JP2008080255A - Pure water making apparatus - Google Patents

Pure water making apparatus Download PDF

Info

Publication number
JP2008080255A
JP2008080255A JP2006263761A JP2006263761A JP2008080255A JP 2008080255 A JP2008080255 A JP 2008080255A JP 2006263761 A JP2006263761 A JP 2006263761A JP 2006263761 A JP2006263761 A JP 2006263761A JP 2008080255 A JP2008080255 A JP 2008080255A
Authority
JP
Japan
Prior art keywords
reverse osmosis
pure water
carbon dioxide
degassing
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006263761A
Other languages
Japanese (ja)
Inventor
Daisuke Kawabe
大輔 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2006263761A priority Critical patent/JP2008080255A/en
Publication of JP2008080255A publication Critical patent/JP2008080255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure water making apparatus of high capacity constituted of a combination of a reverse osmosis membrane device and a degassing device, capable of making pure water at a low cost and capable of more reducing the concentration of dissolved carbon dioxide. <P>SOLUTION: The pure water making apparatus is constituted so as to remove dissolved carbon dioxide from raw water along with ions and a colloidal substance to make pure water and has a first reverse osmosis membrance device (2), a first degassing device (3), a second reverse osmosis membrance device (6) and a second degassing device (7) successively arranged thereto. Further, a degassing membrane device using a hydrophobic microporous hollow fiber membrane is used as the first reverse osmosis membrane device (2) and the second degassing device (7). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、純水製造装置に関するものであり、詳しくは、逆浸透膜装置と脱気装置を組み合わせて構成され、原水からイオン類、コロイダル物質、溶存炭酸ガス等を除去して純水を製造する純水製造装置に関するものである。   The present invention relates to a pure water production apparatus, and more specifically, a combination of a reverse osmosis membrane apparatus and a deaeration apparatus, and produces pure water by removing ions, colloidal substances, dissolved carbon dioxide gas, etc. from raw water. The present invention relates to a pure water manufacturing apparatus.

イオンが除去された純水は、半導体製造などの分野で広く使用されているが、斯かる純水の製造においては、逆浸透膜を多段に配置した逆浸透膜装置の利用が種々検討されている。逆浸透膜装置を利用した純水製造装置は、イオン交換樹脂を使用した装置や電気再生式装置に比べ、有害薬品を使用する必要がなく且つ有害廃水を排出することがなく、しかも、装置構成がシンプルで設備費も安価であり、収率も向上させ得る。   Pure water from which ions have been removed is widely used in the field of semiconductor manufacturing and the like, and in the production of such pure water, various studies have been made on the use of reverse osmosis membrane devices in which reverse osmosis membranes are arranged in multiple stages. Yes. Compared to devices using ion exchange resin and electric regenerative devices, pure water production devices using reverse osmosis membrane devices do not require the use of hazardous chemicals and do not discharge harmful wastewater. However, the equipment cost is simple and the yield can be improved.

上記の様な多段式逆浸透膜装置を利用した純水製造技術としては、例えば、原水の水素イオン濃度指数をpH4〜7.5、炭酸ガス濃度を10mg/l以下に調整した後、直列に2段以上配置された逆浸透膜装置に原水を順次通水して脱塩処理し、次いで、脱気膜装置(膜脱気装置)に通水して炭酸ガスを脱気する様にした「純水製造方法」が提案されている(特許文献1)。また、上記の多段式逆浸透膜装置においては、第1の逆浸透膜装置により原水を脱塩処理した後、得られた処理水を脱気膜装置に通水して炭酸ガスを除去した後、更に、第2の逆浸透膜装置により重炭酸イオンを除去するものもある。
特開2002−1069号公報
As pure water production technology using the multistage reverse osmosis membrane device as described above, for example, the hydrogen ion concentration index of raw water is adjusted to pH 4 to 7.5, and the carbon dioxide concentration is adjusted to 10 mg / l or less. The raw water was sequentially passed through the reverse osmosis membrane devices arranged in two or more stages for desalination treatment, and then the water was passed through the deaeration membrane device (membrane deaeration device) to degas the carbon dioxide gas. A "pure water production method" has been proposed (Patent Document 1). In the above-described multistage reverse osmosis membrane device, after the raw water is desalted by the first reverse osmosis membrane device, the obtained treated water is passed through the deaeration membrane device to remove carbon dioxide gas. Further, there is a device that removes bicarbonate ions by a second reverse osmosis membrane device.
JP 2002-1069 A

ところで、半導体の製造プロセス等においては、例えば炭酸ガス濃度1ppm以下の純水が求められるのに対し、2基の逆浸透膜装置と1基の脱気装置を配置した上記の様な純水製造装置では、次の様な理由により、溶存炭酸ガスを十分に除去することが出来ず、満足できる水質が得られなかった。   By the way, in a semiconductor manufacturing process or the like, for example, pure water having a carbon dioxide concentration of 1 ppm or less is required, whereas pure water production as described above in which two reverse osmosis membrane devices and one deaeration device are arranged. In the apparatus, the dissolved carbon dioxide gas could not be sufficiently removed for the following reasons, and satisfactory water quality could not be obtained.

すなわち、水中の炭酸ガスは、その一部が重炭酸イオンに変化し、これらは平衡状態を維持する。特に数ppm以下の低濃度領域においては、僅かな外的要因で炭酸ガスと重炭酸イオンの平衡状態が乱れ、容易に他方へ形態を変化させる。一方、逆浸透膜装置により重炭酸イオンを完全に除去したとしても、得られた処理水においては、炭酸ガスの一部が直ちに重炭酸イオンに変化するため、次に脱気装置で炭酸ガスを除去した場合、重炭酸イオンが残留する。そして、脱気装置から得られた処理水においては、残留した重炭酸イオンから再び炭酸ガスが生成され、結局、最終的に得られる処理水の炭酸ガス濃度を十分に低減できない。換言すれば、逆浸透膜を透過させた処理水においては、炭酸ガスの一部が重炭酸イオンに変化するため、後段の脱気装置の能力向上を図ったとしても、結果として、炭酸ガス濃度を十分に低減できないと言う問題がある。   That is, part of the carbon dioxide gas in the water changes to bicarbonate ions, and these maintain an equilibrium state. Particularly in the low concentration region of several ppm or less, the equilibrium state of carbon dioxide and bicarbonate ions is disturbed by a few external factors, and the form is easily changed to the other. On the other hand, even if bicarbonate ions are completely removed by the reverse osmosis membrane device, in the obtained treated water, a part of the carbon dioxide gas immediately changes to bicarbonate ions. When removed, bicarbonate ions remain. In the treated water obtained from the deaeration device, carbon dioxide gas is generated again from the remaining bicarbonate ions, and eventually the carbon dioxide concentration in the finally obtained treated water cannot be sufficiently reduced. In other words, in the treated water that has permeated through the reverse osmosis membrane, a part of the carbon dioxide gas is changed to bicarbonate ions. There is a problem that it cannot be reduced sufficiently.

本発明は、逆浸透膜を利用したいわゆるケミカルレスの純水製造手段の性能向上を図るべく種々検討の結果なされたものであり、その目的は、逆浸透膜装置と脱気装置とを組み合わせて成る純水製造装置であって、低コストで純水を製造でき、かつ、溶存炭酸ガス濃度を一層低減できる高性能な純水製造装置を提供することにある。   The present invention has been made as a result of various studies to improve the performance of so-called chemical-less pure water production means using a reverse osmosis membrane, and its purpose is to combine a reverse osmosis membrane device and a deaeration device. An object of the present invention is to provide a high-performance pure water production apparatus that can produce pure water at a low cost and can further reduce the concentration of dissolved carbon dioxide.

上記の課題を解決するため、本発明においては、先ず、前段の処理として、第1の逆浸透膜装置により原水からコロイダル物質および重炭酸イオンを除去した後、第1の脱気装置により炭酸ガスを除去することにより、炭酸ガスの濃度レベルを小さくし、次に、後段の処理として、第2の逆浸透膜装置および第2の脱気装置を使用し、上記と同様の処理を繰り返すことにより、炭酸ガスの濃度レベルを更に低いオーダーに下げ、最終的に残留する炭酸ガスの濃度を更に低減させる様にした。   In order to solve the above-mentioned problems, in the present invention, first, as a treatment in the previous stage, after removing colloidal substances and bicarbonate ions from raw water by a first reverse osmosis membrane device, carbon dioxide gas is removed by a first deaeration device. By reducing the concentration level of carbon dioxide gas, and then using the second reverse osmosis membrane device and the second deaeration device as the subsequent processing, and repeating the same processing as above The concentration level of carbon dioxide was lowered to a lower order, and the concentration of carbon dioxide remaining finally was further reduced.

すなわち、本発明の要旨は、原水からイオン類およびコロイダル物質と共に溶存炭酸ガスを除去して純水を製造する純水製造装置であって、第1の逆浸透膜装置、第1の脱気装置、第2の逆浸透膜装置および第2の脱気装置が順次に配置されていることを特徴とする純水製造装置に存する。   That is, the gist of the present invention is a pure water production apparatus that produces pure water by removing dissolved carbon dioxide gas together with ions and colloidal substances from raw water, and includes a first reverse osmosis membrane apparatus and a first deaeration apparatus. In the pure water production apparatus, the second reverse osmosis membrane device and the second deaeration device are sequentially arranged.

本発明の純水製造装置によれば、第1の逆浸透膜装置と第1の脱気装置を組み合わせた処理により、炭酸ガスの濃度レベルを一旦下げた後、再度、第2の逆浸透膜装置と第2の脱気装置を組み合わせた処理により、炭酸ガスの濃度レベルを更に低いオーダーに下げるため、炭酸ガス濃度が極めて低い純水を製造することが出来る。しかも、第1の脱気装置および第2の脱気装置により2段階に分けて脱炭酸処理するため、これら第1の脱気装置、第2の脱気装置を各々にさほど高性能化する必要がなく、その結果、設備費を低減でき、惹いては、一層低コストで純水を製造することが出来る。   According to the pure water production apparatus of the present invention, after the concentration level of carbon dioxide gas is once lowered by the combination of the first reverse osmosis membrane device and the first degassing device, the second reverse osmosis membrane is again used. Since the concentration level of the carbon dioxide gas is lowered to a lower order by the treatment combining the device and the second deaeration device, pure water having a very low carbon dioxide concentration can be produced. In addition, since the decarboxylation process is performed in two stages by the first degassing device and the second degassing device, it is necessary to improve the performance of the first degassing device and the second degassing device. As a result, the equipment cost can be reduced, and the pure water can be produced at a lower cost.

本発明に係る純水製造装置の一実施形態を図面に基づいて説明する。図1は、本発明に係る純水製造装置の一例の基本的な構成を示すフロー図である。   An embodiment of a pure water production apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a basic configuration of an example of a pure water production apparatus according to the present invention.

本発明の純水製造装置は、原水からイオン類およびコロイダル物質と共に溶存炭酸ガスを除去して純水を製造する装置であり、図1に示す様に、第1の逆浸透膜装置(2)、第1の脱気装置(3)、第2の逆浸透膜装置(6)及び第2の脱気装置(7)を順次に配置して構成される。   The pure water production apparatus of the present invention is an apparatus for producing pure water by removing dissolved carbon dioxide together with ions and colloidal substances from raw water. As shown in FIG. 1, the first reverse osmosis membrane device (2) The first degassing device (3), the second reverse osmosis membrane device (6), and the second degassing device (7) are sequentially arranged.

第1の逆浸透膜装置(2)は、原水に含まれる食塩などの電解質、シリカ成分などのコロイダル物質、および、重炭酸イオンを除去するために配置される。第1の逆浸透膜装置(2)に使用される逆浸透膜の素材としては、酢酸セルロース系、ポリアミド系、架橋ポリアミド系、ポリビニルアルコール等の素材が挙げられる。また、膜のエレメント構造としては、スパイラル型、中空糸型、チューブラー型などが挙げられる。本発明において、逆浸透膜としては、何れの種類の膜を使用してもよく、そして、市販の膜を適宜選択して使用することが出来る。   A 1st reverse osmosis membrane apparatus (2) is arrange | positioned in order to remove electrolytes, such as salt contained in raw | natural water, colloidal substances, such as a silica component, and a bicarbonate ion. Examples of the material of the reverse osmosis membrane used in the first reverse osmosis membrane device (2) include materials such as cellulose acetate, polyamide, crosslinked polyamide, and polyvinyl alcohol. Examples of the membrane element structure include a spiral type, a hollow fiber type, and a tubular type. In the present invention, any kind of membrane may be used as the reverse osmosis membrane, and a commercially available membrane can be appropriately selected and used.

第1の逆浸透膜装置(2)の入口側には、ポンプ(1)によって原水を供給する原水供給ライン(81)が接続される。また、第1の逆浸透膜装置(2)の出口側には、逆浸透膜を透過した透過水を取り出すための透過水取出ライン(82)と、逆浸透膜を透過しなかった濃縮水を取り出すための濃縮水排出ライン(91)とが接続される。そして、透過水は透過水取出ライン(82)を通じて第1の脱気装置(3)に供給され、濃縮水は濃縮水排出ライン(91)を通じて系外に排出される様になされている。   A raw water supply line (81) for supplying raw water by a pump (1) is connected to the inlet side of the first reverse osmosis membrane device (2). Further, on the outlet side of the first reverse osmosis membrane device (2), a permeated water extraction line (82) for taking out permeated water that has permeated through the reverse osmosis membrane and concentrated water that has not permeated through the reverse osmosis membrane are provided. A concentrated water discharge line (91) for removal is connected. The permeated water is supplied to the first deaerator (3) through the permeated water extraction line (82), and the concentrated water is discharged out of the system through the concentrated water discharge line (91).

第1の脱気装置(3)は、重炭酸イオンが除去された上記の透過水から炭酸ガスを除去するために配置される。第1の脱気装置(3)としては、被処理水から炭酸ガスを脱気し得る限り、例えば大気中に噴霧して空気と接触させるシャワー方式や曝気方式などの脱炭酸塔などの装置を使用してもよいが、装置の小型化および高性能化を図る観点からは、脱気膜によって気体を分離する脱気膜装置が好ましい。   The first deaerator (3) is arranged to remove carbon dioxide from the permeated water from which bicarbonate ions have been removed. As a 1st deaeration apparatus (3), as long as a carbon dioxide gas can be deaerated from to-be-processed water, apparatuses, such as decarbonation towers, such as a shower system and an aeration system sprayed in air | atmosphere and contacted with air, for example Although it may be used, a degassing membrane device that separates gas by a degassing membrane is preferable from the viewpoint of miniaturization and high performance of the device.

上記の脱気膜装置に使用される脱気膜は、分散現象を起こすことなく流体から気体を分離する膜であり、流体が通過する配水管の周囲に多数のポリプロピレン製の疎水性微多孔中空糸膜を編み込み且つこれらをハウジングに収容して構成される。上記の脱気膜は、中空糸膜の微孔には気体のみが入り込むと言う性質を利用し、中空糸の開口端側を真空引きすることにより、あるいは、スイープガスを供給することにより、気体の分圧差によって液体中の溶存ガスを分離除去することが出来る。斯かる脱気膜としては、例えば、セルガード(Celgard)社の商品名「リキセル;Liqui−cel」(登録商標)として市販のものが利用可能である。   The degassing membrane used in the above degassing membrane device is a membrane that separates a gas from a fluid without causing a dispersion phenomenon, and is a hydrophobic microporous hollow made of a large number of polypropylene around a water distribution pipe through which the fluid passes. The yarn film is knitted and accommodated in a housing. The above deaeration membrane utilizes the property that only gas enters the micropores of the hollow fiber membrane, and by evacuating the open end side of the hollow fiber or supplying a sweep gas, The dissolved gas in the liquid can be separated and removed by the partial pressure difference. As such a deaeration membrane, a commercially available product can be used, for example, under the trade name “Liqui-cel” (registered trademark) of Celgard.

第1の脱気装置(3)には、重炭酸イオンが除去された水が被処理水として上記の透過水取出ライン(82)を通じて供給され、溶存炭酸ガスが除去された処理水が処理水取出ライン(83)を通じて取り出される様に構成される。そして、処理水取出ライン(83)は貯槽(4)に接続される。貯槽(4)は、上記の第1の逆浸透膜装置(2)及び第1の脱気装置(3)から成る前段の工程で得られた処理水を更に後段の工程に円滑に供給するためのバッファタンクである。   The first deaerator (3) is supplied with water from which bicarbonate ions have been removed as treated water through the permeate extraction line (82), and treated water from which dissolved carbon dioxide gas has been removed is treated water. It is configured to be taken out through the take-out line (83). And a treated-water extraction line (83) is connected to a storage tank (4). The storage tank (4) smoothly supplies the treated water obtained in the preceding step comprising the first reverse osmosis membrane device (2) and the first deaeration device (3) to the subsequent step. This is a buffer tank.

第2の逆浸透膜装置(6)は、第1の逆浸透膜装置(2)による処理の後に炭酸ガスから再び変化し且つ第1の脱気装置(3)で除去できなかった重炭酸イオン、および、他のイオン類やコロイダル物質を除去するために配置される。第2の逆浸透膜装置(6)に使用される逆浸透膜は、第1の逆浸透膜装置(2)におけるのと同様である。   The second reverse osmosis membrane device (6) is a bicarbonate ion that has changed again from carbon dioxide after the treatment by the first reverse osmosis membrane device (2) and could not be removed by the first degassing device (3). And arranged to remove other ions and colloidal materials. The reverse osmosis membrane used in the second reverse osmosis membrane device (6) is the same as that in the first reverse osmosis membrane device (2).

第2の逆浸透膜装置(6)の入口側には、ポンプ(5)によって被処理水(貯槽(4)の水)を供給する被処理水供給ライン(84)が接続され、また、第2の逆浸透膜装置(6)の出口側には、逆浸透膜を透過した透過水を取り出すための透過水取出ライン(85)と、逆浸透膜を透過しなかった濃縮水を取り出すための濃縮水排出ライン(92)とが接続される。そして、透過水は透過水取出ライン(85)を通じて第2の脱気装置(7)に供給され、濃縮水は濃縮水排出ライン(92)を通じて系外に排出される様になされている。   A treated water supply line (84) for supplying treated water (water in the storage tank (4)) by a pump (5) is connected to the inlet side of the second reverse osmosis membrane device (6). 2 on the outlet side of the reverse osmosis membrane device (6), a permeated water extraction line (85) for taking out permeated water that has permeated through the reverse osmosis membrane, and concentrated water that has not permeated through the reverse osmosis membrane. A concentrated water discharge line (92) is connected. The permeated water is supplied to the second deaerator (7) through the permeated water extraction line (85), and the concentrated water is discharged out of the system through the concentrated water discharge line (92).

第2の脱気装置(7)は、第1の脱気装置(3)による処理の後に重炭酸イオン(第1の脱気装置(3)で処理する前に炭酸ガスから変化した重炭酸イオン)から再び生成され且つ第2の逆浸透膜装置(6)で除去できない炭酸ガスを更に除去するために配置される。第2の脱気装置(7)としては、 第1の脱気装置(3)と同様に、各種の脱気装置を使用できるが、装置の小型化および高性能化を図るため、前述と同様、疎水性の微多孔中空糸膜を使用した脱気膜装置が好ましい。   The second degassing device (7) is made of bicarbonate ions (bicarbonate ions changed from carbon dioxide gas before being treated by the first degassing device (3) after the treatment by the first degassing device (3)). ) And is arranged for further removal of carbon dioxide gas that is regenerated from and cannot be removed by the second reverse osmosis membrane device (6). As the second degassing device (7), various degassing devices can be used as in the first degassing device (3). However, in order to reduce the size and performance of the device, the same as described above. A deaeration membrane apparatus using a hydrophobic microporous hollow fiber membrane is preferred.

第2の脱気装置(7)には、第2の逆浸透膜装置(6)で重炭酸イオンが除去された水が被処理水として上記の透過水取出ライン(85)を通じて供給され、溶存炭酸ガスが除去された処理水(純水)が処理水取出ライン(86)を通じて取り出される様に構成される。なお、図示しないが、通常は、脱気膜装置を駆動するために真空ラインやスイープガスラインが設けられ、これらは前述の第1の脱気装置(3)の脱気膜装置と共用されることもある。   The water from which the bicarbonate ions have been removed by the second reverse osmosis membrane device (6) is supplied to the second degassing device (7) through the permeated water extraction line (85) as the water to be treated. The configuration is such that treated water (pure water) from which carbon dioxide gas has been removed is taken out through the treated water take-out line (86). Although not shown, normally, a vacuum line and a sweep gas line are provided to drive the degassing membrane device, and these are shared with the degassing membrane device of the first degassing device (3) described above. Sometimes.

また、本発明においては、設備費をより低減し、ランニングコストを低減するため、第1の脱気装置(3)としての脱気膜装置における中空糸膜の総膜面積は、第2の脱気装置(7)としての脱気膜装置における中空糸膜の総膜面積以下に設定される。純水製造能力の設計によって異なるが、例えば、第2の脱気装置(7)の中空糸膜の総膜面積が80〜100mとすると、第1の脱気装置(3)の中空糸膜の総膜面積は40〜60mに設計される。第1の脱気装置(3)と第2の脱気装置(7)の各中空糸膜の総膜面積が上記の様に設定されることにより、不必要に装置能力を高めることなく、かつ、最終的に得られる処理水(純水)中の炭酸ガス濃度を十分に低減できる。 In the present invention, in order to further reduce the equipment cost and the running cost, the total membrane area of the hollow fiber membrane in the degassing membrane device as the first degassing device (3) is the second degassing device. The total membrane area of the hollow fiber membrane in the deaeration membrane device as the air device (7) is set. For example, if the total membrane area of the hollow fiber membrane of the second degassing device (7) is 80 to 100 m 2 , the hollow fiber membrane of the first degassing device (3) varies depending on the design of the pure water production capacity. The total membrane area is designed to be 40-60 m 2 . By setting the total membrane area of each hollow fiber membrane of the first degassing device (3) and the second degassing device (7) as described above, without unnecessarily increasing the device capacity, and The carbon dioxide gas concentration in the finally obtained treated water (pure water) can be sufficiently reduced.

本発明の純水製造装置による純水の製造方法は次の通りである。本発明の純水製造装置においては、図1に示す様に、先ず前段の処理として、原水供給ライン(81)を通じて第1の逆浸透膜装置(2)に原水を供給し、第1の逆浸透膜装置(2)において、原水中の重炭酸イオンを含むイオン類およびコロイダル物質を除去する。次いで、第1の逆浸透膜装置(2)で得られた透過水を透過水取出ライン(82)から第1の脱気装置(3)に供給し、第1の脱気装置(3)において、炭酸ガスを除去する。そして、第1の脱気装置(3)で処理された処理水を処理水取出ライン(83)から取り出して貯槽(4)に一旦貯留する。   The method for producing pure water by the pure water producing apparatus of the present invention is as follows. In the pure water production apparatus of the present invention, as shown in FIG. 1, first, as a first-stage treatment, raw water is supplied to the first reverse osmosis membrane device (2) through the raw water supply line (81), and the first reverse In the osmotic membrane device (2), ions including bicarbonate ions and colloidal substances in the raw water are removed. Next, the permeated water obtained by the first reverse osmosis membrane device (2) is supplied from the permeated water extraction line (82) to the first degassing device (3), and in the first degassing device (3) Remove carbon dioxide. And the treated water processed with the 1st deaeration apparatus (3) is taken out from a treated water extraction line (83), and is temporarily stored in a storage tank (4).

続いて、後段の処理として、被処理水供給ライン(84)を通じて第2の逆浸透膜装置(6)に貯槽(4)の水を供給し、第2の逆浸透膜装置(6)において、更に重炭酸イオン等を除去する。すなわち、本発明においては、前段の処理において、第1の逆浸透膜装置(2)で重炭酸イオンを除去し、第1の脱気装置(3)で溶存炭酸ガスを除去するが、第1の脱気装置(3)による処理の際には、炭酸ガスの一部が再び重炭酸イオンに変化しており、斯かる重炭酸イオンは、第1の脱気装置(3)において除去されずに残留している。そこで、本発明では、残留する重炭酸イオン等を第2の逆浸透膜装置(6)によって除去する。   Subsequently, as a subsequent process, the water in the storage tank (4) is supplied to the second reverse osmosis membrane device (6) through the treated water supply line (84), and in the second reverse osmosis membrane device (6), Further, bicarbonate ions and the like are removed. That is, in the present invention, bicarbonate ion is removed by the first reverse osmosis membrane device (2) and dissolved carbon dioxide gas is removed by the first degassing device (3) in the first stage treatment. During the treatment by the deaerator (3), a part of the carbon dioxide gas is changed again into bicarbonate ions, and such bicarbonate ions are not removed in the first deaerator (3). Remains. Therefore, in the present invention, the remaining bicarbonate ions and the like are removed by the second reverse osmosis membrane device (6).

次いで、第2の逆浸透膜装置(6)で得られた透過水を透過水取出ライン(85)から第2の脱気装置(7)に供給し、第2の脱気装置(7)において、再度、炭酸ガスを除去する。すなわち、本発明においては、前段の処理として第1の脱気装置(3)で炭酸ガスを除去し、第2の逆浸透膜装置(6)で重炭酸イオンを除去するが、後段の第2の逆浸透膜装置(6)による処理の際には重炭酸イオンの一部は再び炭酸ガスに変化しており、斯かる炭酸ガスは、第2の逆浸透膜装置(6)において除去されずに残留している。そこで、本発明では、残留する炭酸ガスを第2の脱気装置(7)によって除去する。そして、脱炭酸処理された処理水(純水)を処理水取出ライン(86)を通じて取り出す。   Next, the permeated water obtained by the second reverse osmosis membrane device (6) is supplied from the permeated water extraction line (85) to the second degassing device (7), and in the second degassing device (7). The carbon dioxide gas is removed again. That is, in the present invention, carbon dioxide gas is removed by the first degassing device (3) and bicarbonate ion is removed by the second reverse osmosis membrane device (6) as the first stage treatment, but the second stage in the second stage. During the treatment by the reverse osmosis membrane device (6), a part of the bicarbonate ions is changed again into carbon dioxide gas, and the carbon dioxide gas is not removed in the second reverse osmosis membrane device (6). Remains. Therefore, in the present invention, the remaining carbon dioxide gas is removed by the second deaerator (7). And the treated water (pure water) decarboxylated is taken out through the treated water extraction line (86).

本発明では、上記の第2の脱気装置(7)の処理によって炭酸ガスを再度除去するため、最終的に得られる処理水(純水)において、残留した重炭酸イオン(第2の脱気装置(7)での処理の際に既に炭酸ガスから変化した重炭酸イオン)から炭酸ガスが再度生成されても、その濃度レベルを極めて低くすることが出来る。   In the present invention, since the carbon dioxide gas is removed again by the treatment of the second degassing device (7), the remaining bicarbonate ions (second degassing) in the finally obtained treated water (pure water). Even if carbon dioxide gas is generated again from bicarbonate ions already changed from carbon dioxide gas during the treatment in the apparatus (7), the concentration level can be made extremely low.

上記の様に、本発明においては、前段の第1の逆浸透膜装置(2)と第1の脱気装置(3)を組み合わせた処理により、炭酸ガスの濃度レベルを一旦下げた後、再度、後段の第2の逆浸透膜装置(6)と第2の脱気装置(7)を組み合わせた処理により、炭酸ガスの濃度レベルを更に低いオーダーに下げるため、例えば、炭酸ガス濃度が50ppmの原水から、炭酸ガス濃度が1ppm以下の純水を製造することが出来る。   As described above, in the present invention, after the concentration level of carbon dioxide gas is once lowered by the combination of the first reverse osmosis membrane device (2) and the first degassing device (3) in the previous stage, In order to lower the concentration level of the carbon dioxide gas to a lower order by the combination of the second reverse osmosis membrane device (6) and the second degassing device (7) in the latter stage, for example, the carbon dioxide concentration is 50 ppm. Pure water having a carbon dioxide concentration of 1 ppm or less can be produced from raw water.

しかも、本発明においては、上記の様に、第1の脱気装置(3)及び第2の脱気装置(7)により2段階に分けて脱炭酸処理するため、これら第1の脱気装置(3)、第2の脱気装置(7)を各々にさほど高性能化する必要がなく、その結果、設備費を低減でき、惹いては、一層低コストで純水を製造することが出来る。   Moreover, in the present invention, as described above, the first degassing device (3) and the second degassing device (7) perform the decarboxylation process in two stages. (3) It is not necessary to improve the performance of the second deaeration device (7), and as a result, the equipment cost can be reduced, so that pure water can be produced at a lower cost. .

図1に示す構成の純水製造装置を使用し、電気伝導率650μS/cm、重炭酸イオン含有量240mg/l、推定炭酸ガス含有量10mg/lの原水を処理し、純水を製造した。   Using the pure water production apparatus having the configuration shown in FIG. 1, raw water having an electric conductivity of 650 μS / cm, a bicarbonate ion content of 240 mg / l, and an estimated carbon dioxide gas content of 10 mg / l was treated to produce pure water.

上記の純水製造装置において、第1の逆浸透膜装置(2)及び第2の逆浸透膜装置(6)としては、アラミド製合成複合膜から成り且つ食塩阻止率が99.6%の逆浸透膜を備えた装置を使用した。また、第1の脱気装置(3)及び第2の脱気装置(7)としては、ポリプロピレン製中空糸膜(中空糸外部が液相、中空糸内部が気相の膜;セルガード社製「リキセル」(登録商標),製品番号G521R)で構成された装置を使用した。   In the pure water production apparatus described above, the first reverse osmosis membrane device (2) and the second reverse osmosis membrane device (6) are made of an aramid synthetic composite membrane and have a reverse salt rejection of 99.6%. A device with an osmotic membrane was used. Further, as the first degassing device (3) and the second degassing device (7), a polypropylene hollow fiber membrane (a membrane in which the hollow fiber outside is in a liquid phase and the hollow fiber inside is in a gas phase; An apparatus comprised of “Rixel” (registered trademark), product number G521R) was used.

上記の純水製造装置による処理の途中工程において、第1の逆浸透膜装置(2)で得られた透過水の水質を確認したところ、電気伝導率は約10μS/cm、重炭酸イオン量は4mg/l、炭酸ガスと重炭酸イオンを構成する無機炭素イオン含有量から算出した炭酸ガス量は7mg/lであった。また、第1の脱気装置(3)による処理で得られた処理水の水質を確認したところ、電気伝導率は9μS/cm、重炭酸イオン量は4mg/l、炭酸ガス量は2mg/lであった。そして、第2の脱気装置(7)による処理で得られた処理水(純水)の水質を確認したところ、電気伝導率は0.6μS/cm、重炭酸イオン含有量は測定下限以下、炭酸ガス量は1mg/l以下であった。   In the middle step of the treatment by the pure water production apparatus, the quality of the permeated water obtained by the first reverse osmosis membrane device (2) was confirmed. The electrical conductivity was about 10 μS / cm and the amount of bicarbonate ions was The amount of carbon dioxide gas calculated from 4 mg / l and the content of inorganic carbon ions constituting carbon dioxide and bicarbonate ions was 7 mg / l. Moreover, when the quality of the treated water obtained by the treatment by the first deaerator (3) was confirmed, the electrical conductivity was 9 μS / cm, the bicarbonate ion amount was 4 mg / l, and the carbon dioxide gas amount was 2 mg / l. Met. And when the water quality of the treated water (pure water) obtained by the treatment with the second deaerator (7) was confirmed, the electrical conductivity was 0.6 μS / cm, the bicarbonate ion content was below the lower limit of measurement, The amount of carbon dioxide was 1 mg / l or less.

更に、上記の純水製造装置による純水の製造において、第1の脱気装置(3)の運転条件を変更して当該脱気装置の能力を変化させたが、第1の脱気装置(3)及び第2の脱気装置(7)で得られる処理水のイオンバランスに大きな変化は見られなかった。これにより、第1の脱気装置(3)の能力不足が炭酸ガス濃度の上昇(水質の低下)を惹起する要因ではないことが確認された。   Furthermore, in the production of pure water by the pure water production apparatus described above, the operating conditions of the first deaeration device (3) were changed to change the capacity of the deaeration device. There was no significant change in the ion balance of the treated water obtained by 3) and the second deaerator (7). Thus, it was confirmed that the lack of capacity of the first deaerator (3) is not a factor causing an increase in carbon dioxide concentration (decrease in water quality).

また、最終的に得られた処理水(純水)のシリカ含有量は10ppb以下であり、本発明の純水製造装置は、汎用的な電気再生式純水製造装置に比べて、脱塩処理能力にも優れていることが確認された。更に、得られた上記の処理水(純水)を非再生式のイオン交換ボンベで処理したところ、脱気装置を1段備えた従来の純水製造装置を使用した場合に比べて、本発明の純水製造装置を使用した場合は、超純水の採水量が約2倍に増加し、明らかに水質が向上したことが確認された。   Moreover, the silica content of the finally obtained treated water (pure water) is 10 ppb or less, and the pure water production apparatus of the present invention is desalted compared to a general-purpose electric regenerative pure water production apparatus. It was confirmed that the ability was excellent. Further, when the above treated water (pure water) obtained is treated with a non-regenerative ion exchange cylinder, the present invention is compared with the case where a conventional pure water production apparatus having one stage of deaeration device is used. When the pure water production apparatus of No. 1 was used, it was confirmed that the amount of ultrapure water collected increased approximately twice, and the water quality was clearly improved.

本発明に係る純水製造装置の一例の基本的な構成を示すフロー図である。It is a flowchart which shows the basic composition of an example of the pure water manufacturing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 :ポンプ
2 :第1の逆浸透膜装置
3 :第1の脱気装置
4 :貯槽
5 :ポンプ
6 :第2の逆浸透膜装置
7 :第2の脱気装置
81:原水供給ライン
82:透過水取出ライン
83:処理水取出ライン
84:被処理水供給ライン
85:透過水取出ライン
86:処理水取出ライン
1: Pump 2: 1st reverse osmosis membrane device 3: 1st deaeration device 4: Storage tank 5: Pump 6: 2nd reverse osmosis membrane device 7: 2nd deaeration device 81: Raw water supply line 82: Permeated water extraction line 83: treated water extraction line 84: treated water supply line 85: permeated water extraction line 86: treated water extraction line

Claims (3)

原水からイオン類およびコロイダル物質と共に溶存炭酸ガスを除去して純水を製造する純水製造装置であって、第1の逆浸透膜装置、第1の脱気装置、第2の逆浸透膜装置および第2の脱気装置が順次に配置されていることを特徴とする純水製造装置。   A pure water production apparatus for producing pure water by removing dissolved carbon dioxide together with ions and colloidal substances from raw water, the first reverse osmosis membrane device, the first deaeration device, and the second reverse osmosis membrane device And the pure water manufacturing apparatus characterized by the above-mentioned. The 2nd deaeration apparatus is arrange | positioned sequentially. 第1の脱気装置および第2の脱気装置が、疎水性の微多孔中空糸膜を使用した脱気膜装置である請求項1に記載の純水製造装置。   The pure water production apparatus according to claim 1, wherein the first degassing device and the second degassing device are degassing membrane devices using hydrophobic microporous hollow fiber membranes. 第1の脱気装置における中空糸膜の総膜面積が第2の脱気装置における中空糸膜の総膜面積以下に設定されている請求項2に記載の純水製造装置。   The pure water production apparatus according to claim 2, wherein the total membrane area of the hollow fiber membrane in the first degassing device is set to be equal to or less than the total membrane area of the hollow fiber membrane in the second degassing device.
JP2006263761A 2006-09-28 2006-09-28 Pure water making apparatus Pending JP2008080255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263761A JP2008080255A (en) 2006-09-28 2006-09-28 Pure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263761A JP2008080255A (en) 2006-09-28 2006-09-28 Pure water making apparatus

Publications (1)

Publication Number Publication Date
JP2008080255A true JP2008080255A (en) 2008-04-10

Family

ID=39351642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263761A Pending JP2008080255A (en) 2006-09-28 2006-09-28 Pure water making apparatus

Country Status (1)

Country Link
JP (1) JP2008080255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123811B1 (en) 2009-07-10 2012-03-19 에이펫(주) Wafer cleaning apparatus and waper cleanign method using the same
WO2014081228A1 (en) * 2012-11-21 2014-05-30 주식회사 엘지화학 High-flow water treatment separation membrane having superior chlorine resistance
JP2014184379A (en) * 2013-03-22 2014-10-02 Miura Co Ltd Water treatment apparatus
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
CN107352670A (en) * 2017-09-05 2017-11-17 无锡市凡宇水处理机械制造有限公司 Possesses the air blast carbon dioxide cleaner of water process carbon dioxide content monitoring regulation and control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07962A (en) * 1993-06-18 1995-01-06 Hitachi Plant Eng & Constr Co Ltd Production of pure water
JPH09253459A (en) * 1996-03-22 1997-09-30 Kurita Water Ind Ltd Membrane deaerator
JP2000167567A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2000271569A (en) * 1999-03-25 2000-10-03 Kurita Water Ind Ltd Production of pure water
JP2005538827A (en) * 2002-09-12 2005-12-22 ケミトリート ピーティーイー リミテッド Method for removing organic impurities from water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07962A (en) * 1993-06-18 1995-01-06 Hitachi Plant Eng & Constr Co Ltd Production of pure water
JPH09253459A (en) * 1996-03-22 1997-09-30 Kurita Water Ind Ltd Membrane deaerator
JP2000167567A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2000271569A (en) * 1999-03-25 2000-10-03 Kurita Water Ind Ltd Production of pure water
JP2005538827A (en) * 2002-09-12 2005-12-22 ケミトリート ピーティーイー リミテッド Method for removing organic impurities from water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123811B1 (en) 2009-07-10 2012-03-19 에이펫(주) Wafer cleaning apparatus and waper cleanign method using the same
US9240335B2 (en) 2009-07-10 2016-01-19 Apet Wafer cleaning apparatus and wafer cleaning method using the same
US10037881B2 (en) 2009-07-10 2018-07-31 Apet Wafer cleaning apparatus and wafer cleaning method using the same
WO2014081228A1 (en) * 2012-11-21 2014-05-30 주식회사 엘지화학 High-flow water treatment separation membrane having superior chlorine resistance
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
US9259691B2 (en) 2012-11-21 2016-02-16 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
US9370751B2 (en) 2012-11-21 2016-06-21 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
JP2014184379A (en) * 2013-03-22 2014-10-02 Miura Co Ltd Water treatment apparatus
CN107352670A (en) * 2017-09-05 2017-11-17 无锡市凡宇水处理机械制造有限公司 Possesses the air blast carbon dioxide cleaner of water process carbon dioxide content monitoring regulation and control

Similar Documents

Publication Publication Date Title
WO2018084246A1 (en) Concentration method and concentration device
JP6690197B2 (en) Method and system for treating wastewater containing organic matter
JP5910675B2 (en) Pure water production apparatus and pure water production method
US20140048483A1 (en) Method for cleaning membrane module
JP2018065114A (en) Concentration method and apparatus
US8491795B2 (en) Conversion of seawater to drinking water at room temperature
WO2013118859A1 (en) Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method
WO2014129399A1 (en) Multi-stage reverse osmosis membrane device, and operation method therefor
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
JP5900527B2 (en) Treatment method for water containing low molecular weight organic substances
JP2008080255A (en) Pure water making apparatus
JP2003071254A (en) Backward washing method for separation membrane
JP2007307561A (en) High-purity water producing apparatus and method
JP2011088104A (en) System and method for treating water
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JP2008086879A (en) Ultrapure water manufacturing apparatus and method
WO2017110288A1 (en) Water treatment method and water treatment system
JP2000015257A (en) Apparatus and method for making high purity water
JPWO2013125681A1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
JP2008302333A (en) Method and apparatus for production of fresh water
JP2007268352A (en) Water treatment method and water treatment apparatus
JP2002001069A (en) Method for producing pure water
CN104229942B (en) Method and device for decarbonizing and desalting liquid
JP2011020032A (en) Treatment method of reverse osmosis membrane and reverse osmosis membrane apparatus
JP2006218341A (en) Method and apparatus for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108