明が解決しようとする課題】
図4に示すように、上記従来の多段膜脱気装置では、高流速及び高除去率の脱気処理を行って低溶存酸素濃度の高水質処理水を大量に得るためには、多数の脱気膜モジュールを直列に接続した多段膜脱気装置を多数列配置する必要があり、脱気膜モジュール個数が多く、装置コスト、装置設置面積、膜の洗浄や交換などのメンテナンス等の面で不利であった。
【0005】
本発明は上記従来の問題点を解決し、脱気膜モジュールの個数を減らしても高流速、高除去率にて脱気処理できる膜脱気装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の膜脱気装置は、膜の種類が同一の、複数の脱気膜モジュールを直列に接続した多段膜脱気装置において、下流側の段の脱気膜モジュールほど膜面流速が小さくなるように下流側の段ほど合計の膜面面積を大きくしたことを特徴とする。
【0007】
本発明者は膜脱気装置における脱気効率について鋭意検討を重ねた結果、次のような知見を得た。
【0008】
▲1▼ 膜脱気処理においては、膜面流速が遅いほど溶存酸素除去率が向上し、得られる処理水の溶存酸素濃度が低減する。しかし、この場合には、脱気膜モジュール当りの処理水量が減少する。
【0009】
▲2▼ 原水の溶存酸素濃度が低い場合には、膜面流速が速いと溶存酸素除去能が低いが、原水中の溶存酸素濃度が高い場合には、膜面流速が速くても溶存酸素除去能は大きい。
【0010】
本発明は、かかる知見に基づいてなされたものであり、膜の種類が同一の、複数の脱気膜モジュールを直列に接続した多段膜脱気装置において、下流側の段の脱気膜モジュール、即ち、上流側の段の脱気膜モジュールで膜脱気処理され、溶存酸素濃度が低減された水が流入する脱気膜モジュールほど、膜面流速が小さくなるように、下流側の段ほど合計の膜面面積を大きく設定している。
【0011】
本発明の膜脱気装置では、上流側の段の脱気膜モジュールでは、高流速処理を行うが、流入水の溶存酸素濃度が高いため溶存酸素除去量が多い。一方、下流側の段の脱気膜モジュールでは、溶存酸素濃度の低い水が流入するが、低流速処理するため、溶存酸素を高除去率で除去することができる。
【0012】
本発明においては、特に、下流側の段ほど脱気膜モジュールの設置数を多くすることにより下流側の段ほど膜面流速を小さくするのが有利である。
【0013】
【発明の実施の形態】
以下に図面を参照して、本発明の膜脱気装置の実施の形態を説明する。
【0014】
図1は本発明の膜脱気装置の一実施例を示す系統図である。
【0015】
本実施例の膜脱気装置は、脱気膜モジュールを2段に接続したものであって、1段目に2個の脱気膜モジュール1A,1Bを設け、この1段目の脱気膜モジュール1A,1Bに、各々、並列配置した3個の脱気膜モジュール2A,2B及び2Cと2D,2E及び2Fとを直列に接続したものである。
【0016】
この膜脱気装置において、流速F(m3 /hr)で流入する原水は、まず、2等分されて1段目の脱気膜モジュール1A,1Bで脱気処理される。この脱気膜モジュール1A,1Bには、流速F/2の比較的速い流速で原水が流入するが、原水中の溶存酸素濃度が高いため、溶存酸素は効率的に除去される。1段目の脱気膜モジュール1A,1Bの流出水のうち、脱気膜モジュール1Aの流出水は、3等分されて2段目の脱気膜モジュール2A,2B,2Cで脱気処理され、脱気膜モジュール1Bの流出水もまた3等分されて2段目の脱気膜モジュール2D,2E,2Fで脱気処理される。この2段目の脱気膜モジュール2A〜2Fには、1段目の脱気膜モジュール1A,1Bで脱気処理され、溶存酸素濃度が低減された水が流入するが、その流速が各々F/6と比較的遅いため、溶存酸素を低濃度にまで除去することができる。この2段目の脱気膜モジュール2A〜2Fの流出水は処理水として系外へ排出される。
【0017】
本実施例の膜脱気装置では、このように1段目の脱気膜モジュール1A,1Bで溶存酸素が十分に除去された後、2段目の脱気膜モジュール2A〜2Fで溶存酸素が更に高度に除去されるため、極めて溶存酸素濃度の低い高水質処理水を得ることができる。しかも、脱気膜モジュール流入水の溶存酸素濃度が比較的高い第1段目では2個の脱気膜モジュール1A,1Bにより比較的高流速処理を行い、脱気膜モジュール流入水の溶存酸素濃度が比較的低い第2段目において、脱気膜モジュール個数を増加して6個の脱気膜モジュール2A〜2Fで低流速処理を行うため、全体として用いる脱気膜モジュール個数を低減することができる。
【0018】
本発明においては、下流側の段の脱気膜モジュールほど膜面流速が小さくなるように、下流側の段ほど脱気膜モジュールの設置数を多くするなどして下流側の段ほど合計の膜面面積を大きくすれば良く、脱気膜モジュールの設置段数、1段当りの脱気膜モジュールの設置個数等には特に制限はなく、図1に示すもののほか、他の様々な態様を採用することができる。
【0019】
例えば、図1においては、1段目の脱気膜モジュール1A,1Bの各々に3個ずつ2段目の脱気膜モジュール2A〜2C及び2D〜2Fを接続しているが、図2に示す如く、1段目の脱気膜モジュール1A,1Bの流出水を合流させ、次いで4個並列に設けた2段目の脱気膜モジュール2A,2B,2C,2Dに4等分して流入させ、この2段目の脱気膜モジュール2A〜2Dの流出水を合流させ、更に、6個並列に設けた3段目の脱気膜モジュール3A,3B,3C,3D,3E,3Fに6等分して流入させ、この3段目の脱気膜モジュール3A〜3Fの流出水を処理水として排出するよう接続しても良い。
【0020】
本発明において、脱気膜モジュールに装填される脱気膜としては、特に制限はなく、平膜型、スパイラル型、中空糸内圧型、中空糸外圧型等各種の形式のものを用いることができる。特に、好ましくはスパイラル型膜モジュール又は中空糸膜モジュールが用いられる。
【0021】
中空糸膜モジュールに用いられる膜としては、疎水性で中空糸形状に成形することができるものであれば良く、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ−4−メチルペンテン等が好ましいが、特に好ましいのは、ポリフッ化ビニリデン又はポリ−4−メチルペンテンからなる重合体である。これらの膜には、更に疎水性を高めるために、中空糸の内外表面の一方又は両方にシリコーン系、フッ素樹脂系の薄膜を形成させることも可能である。
【0022】
一方、スパイラル型膜モジュールに用いられる膜は、非対称膜や複合膜が一般的であるが、複合膜が特に一般的である。複合膜は、多孔質支持体層とその上に設けた高分子均質層又は緻密層からなる。多孔質支持体層は、疎水性気体透過膜の性能に最も影響する高分子均質層の支持層として高分子均質層の機械的変形を防止するに十分な剛性を有し、かつ、十分な気体透過性能を有していることが必要である。また、該支持体層の強度を更に上げるために、該支持体層の下にポリエステル繊維又は不織布等の補強層を有していることが好ましい。
【0023】
多孔質支持体層を構成する高分子としては、ポリエステル、ポリアミド、ポリオレフィン、ポリアクリレート、ポリメタクリレート、ポリ−4−フッ化エチレン、ポリスルホン、ポリカーボネート等が例示されるが、特にポリスルホン又はポリプロピレンが好適である。
【0024】
また、多孔質支持体層の上に形成される高分子均質層の具体例としては、ポリオルガノシロキサン、架橋型ポリオルガノシロキサン、ポリオルガノシロキサン/ポリカーボネート共重合体、ポリオルガノシロキサン/ポリフェニレン共重合体、ポリオルガノシロキサン/ポリスチレン共重合体、ポリトリメチルシリルプロピン、ポリ−4−メチルペンテンなどが挙げられる。この中でも、機械的強度が高く、酸素透過係数が大きいという点で、架橋型ポリジメチルシロキサンが最も好ましい。
【0025】
このような複合膜において、高分子均質層の材質が、上記架橋型ポリジメチルシロキサンを主成分とするものは、架橋型シリコーン系複合膜と称されるが、このものは、基材膜の表面に形成された架橋型シリコーン系の薄膜が一般に極めて緻密な膜表面を形成しているため、シリコーン自体の疎水性に加えて、汚れ成分の吸着を抑えることができるという優れた特性を有している。このシリコーン膜は、その表面にフッ素樹脂系の超薄膜を形成させて、疎水性を更に向上させることも可能である。
【0026】
本発明の膜脱気装置は、水中の溶存酸素の除去のみならず、液中に溶存する二酸化炭素、窒素等の各種の気体の除去、その他、トリハロメタン等の揮発性物質の除去等に有効に利用することができる。また、現状の超純水製造システムにおいては、主に脱気手段として窒素脱気法が採用されているが、本発明の膜脱気装置は、この窒素脱気処理液中の窒素の除去にも好適である。
【0027】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0028】
実施例1
図2に示す如く、1段目に2個の脱気膜モジュールを設け、2段目に4個の脱気膜モジュールを設け、3段目に6個の脱気膜モジュールを設けた、合計で12個の脱気膜モジュールよりなる本発明に係る膜脱気装置を用いて、溶存酸素濃度12ppmの水を25℃において12m3 /hrの流速で処理した。1段目の脱気膜モジュールの処理流速は6m3 /hr、2段目の脱気膜モジュールの処理流速は3m3 /hr、3段目の脱気膜モジュールの処理流速は2m3 /hrとなる。なお、各膜モジュールの容積、膜面積及び膜の種類は同一である。
【0029】
この結果、1段目の脱気膜モジュールの流出水の溶存酸素濃度は0.15ppm,2段目の脱気膜モジュールの流出水の溶存酸素濃度は0.012ppm,3段目の脱気膜モジュールの流出水(処理水)の溶存酸素濃度は0.00083ppmであり、12個の脱気膜モジュールを用いて、溶存酸素濃度0.00083ppmの処理水を12m3 /hrの処理水量で得ることができた。
【0030】
比較例1
実施例1で用いたものと同様の脱気膜モジュールを、図4に示す如く、3段に連結した多段膜脱気装置を6列、計18個配置して、実施例1と同溶存酸素濃度の原水を同一の温度及び流速で処理した。本比較例においては、いずれの脱気膜モジュールの流速も2m3 /hrである。
【0031】
その結果、1段目の脱気膜モジュールの流出水の溶存酸素濃度は0.1ppm,2段目の脱気膜モジュールの流出水の溶存酸素濃度は0.008ppm,3段目の脱気膜モジュールの流出水の溶存酸素濃度は0.00043ppmであった。
【0032】
本比較例では、実施例1と同様の処理流速及び処理水量を達成することができたが、そのために用いた脱気膜モジュール個数は18個であり、実施例1で用いた脱気膜モジュール個数の1.5倍であった。
【0033】
【発明の効果】
以上詳述した通り、本発明の膜脱気装置によれば、従来の多段膜脱気装置と同様の除去率及び処理水量を得るために必要な脱気膜モジュール個数を低減することができ、装置コスト及び装置設置面積の低減及びメンテナンスの軽減を図ることができる。
【図面の簡単な説明】
【図1】本発明の膜脱気装置の一実施例を示す系統図である。
【図2】本発明の膜脱気装置の他の実施例を示す系統図である。
【図3】従来の多段膜脱気装置を示す系統図である。
【図4】従来の高流速処理のための多段膜脱気装置を示す系統図である。
【符号の説明】
1A,1B,2A,2B,2C,2D,2E,2F,3A,3B,3C,3D3E,3F 脱気膜モジュール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane deaeration device, and more particularly to a membrane deaeration device with improved deaeration efficiency by improving the arrangement of the deaeration membrane modules.
[0002]
[Prior art]
The membrane deaerator is a device that removes dissolved gas in raw water by introducing raw water into one chamber of a deaeration membrane module partitioned by a deaeration membrane, and making the chambers in a vacuum state. It is used to remove dissolved gases such as dissolved oxygen.
[0003]
Conventionally, when water containing dissolved oxygen at a high concentration is processed by a membrane degassing device to obtain treated water having a low dissolved oxygen concentration, a plurality (N) of degassing membrane modules are used as shown in FIG. 1, 2,... N is processed in a multistage membrane deaerator connected in series. When it is necessary to perform high flow rate processing with such a multistage membrane degassing apparatus, a plurality of such multistage membrane degassing apparatuses are installed as shown in FIG. Six multistage membrane deaerators connected in three stages 1, 2, 3 are arranged in parallel.), Raw water is divided and introduced into a plurality of multistage membrane deaerators for parallel processing.
[0004]
[Problems to be solved by the invention]
As shown in FIG. 4, in the conventional multi-stage membrane deaeration apparatus described above, in order to obtain a large amount of high-quality treated water with a low dissolved oxygen concentration by performing a deaeration process with a high flow rate and a high removal rate, a large number of degassers are required. It is necessary to arrange multiple rows of multi-stage membrane deaerators with gas membrane modules connected in series, and the number of deaerator membrane modules is large, which is disadvantageous in terms of equipment cost, equipment installation area, maintenance such as membrane cleaning and replacement, etc. Met.
[0005]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a membrane deaeration device capable of performing a deaeration process at a high flow rate and a high removal rate even if the number of deaeration membrane modules is reduced.
[0006]
[Means for Solving the Problems]
The membrane degassing apparatus of the present invention is a multistage membrane degassing apparatus in which a plurality of degassing membrane modules having the same type of membrane are connected in series. As described above, the total film surface area is increased in the downstream step.
[0007]
As a result of intensive studies on the deaeration efficiency in the membrane deaerator, the present inventor has obtained the following knowledge.
[0008]
(1) In the membrane deaeration process, the slower the membrane surface flow rate, the higher the dissolved oxygen removal rate, and the lower the dissolved oxygen concentration of the treated water obtained. However, in this case, the amount of treated water per deaeration membrane module decreases.
[0009]
(2) When the dissolved oxygen concentration in the raw water is low, the dissolved oxygen removal ability is low if the membrane surface flow rate is fast, but when the dissolved oxygen concentration in the raw water is high, the dissolved oxygen removal is performed even if the membrane surface flow rate is high. Noh is big.
[0010]
The present invention has been made based on such knowledge, in a multi-stage membrane deaeration device in which a plurality of deaeration membrane modules having the same type of membrane are connected in series, in the downstream side deaeration membrane module, In other words, the degassing membrane module into which water having been degassed by the upstream degassing membrane module and having a reduced dissolved oxygen concentration flows into the downstream stage so that the membrane surface flow velocity becomes smaller. The film surface area is set large.
[0011]
In the membrane degassing apparatus of the present invention, the upstream degassing membrane module performs a high flow rate process, but the dissolved oxygen removal amount is large because the dissolved oxygen concentration of the influent water is high. On the other hand, in the degassing membrane module at the downstream stage, water with a low dissolved oxygen concentration flows in, but since the low flow rate treatment is performed, the dissolved oxygen can be removed with a high removal rate.
[0012]
In the present invention, in particular, it is advantageous to decrease the membrane surface flow velocity in the downstream stage by increasing the number of installed deaeration membrane modules in the downstream stage.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a membrane degassing apparatus of the present invention will be described below with reference to the drawings.
[0014]
FIG. 1 is a system diagram showing an embodiment of the membrane deaerator of the present invention.
[0015]
The membrane degassing apparatus of this embodiment is a device in which degassing membrane modules are connected in two stages. Two degassing membrane modules 1A and 1B are provided in the first stage, and the first stage degassing membrane is provided. Three deaeration membrane modules 2A, 2B and 2C and 2D, 2E and 2F arranged in parallel are connected in series to modules 1A and 1B, respectively.
[0016]
In this membrane degassing apparatus, the raw water flowing at a flow rate F (m 3 / hr) is first divided into two equal parts and degassed by the first-stage degassing membrane modules 1A and 1B. The raw water flows into the deaeration membrane modules 1A and 1B at a relatively high flow rate of F / 2, but the dissolved oxygen is efficiently removed because the dissolved oxygen concentration in the raw water is high. Of the effluent from the first stage degassing membrane modules 1A and 1B, the effluent from the degassing membrane module 1A is divided into three equal parts and degassed by the second stage degassing membrane modules 2A, 2B and 2C. The outflow water from the degassing membrane module 1B is also divided into three equal parts and degassed by the second-stage degassing membrane modules 2D, 2E, and 2F. The second stage deaeration membrane modules 2A to 2F are supplied with water that has been degassed by the first stage deaeration membrane modules 1A and 1B and has a reduced dissolved oxygen concentration. Since it is relatively slow at / 6, dissolved oxygen can be removed to a low concentration. The outflow water from the second-stage degassing membrane modules 2A to 2F is discharged out of the system as treated water.
[0017]
In the membrane degassing apparatus of the present embodiment, dissolved oxygen is sufficiently removed by the first-stage degassing membrane modules 1A and 1B as described above, and then dissolved oxygen is obtained by the second-stage degassing membrane modules 2A to 2F. Furthermore, since it is removed to a high degree, it is possible to obtain high-quality treated water with a very low dissolved oxygen concentration. Moreover, in the first stage where the dissolved oxygen concentration of the degassing membrane module inflow water is relatively high, the two degassing membrane modules 1A and 1B perform a relatively high flow rate treatment, and the dissolved oxygen concentration of the degassing membrane module inflow water. In the second stage, which is relatively low, the number of deaeration membrane modules is increased and low flow rate processing is performed with the 6 deaeration membrane modules 2A to 2F. it can.
[0018]
In the present invention, the number of installed deaeration membrane modules in the downstream side is increased so that the downstream surface deaeration membrane module has a lower membrane surface flow velocity. It is sufficient to increase the surface area, and the number of installed deaeration membrane modules, the number of installed deaeration membrane modules per stage, etc. are not particularly limited, and various other modes besides those shown in FIG. 1 are adopted. be able to.
[0019]
For example, in FIG. 1, three second-stage degassing membrane modules 2A to 2C and 2D to 2F are connected to each of the first-stage degassing membrane modules 1A and 1B. As described above, the effluent water from the first-stage degassing membrane modules 1A and 1B is merged, and then divided into four equal parts and flowed into the second-stage degassing membrane modules 2A, 2B, 2C and 2D provided in parallel. The effluents of the second-stage degassing membrane modules 2A to 2D are merged, and 6 grades are added to the third-stage degassing membrane modules 3A, 3B, 3C, 3D, 3E, and 3F provided in parallel. It is also possible to connect it so that the outflow water of the third-stage degassing membrane modules 3A to 3F is discharged as treated water.
[0020]
In the present invention, the deaeration membrane loaded in the deaeration membrane module is not particularly limited, and various types such as a flat membrane type, a spiral type, a hollow fiber internal pressure type, and a hollow fiber external pressure type can be used. . In particular, a spiral membrane module or a hollow fiber membrane module is preferably used.
[0021]
The membrane used in the hollow fiber membrane module may be any membrane that is hydrophobic and can be formed into a hollow fiber shape, such as polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, and poly-4-methylpentene. Although preferred, a polymer comprising polyvinylidene fluoride or poly-4-methylpentene is particularly preferred. In order to further increase the hydrophobicity of these membranes, it is possible to form a silicone-based or fluororesin-based thin film on one or both of the inner and outer surfaces of the hollow fiber.
[0022]
On the other hand, the membrane used in the spiral membrane module is generally an asymmetric membrane or a composite membrane, but a composite membrane is particularly common. The composite membrane is composed of a porous support layer and a polymer homogeneous layer or a dense layer provided thereon. The porous support layer has sufficient rigidity to prevent mechanical deformation of the polymer homogeneous layer as a support layer of the polymer homogeneous layer that most affects the performance of the hydrophobic gas permeable membrane, and has sufficient gas. It is necessary to have transmission performance. In order to further increase the strength of the support layer, it is preferable to have a reinforcing layer such as polyester fiber or nonwoven fabric under the support layer.
[0023]
Examples of the polymer constituting the porous support layer include polyesters, polyamides, polyolefins, polyacrylates, polymethacrylates, poly-4-fluoroethylene, polysulfones, and polycarbonates. Polysulfone or polypropylene is particularly preferable. is there.
[0024]
Specific examples of the homogeneous polymer layer formed on the porous support layer include polyorganosiloxane, cross-linked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer. , Polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, poly-4-methylpentene, and the like. Among these, cross-linked polydimethylsiloxane is most preferable because it has high mechanical strength and a large oxygen permeability coefficient.
[0025]
In such a composite film, a material in which the polymer homogeneous layer is mainly composed of the above-mentioned cross-linked polydimethylsiloxane is called a cross-linked silicone composite film. In general, the cross-linked silicone thin film formed on the surface forms an extremely dense film surface, so in addition to the hydrophobicity of the silicone itself, it has excellent characteristics that it can suppress the adsorption of dirt components. Yes. The silicone film can be further improved in hydrophobicity by forming a fluororesin ultra-thin film on its surface.
[0026]
The membrane degassing apparatus of the present invention is effective not only for removing dissolved oxygen in water, but also for removing various gases such as carbon dioxide and nitrogen dissolved in the liquid, and for removing volatile substances such as trihalomethane. Can be used. Further, in the present ultrapure water production system, a nitrogen deaeration method is mainly employed as a deaeration means, but the membrane deaerator of the present invention is used for removing nitrogen in the nitrogen deaeration treatment liquid. Is also suitable.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0028]
Example 1
As shown in FIG. 2, two deaeration membrane modules are provided in the first stage, four deaeration membrane modules are provided in the second stage, and six deaeration membrane modules are provided in the third stage. Using a membrane deaerator according to the present invention consisting of 12 deaeration membrane modules, water having a dissolved oxygen concentration of 12 ppm was treated at 25 ° C. at a flow rate of 12 m 3 / hr. The processing flow rate of the first stage degassing membrane module is 6 m 3 / hr, the processing speed of the second stage degassing membrane module is 3 m 3 / hr, and the processing speed of the third stage degassing membrane module is 2 m 3 / hr. It becomes. The volume, membrane area, and membrane type of each membrane module are the same.
[0029]
As a result, the dissolved oxygen concentration of the effluent of the first stage degassing membrane module is 0.15 ppm, the dissolved oxygen concentration of the effluent of the second stage degassing membrane module is 0.012 ppm, and the third stage degassing membrane. The dissolved oxygen concentration of the outflow water (treated water) of the module is 0.00083 ppm, and using 12 degassing membrane modules, the treated water with a dissolved oxygen concentration of 0.00083 ppm is obtained with a treated water amount of 12 m 3 / hr. I was able to.
[0030]
Comparative Example 1
As shown in FIG. 4, six rows of multi-stage membrane degassing devices connected in three stages, a total of 18 degassing membrane modules similar to those used in Example 1, were arranged. Concentrated raw water was treated at the same temperature and flow rate. In this comparative example, the flow rate of any degassing membrane module is 2 m 3 / hr.
[0031]
As a result, the dissolved oxygen concentration of the effluent of the first stage degassing membrane module is 0.1 ppm, the dissolved oxygen concentration of the effluent of the second stage degassing membrane module is 0.008 ppm, and the third stage degassing membrane. The dissolved oxygen concentration of the module effluent was 0.00043 ppm.
[0032]
In this comparative example, the same processing flow rate and amount of treated water as in Example 1 could be achieved, but the number of degassing membrane modules used for this purpose was 18, and the degassing membrane module used in Example 1 It was 1.5 times the number.
[0033]
【The invention's effect】
As described in detail above, according to the membrane degassing apparatus of the present invention, the number of degassing membrane modules required to obtain the same removal rate and amount of treated water as the conventional multistage membrane degassing apparatus can be reduced. It is possible to reduce the apparatus cost, the apparatus installation area, and the maintenance.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a membrane degassing apparatus of the present invention.
FIG. 2 is a system diagram showing another embodiment of the membrane degassing apparatus of the present invention.
FIG. 3 is a system diagram showing a conventional multistage membrane deaerator.
FIG. 4 is a system diagram showing a conventional multi-stage membrane deaerator for high flow rate processing.
[Explanation of symbols]
1A, 1B, 2A, 2B, 2C, 2D, 2E, 2F, 3A, 3B, 3C, 3D3E, 3F Deaeration membrane module

Claims (2)

膜の種類が同一の、複数の脱気膜モジュールを直列に接続した多段膜脱気装置において、
下流側の段の脱気膜モジュールほど膜面流速が小さくなるように下流側の段ほど合計の膜面面積を大きくしたことを特徴とする膜脱気装置。
In a multi-stage membrane deaeration device in which a plurality of deaeration membrane modules are connected in series with the same type of membrane ,
A membrane deaeration apparatus characterized in that a total membrane surface area is increased in a downstream stage so that a membrane surface flow velocity is reduced in a downstream stage deaeration membrane module.
請求項1において、下流側の段ほど脱気膜モジュールの設置数を多くすることにより下流側の段ほど膜面流速を小さくしたことを特徴とする膜脱気装置。2. The membrane deaeration apparatus according to claim 1, wherein the membrane surface flow velocity is reduced in the downstream stage by increasing the number of installed deaeration membrane modules in the downstream stage.
JP06626996A 1996-03-22 1996-03-22 Membrane deaerator Expired - Fee Related JP3677858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06626996A JP3677858B2 (en) 1996-03-22 1996-03-22 Membrane deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06626996A JP3677858B2 (en) 1996-03-22 1996-03-22 Membrane deaerator

Publications (2)

Publication Number Publication Date
JPH09253459A JPH09253459A (en) 1997-09-30
JP3677858B2 true JP3677858B2 (en) 2005-08-03

Family

ID=13310968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06626996A Expired - Fee Related JP3677858B2 (en) 1996-03-22 1996-03-22 Membrane deaerator

Country Status (1)

Country Link
JP (1) JP3677858B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149817A (en) * 1999-03-08 2000-11-21 Celgard Inc. Shell-less hollow fiber membrane fluid contactor
JP2004249215A (en) 2003-02-20 2004-09-09 Fuji Photo Film Co Ltd Deaeration system of liquid and deaeration method of liquid
JP2008080255A (en) * 2006-09-28 2008-04-10 Nippon Rensui Co Ltd Pure water making apparatus
CN112781026A (en) * 2021-01-26 2021-05-11 上海优华***集成技术股份有限公司 Zero-steam-consumption deoxidizing system

Also Published As

Publication number Publication date
JPH09253459A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
US6402956B1 (en) Treatment system and treatment method employing spiral wound type membrane module
JP4530245B2 (en) Membrane separator
US6770202B1 (en) Porous membrane
Aptel et al. Categories of membrane operations
AU2012305529A1 (en) Oil-containing wastewater treatment system
JPH06327905A (en) Degassing membrane module and its operation
JP5795459B2 (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method
JPH11319501A (en) Hollow fiber membrane module and use applications thereof
JP3677858B2 (en) Membrane deaerator
WO2014192433A1 (en) Filtration device and immersed filtration method using same
EP0464945A1 (en) Counter-current flow membrane module for liquid separations
JPH0768103A (en) Membrane deaerating method
JPH06134210A (en) Deaeration film module
JPH05208120A (en) Spiral separation membrane element
KR101525408B1 (en) membrane distillation device with vortex generator
US20060254984A1 (en) Hollow Fiber Membrane Adsorber and Process for the Use Thereof
JPH03249907A (en) Spiral type deaerating element and method for using this element
JP4488402B2 (en) Hollow fiber membrane module
JPS61200808A (en) Apparatus for filtering solution
JPH04156903A (en) Degasification membrane device
JPH07710A (en) Operation of deaeration membrane module
JPH0632239Y2 (en) Small boiler with separation membrane treatment device
KR20180035130A (en) Header, Hollow Fiber Membrane Module Comprising The Same, and Filtering Apparatus Comprising The Same
KR101515685B1 (en) Membrane module comprising section divider for reducing membrane fouling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees