JP3672258B2 - Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue - Google Patents

Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue Download PDF

Info

Publication number
JP3672258B2
JP3672258B2 JP2003078903A JP2003078903A JP3672258B2 JP 3672258 B2 JP3672258 B2 JP 3672258B2 JP 2003078903 A JP2003078903 A JP 2003078903A JP 2003078903 A JP2003078903 A JP 2003078903A JP 3672258 B2 JP3672258 B2 JP 3672258B2
Authority
JP
Japan
Prior art keywords
nisin
culture
liquid
lactic acid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003078903A
Other languages
Japanese (ja)
Other versions
JP2004000167A (en
Inventor
俊郎 大森
吉史 古田
泰史 梅本
絵理子 土橋
美保子 古寺
彰宏 中村
文彬 石崎
Original Assignee
株式会社大麦発酵研究所
三和酒類株式会社
有限会社新世紀発酵研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大麦発酵研究所, 三和酒類株式会社, 有限会社新世紀発酵研究所 filed Critical 株式会社大麦発酵研究所
Priority to JP2003078903A priority Critical patent/JP3672258B2/en
Publication of JP2004000167A publication Critical patent/JP2004000167A/en
Application granted granted Critical
Publication of JP3672258B2 publication Critical patent/JP3672258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、焼酎蒸留残液を固液分離することにより得られる液体分を培地に使用してナイシン生産能を有する乳酸菌を培養するナイシンを含有する発酵生産物の製造方法であって、前記培地として、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とするナイシンを著量含有する発酵生産物の製造方法に関する。本発明のナイシンを著量含有する発酵生産物の製造方法は、前記培養を回分培養方式及び/又は連続培養方式で行う態様を包含する。また、本発明のナイシンを著量含有する発酵生産物の製造方法は、前記大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を、米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換える態様を包含する。本発明により得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として使用できるものである。
【0002】
【従来の技術】
一般にナイシンと呼称されて知られているものは、34のアミノ酸から成るポリペプチドであり、アミノ酸配列の27位がヒスチジンであるものをナイシンAと言い、アミノ酸配列の27位がアスパラギンであるものをナイシンZと言う。こうしたナイシンは、Lactococcus lactis subsp. Lactisによって生産されるバクテリオシンの一種であり、Streptococcus、Bacillus、Clostridium、Staphylococcusなどのグラム陽性菌に対して抗菌作用を示し、現在約50カ国で、特定の食品に限って、保存剤としての使用が認められている。そうした食品の主なものとしては、チーズ、缶詰、牛乳、クリーム、マヨネーズなどを挙げることができる。
【0003】
ナイシンの製造については、以下に述べるような方法が提案されている。即ち、特開平4-75596号公報[以下、「文献1」と言う]には、乳酸菌を用いるナイシンの発酵生産において、ナイシン生産菌が生産するナイシン以外の代謝産物によりこの生産菌の増殖速度が低下するか或いは増殖が停止する前に、菌体を含む培養液を膜を用いて連続的に濾過し、菌体を含む液と、菌体を含まずナイシンを含む液とに分離し、前記菌体を含む液は培養槽内に返送し、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液の量と同体積の新鮮な液体培地を前記培養槽内のナイシン生産菌培養液に、希釈率0.1〜10hr-1で供給しつつ濾過培養を続け、前記菌体を含まずナイシンを含む液、前記培養槽内の培養液、或いは該培養液に含まれる菌体そのものからナイシンを分離することを特徴とするナイシンの製造方法が記載されている。より詳細には、文献1には、培地としてMRS培地を使用し、ナイシン生産能を有する乳酸菌菌株としてストレプトコッカス・ラクチスIFO12007を使用し、上記濾過培養法を用いて発酵に付すことが記載されており、当該発酵により得られる培養液のナイシン濃度は1.72×105U/Lである旨記載されている。
【0004】
特開平4-126093号公報[以下、「文献2」と言う]には、ナイシン生産能を有するストレプトコッカス・ラクチスSBT1212株を培養に付してナイシンを生産するにあたり、培養液中にセリンまたはフェニルアラニンを0.1〜10mg/ml添加して培養を行い、ナイシンの生産を増強することを特徴とするナイシンの生産方法が記載されている。また、文献2には、セリンを添加した全乳からなる培地を使用し、当該生産方法により得られる発酵生産物のナイシン生産量は1000(I.U./ml)である旨記載されている。
特開平6-9690号公報[以下、「文献3」と言う]には、Lactococcus lactis亜種lactisNRRL-B-18809を、1%酵母抽出物を添加したMRS培地、或いは0.5%酵母抽出物を添加した7%乳清からなる培地を用いて培養するバクテリオシン(ナイシン)の生産方法が記載されており、また当該生産方法において得られる発酵生産物のナイシン力価は1600AU/mlである旨記載されている。
【0005】
しかしながら、文献1乃至3に記載のナイシン製造方法によって達成される発酵生産物中のナイシン濃度は上述した通りいずれも極めて低いことから、これらのナイシン製造方法はナイシンを工業的に多量生産するには適さないものである。因みに、現在のところこれらのナイシン製造方法は工業的に実施されていない。
【0006】
ところで、焼酎蒸留残液を乳酸菌の培養用培地として使用することが提案されている。即ち、特開2000-236891号公報[以下、「文献4」と言う。]には、米焼酎蒸留粕を固液分離することにより固体分から得られる培地に乳酸菌を添加して発酵に付すことを特徴とする乳酸の製造方法が記載されている。特開2000-245491号公報[以下、「文献5」と言う]には、蒸気滅菌をしない開放系で、芋焼酎蒸留粕を固液分離した固体分から得られる培地にL乳酸を生産する乳酸菌を添加して発酵に付すことを特徴とする高純度L乳酸の製造方法が記載されている。
特開2000-342247号公報[以下、「文献6」と言う]には、大麦を原料とする焼酎製造において副生する焼酎蒸留残液を固液分離して液体分を得、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着性画分を有効成分として含有した微生物用培地が、酵母、乳酸菌、及びビフィズス菌の培養用培地として優れ、前記微生物用培地を酵母、乳酸菌、及びビフィズス菌の培養に使用した場合、培養菌体の量が著しく増加する旨記載されている。
【0007】
また、特開2002-369672号公報[以下、文献7と言う。]には、ナイシン等のバクテリオシンを含有する乳酸発酵液による食品の殺菌方法が記載されている。そして、食品に対して、該乳酸発酵液とカルシウムイオンを加えることにより、該乳酸発酵液の有する抗菌作用を長く維持できることが記載されている。
【0008】
【特許文献1】
特開平4-75596号公報
【特許文献2】
特開平4-126093号公報
【特許文献3】
特開平6-9690号公報
【特許文献4】
特開2000-236891号公報
【特許文献5】
特開2000-245491号公報
【特許文献6】
特開2000-342247号公報
【特許文献7】
特開2002-369672号公報
【0009】
しかしながら、文献4及び文献5において培地原料として使用する米焼酎蒸留残液の固体分及び芋焼酎蒸留残液の固体分は、本発明において培地原料として使用する、大麦を原料とする焼酎製造において副生する大麦焼酎蒸留残液を固液分離することにより得られる液体分及び米を原料とする焼酎製造において副生する米焼酎蒸留残液を固液分離することにより得られる液体分とは客観的に区別される明らかに別異なるものである。その上、文献4及び文献5に記載の発明は、米焼酎蒸留残液または芋焼酎蒸留残液から得られる固体分からなる培地を使用して乳酸菌を培養することによって乳酸を生産することを目的とするものであり、ナイシンを含有し、優れた呈味性を有する乳酸菌発酵液の製造方法については示唆すらも全くない。
【0010】
文献6は、前記微生物用培地がLactobacillus属の乳酸菌、即ちLactobacillus acidophilus、Lactobacillus plantarum、及びLactobacillus fermentum等の菌体の増殖に有効である旨記載しているが、ナイシン生産能を有するLactococcus lactis subsp. Lactisに属する乳酸菌の菌体増殖効果については全く記載していない。また文献6には、前記微生物用培地がLactobacillus属の乳酸菌、即ちLactobacillus acidophilus、Lactobacillus plantarum、及びLactobacillus fermentum等の菌体増殖に有効である旨記載されていることから、該微生物用培地を用いて上述したナイシン生産能を有するLactococcus lactis subsp. Lactisに属する乳酸菌を培養した場合、同様の菌体増殖効果が奏されることを推測することは容易であるかもしれない。しかしながら、前記ナイシン生産能を有する乳酸菌を培養することによって培養液中に生産されるナイシンの量は、培養液中の菌体量の増加のみによって必然的に高まるものでは到底ない。この点は、上述の菌体増殖効果を有する該微生物用培地を使用する場合であっても同様である。因みに、本発明者らは、該文献6に記載の前記微生物用培地を使用して、ナイシン生産能を有するLactococcus lactis subsp. Lactisに属する幾つかの乳酸菌のそれぞれの菌株を培養条件を変えて培養し、得られた発酵生産物中の菌体量及びナイシン濃度を調べたが、いずれの場合にあっても、前記菌体量と前記ナイシン濃度との間には何ら普遍的な相関関係は認められなかった。
【0011】
文献7には、ナイシン等のバクテリオシンを含有する乳酸発酵液による食品の殺菌方法について記載されている。また、前記乳酸発酵液を得るに際して、培地に使用する窒素源として焼酎粕が使用できる旨記載されている。しかしながら、文献7には、前記焼酎粕を窒素源として使用した場合にナイシンの生産性が顕著に高まり、更に得られる乳酸発酵液が優れた呈味性を有することについては全く記載されていない。
【0012】
以上述べたことからしても明らかなように、上述した文献を精査してみても、大麦焼酎蒸留残液または米焼酎蒸留残液を固液分離して得られる液体分を培地に使用してナイシン生産能を有する乳酸菌を培養した場合、ナイシン生産が顕著に増大すること、そして得られる発酵生産物がナイシンを著量含有し且つ優れた呈味性を有することは、到底予測できないことである。
【0013】
【発明が解決しようとする課題】
以上述べたように、従来のナイシン製造技術においては、上述した各種の培地が使用されているが、それら従来の培地のいずれを使用しても、得られる発酵生産物中のナイシン濃度は極めて低い。こうしたことから、工業的にナイシンを多量生産するためには発酵生産物中に生産されるナイシンの量を更に高める手段の早期提供が強く求められている。
これとは別に、上述したように、文献7には、焼酎粕を窒素源とする培地を使用してナイシン生産能を有する乳酸菌を培養して得られるナイシンを含有する乳酸発酵液は抗菌作用を有し、この乳酸発酵液を食品に添加することによる食品の殺菌方法が記載されている。しかしながら、このような従来の培地を使用してナイシン生産能を有する乳酸菌を培養して得られるナイシンを含有する乳酸発酵液は、上述したようにナイシン濃度が低く、しかもその呈味性は満足のゆくものでは到底ない。このような乳酸発酵液を食品に添加して使用する場合には、該乳酸発酵液は、ナイシンを著量含有し且つ優れた呈味性を有するものであることが切望される。
【0014】
本発明は、上述した従来技術における問題点に鑑みて、更なる研究の結果、完成に至ったものである。本発明の目的は、従来のナイシンの製造技術における上記問題点を解決し、ナイシンの多量生産を可能にするナイシンの工業的製造方法を提供することにある。本発明の他の目的は、ナイシンを著量含有し、且つ優れた呈味性を有し、食品への使用が極めて好適な発酵生産物の効率的製造を可能にする方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、焼酎蒸留残液をより有効に利用して従来のナイシンの製造技術における上述した問題を解決する、即ち、前記焼酎蒸留残液を培地に使用してナイシン生産の増大を可能にする方法を開発すべく実験を介して鋭意検討を行った。
その結果、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法を採用した場合、ナイシンの生産量が著しく増大し、ナイシンを著量含有する発酵生産物が得られることが判明した。そして該発酵生産物を官能検査に付したところ、従来培地を使用することにより得た発酵生産物に比べて、優れた呈味性を有し、食品としての使用に極めて適するものであることが判った。本発明は、以上の発見に基づいて完成に至ったものである。
【0016】
本発明は、従来のナイシンの製造技術においては、培地として使用されることの全くなかった大麦焼酎蒸留残液を培地と使用することによりナイシンの著量生産を可能にするものである。即ち、本発明は、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とするナイシンを著量含有する発酵生産物の製造方法を提供するものである。本発明の製造方法における前記培養は、回分培養方式及び/又は連続培養方式で行ってもよい。本発明により得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として好適に使用できるものである。
【0017】
本発明者らは、文献6に記載の微生物用培地を使用してLactobacillus属の乳酸菌を培養した場合、得られる培養菌体の量が著しく増加することに鑑み、文献6には、前記微生物用培地を使用してナイシン生成能を有するLactococcus lactis subsp. Lactis属の乳酸菌を培養することについては触れるところは全くないが、このナイシン生成能を有する乳酸菌を前記微生物用培地を使用して培養した場合、培養菌体量の増大の程度はともかく、もしかするとナイシンの顕著な生産がもたらされるのではと想像して、本発明者らは実験を介して鋭意検討を行った。即ち、本発明者らは、文献6に記載の、大麦を原料とする焼酎製造において副生する焼酎蒸留残液(以下、これを“大麦焼酎蒸留残液”と略称する)を固液分離して液体分を得、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着性画分、及び前記液体分を、それぞれBrix濃度8.0に調整後、それぞれに同量のグルコースを添加し、次いでLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌をそれぞれ接種して別々に回分培養に付した。対照には、前記と同量のグルコースを添加したMRS培地を使用し、他は全て上述したのと同様の方法により回分培養に付した。
【0018】
それぞれの回分培養において得られた発酵生産物について乳酸菌菌体量及びナイシン濃度を測定した。その結果、文献6に記載の前記液体分からなる培地を使用した場合及び前記非吸着性画分からなる培地を使用した場合、これら二つの場合で得られた発酵生産物中の乳酸菌菌体量及びナイシン濃度は実質的に同じであることが判明した。更に該乳酸菌菌体量及び該ナイシン濃度は、対照のMRS培地を使用した場合と比較しても有意差は認められず、実質的に同等であることが判明した。即ち、文献6に記載の微生物用培地を単に使用するだけでは、前記対照のMRS培地を顕著に上回るナイシン生産性を達成できないことが明らかになった。
【0019】
そこで、本発明者らは大麦焼酎蒸留残液を固液分離することにより得られる液体分からなる培地を使用してナイシンの生産に係る検討を実験を介して行った。即ち、前記液体分からなる培地を使用してナイシンを生産するに当たり、該液体分のBrix濃度がナイシンの生産に痛切に影響するのではないかと推測して、ナイシン生産に適した該液体分のBrix濃度を決定することを目的として実験を介して検討を行った。即ち、前記液体分のBrix濃度を0.5、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0、14.0、及び15.0に調整し、それぞれに同量のグルコースを添加して、下記のナイシン生成能を有する乳酸菌のナイシン生産に係る至適pH値に調整した液体培地を得、それぞれの液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して別々に回分培養に付した。対照には、上記と同量のグルコースを添加して上記と同じpH値に調整したMRS培地を使用し、それ以外は全て上述と同様の方法により回分培養に付した。その結果、前記液体分のBrix濃度を0.5乃至6.0の範囲に調整して得た液体培地を使用した場合、前記対照のMRS培地を使用した場合と比較して、得られる発酵生産物中のナイシン濃度が高まる傾向が認められた。
【0020】
そこで、上記液体分からなる培地を使用してナイシン生産を目的とした培養に付すに当たり、ナイシンの多量生産に至適なpH条件を決定することを目的として実験を介して検討を行った。即ち、Brix濃度4.0に調整した上記液体分に所定量のグルコースを添加してpH値を3.0乃至8.0に調整した複数の液体培地を得た。得られたpH値の異なる各々の液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌をそれぞれ接種し、調整したpH値を保持しながら別々に回分培養に付した。対照には、上記と同量のグルコースを添加してpH6.8に調整したMRS培地を使用し、それ以外は全て上述と同様の方法により回分培養に付した。その結果、前記液体培地のpH値を4.0乃至7.0の範囲に保持して培養を行った場合、前記対照のMRS培地(pH6.8に保持)を使用して培養を行った場合と比較して、得られる発酵生産物中のナイシン濃度が顕著に高まることが判明した。
【0021】
以上のことから、大麦焼酎蒸留残液を固液分離することにより得られる液体分のBrix濃度を0.5乃至6.0の範囲に調整し、これに糖を添加してpH値を4.0乃至7.0の範囲に保持してLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して回分培養に付すことにより、得られる発酵生産物中のナイシン濃度が、従来のMRS培地を使用して培養を行った場合と比較して、顕著に高まることが明らかとなった。
【0022】
上記【0019】及び【0020】に述べた実験を、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の場合と同様にして、米焼酎蒸留残液を固液分離することにより得られる液体分(B)について行ったところ、上述した大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の場合と同様の結果が得られた。即ち、米焼酎蒸留残液を固液分離することにより得られる液体分(B)のBrix濃度を0.5乃至6.0の範囲に調整し、これに糖を添加してpH値を4.0乃至7.0の範囲に保持してLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して回分培養に付すことにより、得られる発酵生産物中のナイシン濃度が、従来のMRS培地を使用して培養を行った場合と比較して、顕著に高まることが明らかとなった。
【0023】
次に、上記液体分からなる培地を使用して、連続培養法によるナイシン生産について実験を介して検討を行った。即ち、前記液体分のBrix濃度を4.0に調整し、これにグルコースを3重量%添加してpH値を5.5に調整することにより液体培地を得、該液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種し、ジャーファーメンターからなる連続培養装置を使用し、pHコントローラーによりpH値を5.5に保持し、更に文献1に記載の濾過培養法、即ち、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液量と同体積の新鮮な前記液体培地をジャーファーメンターに供給する連続培養を行った。対照としては、前記濾過培養において新鮮な前記液体培地を使用する代わりに、グルコース3重量%を添加したMRS培地を使用した以外は、全て同様の方法により連続培養を行った。その結果、濾過培養においてジャーファーメンターに供給する新鮮培地に前記液体培地を使用することにより、該新鮮培地に前記MRS培地を使用した場合よりも、得られる発酵生産物中のナイシン濃度が顕著に高まることが判明した。
【0024】
更に文献1の表1には、新鮮培地として使用するMRS培地のグルコース含量が高いほど、培養液中のナイシン濃度が高まる旨記載されているが、同文献1の第4図及び第5図から明らかなように、連続培養に移行後の培養液中のグルコース濃度は、供給するMRS培地のグルコース濃度に関わらずいずれの場合においても実質的に限りなく0g/Lに近い値を示している。そこで、本発明者らは、連続培養時における培養液中のグルコース濃度がナイシン生産性に影響を及ぼすのではないかと推察し実験を介して検討を行った。
【0025】
即ち、上記液体分のBrix濃度を4.0に調整し、これにグルコースを3重量%添加してpH値を5.5に調整することにより液体培地を得、該液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種し、ジャーファーメンターからなる連続培養装置を使用し、pHコントローラーによりpH値を5.5に保持し、更に文献1記載の濾過培養法、即ち、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液量と同体積の新鮮な前記液体培地をジャーファーメンターに供給する連続培養を行った。その際、グルコース電極を付したオンラインバイオケミカルコントローラーを用いて培養液のグルコース濃度を測定し、連続培養に移行後、前記液体培地をジャーファーメンターに供給して培養液のグルコース濃度を0.01、0.1、1.0、5.0、及び10.0g/Lに保持して、それぞれ別々に連続培養を行った。その結果、連続培養に移行後の培養液中のグルコース濃度を0.1、1.0、5.0、及び10.0g/Lに維持した場合には、培養液中のグルコース濃度を0.01g/Lに維持した場合に比べて、培養液中のナイシン濃度が飛躍的に高まることが明らかになった。このことから、連続培養に移行後の培養液中のグルコース濃度を0.1g/L以上に維持することにより、極めて高濃度のナイシンを含有する培養液を連続的に生産することが可能となることが判明した。
【0026】
そこで、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0027】
また、上記米焼酎蒸留残液の液体分(B)を使用して【0025】に述べた手法で実験を行ったところ、上記大麦焼酎蒸留残液の液体分を使用した場合と同様に、連続培養に移行後の培養液中のグルコース濃度を0.1g/L以上に維持することにより、極めて高濃度のナイシンを含有する培養液を連続的に生産することが可能となることが判明した。そこで、米焼酎蒸留残液を固液分離することにより得られる液体分(B)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0028】
また、前記培地として、前記大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換えたものからなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。その結果、該発酵生産物のナイシン濃度は、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高まることが明らかとなった。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0029】
この他に、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の少なくとも一部を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着画分とし、前記液体分(A)を前記非吸着画分を含有するものにした液体分(A')と、米焼酎蒸留残液を固液分離することにより得られる液体分(B)の少なくとも一部を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着画分とし、前記液体分(B)を前記非吸着画分を含有するものにした液体分(B')を用意し、前記液体分(A')を使用しBrix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したもの、及び前記液体分(A')及び前記液体分(B')を使用しBrix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを夫々培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、いずれの発酵生産物のナイシン濃度も従来のMRS培地を使用することにより得られる発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0030】
【実施態様例】
以下、本発明の好ましい実施態様例について述べるが、本発明は、これらの実施態様例によって何ら制限されるものではない。本発明は、大麦焼酎蒸留残液を固液分離することにより液体分(A)を得る工程(イ)、前記液体分(A)を水で希釈してそのBrix濃度を0.5乃至6.0の範囲に調整する工程(ロ)、前記工程(ロ)で得られるものに糖を添加して培地を得る工程(ハ)、及び前記培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う工程(ニ)を有することを特徴とするナイシンを著量含有する発酵生産物の製造方法を提供する。工程(イ)においては、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を、米を原料とする焼酎の製造において副生する米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換えてもよい。また、前記液体分(A)及び/又は前記液体分(B)の少なくとも一部を合成吸着剤を用いる吸着分離処理に付して得られる非吸着画分にしてもよい。工程(ニ)における培養は、回分培養方式及び/又は連続培養方式で行うことができる。
【0031】
本発明において使用する大麦焼酎蒸留残液は、大麦又は精白大麦を原料として大麦麹及び蒸麦を製造し、得られた大麦麹、及び蒸麦中に含まれるでんぷんを麹、及び/又は酵素剤を使用して糖化し、酵母によるアルコール発酵に付して熟成もろみを得、該熟成もろみを減圧蒸留または常圧蒸留等の蒸留装置を用いて蒸留する際に蒸留残渣として副生するもの、即ち、大麦焼酎の蒸留残液を意味する。また、米焼酎、甘藷焼酎、そば焼酎の製造においても、これらの焼酎製造において原料の一部として大麦を使用する場合に副生する焼酎蒸留残液も本発明において使用する大麦焼酎蒸留残液に包含される。
前記大麦焼酎蒸留残液を得るに際して、大麦焼酎の製造に用いる大麦麹は、通常の大麦焼酎製造において行われている製麹条件で製造すればよく、用いる麹菌株としては、一般的に大麦焼酎製造で使用する白麹菌(Aspergillus kawachii)が好ましい。或いは泡盛製造で使用する黒麹菌(Aspergillus awamori)及び清酒製造等で使用する黄麹菌(Aspergillus oryzae)などのAspergillus属の菌株を用いることもできる。また大麦焼酎の製造に用いる酵母は、一般的に焼酎製造の際に使用する各種の焼酎醸造用酵母を使用することができる。
【0032】
本発明において使用する米焼酎蒸留残液は、米を原料として米麹及び蒸米を製造し、得られた米麹、及び蒸米中に含まれるでんぷんを麹、及び/又は酵素剤を使用して糖化し、更に酵母によるアルコール発酵に付して熟成もろみを得、該熟成もろみを減圧蒸留または常圧蒸留等の蒸留装置を用いて蒸留する際に蒸留残渣として副生するもの、即ち、米焼酎の蒸留残液を意味する。また、大麦焼酎、甘藷焼酎、そば焼酎の製造においても、これらの焼酎製造において原料の一部として米を使用する場合に副生する焼酎蒸留残液も本発明において使用する米焼酎蒸留残液に包含される。
前記米焼酎蒸留残液を得るに際して、米焼酎の製造に用いる米麹は、通常の米焼酎製造において行われている製麹条件で製造すればよく、用いる麹菌株としては、一般的に米焼酎製造で使用する白麹菌(Aspergillus kawachii)が好ましい。或いは泡盛製造で使用する黒麹菌(Aspergillus awamori)及び清酒製造等で使用する黄麹菌(Aspergillus oryzae)などのAspergillus属の菌株を用いることもできる。また米焼酎の製造に用いる酵母は、一般的に焼酎製造の際に使用する各種の焼酎醸造用酵母を使用することができる。
【0033】
工程(イ)において、大麦焼酎蒸留残液を固液分離して液体分を得る理由は、該大麦焼酎蒸留残液から原料大麦及び大麦麹由来の水不溶性の発酵残渣を除去して液体分のみを使用することにある。前記固液分離は、スクリュープレス方式やローラープレス方式の固液分離方法を介するか、或いはろ過圧搾式の固液分離機を用いて予備分離を行い、次いで遠心分離機、ケイソウ土ろ過装置、セラミックろ過装置、或いはろ過圧搾機等を用いた固液分離処理を行い、前記液体分を得る。
【0034】
工程(イ)において、米焼酎蒸留残液を固液分離して液体分を得る理由は、該米焼酎蒸留残液から原料米及び米麹由来の水不溶性の発酵残渣を除去して液体分のみを使用することにある。前記固液分離は、スクリュープレス方式やローラープレス方式の固液分離方法を介するか、或いはろ過圧搾式の固液分離機を用いて予備分離を行い、次いで遠心分離機、ケイソウ土ろ過装置、セラミックろ過装置、或いはろ過圧搾機等を用いた固液分離処理を行い、前記液体分を得る。
【0035】
前記液体分(A)及び/又は前記液体分(B)を合成吸着剤を用いる吸着分離処理に付すことにより非吸着画分にするのは、該液体分に含まれる雑味を呈する成分を除去することを目的として行うものである。前記合成吸着剤の好適な具体例としては、オルガノ(株)製のアンバーライトXAD-4、アンバーライトXAD-16、アンバーライトXAD-1180及びアンバーライトXAD-2000、三菱化学(株)製のセパビーズSP850及びダイヤイオンHP20等の芳香族系(又はスチレン系とも言う)合成吸着剤、オルガノ(株)製のアンバーライトXAD-7、及び三菱化学(株)製のダイヤイオンHP2MG等のメタクリル系(又はアクリル系とも言う)合成吸着剤を挙げることができる。これらの他、場合によっては三菱化学(株)製のセパピーズSP207等の芳香族系修飾型合成吸着剤を用いることができる。このようにして得られる前記非吸着画分は、前記液体分の少なくとも一部に代えて使用することができる。
【0036】
工程(ロ)において、工程(イ)から供給される前記液体分(A)〔前記液体分(A)の非吸着画分を包含する〕及び前記液体分(B)〔前記液体分(B)の前記非吸着画分を包含する〕の夫々のBrix濃度を0.5乃至6.0の範囲に調整するのは、ナイシン生産能を有する乳酸菌のナイシン生産性に適した培地成分濃度に調整することを目的として行うものであり、これによりナイシンの生産性を高めることができる。前記Brix濃度は、2.0乃至4.0の範囲に調整するのがより好ましい。即ちこの場合、ナイシン生産性の顕著な向上を図ることができる。
【0037】
工程(ハ)において添加する前記糖の好ましい具体例としては、グルコース、キシロース、スクロース、フラクトース、マルトース、リボース、ガラクトース、マンノース、マンニトール、セロビオース、サッカロース、及びトレハロースを挙げることができる。前記液体培地の糖濃度は、使用する糖の種類により異なるが、一般的には、5乃至70g/Lの範囲である。これらの糖の中、グルコースが特に好ましく、その場合のグルコース濃度は、5乃至70g/Lの範囲に設定するのが好ましい。
【0038】
工程(ニ)で使用する前記ナイシン生産能を有する乳酸菌は、ナイシン生産能を有する菌株であればいかなるものでも良く、特にLactococcus lactis subsp. Lactisに属する乳酸菌が好ましい。具体的には、生産するナイシンがナイシンAである場合の菌株として、Lactococcus lactis NCDO497、Lactococcus lactis NIZO R5、Lactococcus lactis ATCC 7962及びLactococcus lactis ATCC11454を好ましいものとして挙げることができる。また、生産するナイシンがナイシンZである場合の菌株として、Lactococcus lactis NIZO 22186、Lactococcus lactis NRRL-B-18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis IO-1(JCM7638)、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を好ましいものとして挙げることができる。
【0039】
工程(ニ)における培養を、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つ培養液のpH値を4.0乃至7.0の範囲に制御しながら行う工程は、回分培養方式或いは連続培養方式で行うことができる。この他、流加培養方式を採用することができる。前記培養液のpH値を4.0乃至7.0の範囲に制御するに際しては、上述したように、培養槽にpH測定用複合ガラス電極を装着し、pHメーターで測定し、実側pH値が設定pH値よりも低くなった時に、pHコントローラー等を用いて水酸化ナトリウム溶液等のアルカリ溶液を培養槽に供給することにより、設定pH値に保持することができ、好ましくはpH値5.0乃至6.5の範囲に調整する。尚、前記所定のpH値の変動範囲は0.1以下にすることが好ましい。工程(ニ)において、前記培養液の糖濃度(グルコース濃度)を少なくとも0.1g/L以上に制御するに際しては、前記培養を連続培養方式または流加培養方式で行う場合には、グルコースアナライザー等を使用して制御することができる。当該工程においてはグルコースの他に酵母エキスやポリペプトンからなる窒素源を含有する基質溶液又は上記液体製培地からなる基質溶液を培養槽に供給することにより行うことができ、これにより培養工程にある液体培地のグルコース濃度を所望の値に保持することができる。当該グルコース濃度は少なくとも0.1g/L以上とするが、好ましくは1.0g/L以上に保持することによりナイシン生産能を有する乳酸菌の活性及び比ナイシン生産速度を高い値に維持することができる。前記培養を行う際の培養温度は、使用する乳酸菌の生育に最適な温度に設定すればよく、一般的には20乃至40℃の範囲、好ましくは25乃至37℃の範囲とする。攪拌速度は10乃至1000rpm、好ましくは50乃至300rpmが好適である。
【0040】
工程(ニ)における培養を連続培養方式で行う場合には、上述の培養条件に従って培養を開始し、菌体濃度が上昇して、対数増殖期の後期に到達した段階で連続培養に移行する。該連続培養法においては、培養槽にpH測定用複合ガラス電極を装着し、pHメーターで測定し、実側pH値が設定pH値よりも低くなった時に水酸化ナトリウム溶液等のアルカリ溶液を培養槽に供給することにより、該設定pH値に保持することができる。この際、培養槽に供給された前記液体培地又はアルカリ溶液と同量の除菌液を限外濾過膜或いは精密濾過膜等を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持することができる。また、前記pH制御とは別に、培養槽にプロセスオンライン濁度計プローブを装着し、その出力をDDCコントローラーに入力し、培養槽に供給した滅菌水又は液体培地と同量の培養液(菌体を含む)を培養槽から抜き出すことにより、培養槽の濁度制御を行い、培養液中の菌体濃度及び培養液液量を一定に保持することができる。該菌体濃度は4.0乃至18.0g/Lの範囲、好ましくは8.0乃至15.0g/Lの範囲に設定する。培地の希釈率は培養液の菌体濃度及びナイシン生産速度等により任意の値に設定することができ、一般的には0.1乃至2.0hr-1の範囲とするが、好ましくは0.2乃至1.2hr-1の範囲とする。
【0041】
【実施例】
以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0042】
以下の実施例に供する目的で大麦焼酎の製造を行った。原料としては、大麦(70%精白)を用いた。
〔大麦麹の製造〕
大麦を40%(w/w)吸水させ、40分間蒸した後、40℃まで放冷し、大麦トンあたり1kgの種麹(白麹菌)を接種し、38℃、RH95%で24時間、32℃、RH92%で20時間保持することにより、大麦麹を製造した。
〔蒸麦の製造〕
大麦を40%(w/w)吸水させ、40分間蒸した後、40℃まで放冷することにより、蒸麦を製造した。
〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕
1次仕込みでは前述の方法で製造した大麦麹(大麦として3トン)に、水3.6キロリットル及び酵母として焼酎酵母の培養菌体1kg(湿重量)を加えて1次もろみを得、得られた1次もろみを5日間の発酵(1段目の発酵)に付した。次いで、2次仕込みでは、上記1段目の発酵を終えた1次もろみに、水11.4キロリットル、前述の方法で製造した蒸麦(大麦として7トン)を加えて11日間の発酵(2段目の発酵)に付した。発酵温度は1次仕込み、2次仕込みとも25℃とした。上記2段目の発酵を終えた2次もろみを常法により単式蒸留に付し、大麦焼酎10キロリットルと大麦焼酎蒸留残液15キロリットルを得た。得られた大麦焼酎蒸留残液を以下の実施例に用いた。
【0043】
以下の実施例に供する目的で米焼酎の製造を行った。原料としては、精米(70%精白)を用いた。
〔米麹の製造〕
米麹の製造は米を35%(w/w)吸水させ、40分間蒸した後、40℃まで放冷し、米kg当り1g量の白麹菌を接種し、38℃、RH95%で24時間、32℃、RH92%で20時間で行った。
〔蒸米の製造〕
蒸米は米を35%(w/w)吸水させ、40分間蒸した後、40℃まで放冷することにより、蒸米を製造した。
〔米焼酎製造及び米焼酎蒸留残液の製造〕
1次仕込みでは前述の方法で製造した米麹(米として3トン)に、水3.6キロリットル及び酵母として焼酎酵母の培養菌体1kg(湿重量)を加えて1次もろみを得、得られた1次もろみを5日間の発酵(1段目の発酵)に付した。次いで、2次仕込みでは、上記1段目の発酵を終えた1次もろみに、水11.4キロリットル、前述の方法で製造した蒸米(米として7トン)を加えて15日間の発酵(2段目の発酵)に付した。発酵温度は1次仕込み、2次仕込みとも25℃とした。上記2段目の発酵を終えた2次もろみを常法により単式蒸留に付し、米焼酎10キロリットルと米焼酎蒸留残液15キロリットルを得た。得られた米焼酎蒸留残液を以下の実施例に用いた。
【0044】
【実施例1】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1.で得た乳酸菌培養用培地500mlと上記2.で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0045】
【比較例1】
1.MRS培地の調製
MRS培地(ペプトン1重量%、肉エキス1重量%、酵母エキス0.5重量%、K2HPO40.2重量%、クエン酸二アンモニウム0.2重量%、グルコース3.6重量%、Tween80 0.1重量%、酢酸ナトリウム0.5重量%、MGSO4・7H2O 0.058重量%、MnSO4・4H2O 0.028重量%)を、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1.で調製したMRS培地500mlと上記2.で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0046】
【実施例2】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
【0047】
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。4.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF-410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液の量と前記グルコース濃度調整用基質溶液の量の総和量と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0048】
【比較例2】
1.MRS培地の調製
MRS培地(ペプトン1重量%、肉エキス1重量%、酵母エキス0.5重量%、K2HPO40.2重量%、クエン酸二アンモニウム0.2重量%、グルコース3.6重量%、Tween80 0.1重量%、酢酸ナトリウム0.5重量%、MGSO4・7H2O 0.058重量%、MnSO4・4H2O 0.028重量%)を、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用MRS培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1.で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後12時間目に培養液のグルコース濃度が0.1g/L未満に達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を0.1g/L未満に保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF-410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、基質溶液(グルコース1重量%、酵母エキス0.5重量%、ポリペプトン0.5重量%、NaCl0.5重量%)を培養槽に供給して培養液のグルコース濃度を0.1g/L未満に保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0049】
【実施例3】
実施例2で使用したLactococcus lactis IO-1に代えて、Lactococcus lactis NIZO 22186、Lactococcus lactis NRRL-B-18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を使用した以外は、全て実施例2と同様にして連続培養を行った。
【0050】
【比較例3】
比較例2で使用したLactococcus lactis IO-1に代えて、Lactococcus lactis NIZO 22186、Lactococcus lactis NRRL-B-18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を使用した以外は、全て比較例2と同様にして連続培養を行った。
【0051】
【実施例4】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該充填カラムから溶出してきた当該合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈そのBrix濃度を4に調整し、グルコースを3.6重量%添加し、次いで水酸化ナトリウムを用いてpH5.5に調整した後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.乳酸菌の本培養
2L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地500mlと上記2で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0052】
【実施例5】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該カラムから溶出してきた前記合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該カラムから溶出してきた前記合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
【0053】
4.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1.で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF-410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記グルコース濃度調整用基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0054】
【実施例6】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.米焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0043】に記載の〔米焼酎製造及び米焼酎蒸留残液の製造〕で得られた米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
4.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地250ml、上記2で得た乳酸菌培養用培地250ml、及び上記3で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0055】
【実施例7】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
3.米焼酎蒸留残液からの乳酸菌培養用培地の調製
米焼酎製造の蒸留工程で得られた前記米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して米焼酎蒸留残液の液体分を得、該液体分をBrix4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
4.米焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記【0043】に記載の〔米焼酎製造及び米焼酎蒸留残液の製造〕で得られた米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
【0056】
5.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO-1の保存株50μlを10mlのTGC 培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
6.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地900ml、上記3で得た乳酸菌培養用培地900ml、及び上記5で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF-410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液と前記4で得たグルコース濃度調整用基質溶液を1:1の割合で混合することにより得た混合液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記グルコース濃度調整用基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0057】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを以下の試験例1に供し、該発酵生産物のナイシン濃度を測定した。
【0058】
【試験例1】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得たそれぞれの発酵生産物を9000rpm、30minの条件で遠心分離に付すことにより該発酵生産物の上清1を得、それぞれの発酵生産物の上清1に濃塩酸を加えてpH3.0に調整後、4℃で一晩放置し、再度9000rpm、30minの条件で遠心分離に付すことによりそれぞれの発酵生産物の上清2を得、得られたそれぞれの発酵生産物の上清2を試料として以下の方法に従って、培養液のナイシン濃度を測定した。即ち、指標菌としてMicrococcus luteus(IFO N0.3333)を用い、ナイシン(ICN製)を3000IU/mlとなるように0.01N HClに溶解したものをナイシンA標準液として用いた。前記指標菌をLB液体培地10mlに一白金耳接種し、培養温度30℃、攪拌速度100rpm、培養時間18時間の条件で振とう培養を行い培養液を得、該培養液100μlを適温まで冷ましたソフトアガー2.0mlに懸濁して懸濁液を得、該懸濁液をLB寒天培地上に重層して1時間放置後、0.01N HClで適当な濃度に希釈した前記発酵生産物上清2を該LB寒天培地上に10μlづつスポットし、30℃で24時間培養後、スポット箇所周辺の増殖阻害を起こした生育阻止円の有無を確認し、該生育阻止円が現れる時の試料の最大希釈率Dを求め、ナイシン抗菌活性(AU/ml)=1/D×試料添加量(ml)の関係式からナイシン抗菌活性値を算出した。
【0059】
【評価1】
実施例1及び比較例1において培養開始後24時間目に得たそれぞれの発酵生産物のナイシン抗菌活性値を表1に示す。表1に示す結果から以下のことが判明した。即ち、培養開始後24時間目のナイシン抗菌活性値は、比較例1で得た発酵生産物は1200IU/mlと低い値であったのに対して、実施例1で得た発酵生産物は4500IU/mlと極めて高い値を示した。即ち、大麦焼酎蒸留残液から得た前記乳酸菌培養用培地を使用する本発明のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値は、MRS培地を使用する従来のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値の約3.8倍に達することが判明した。
実施例2及び比較例2の連続培養におけるナイシン抗菌活性値を表2に示す。表2に示す結果から以下のことが判明した。即ち、ナイシン抗菌活性値は、比較例2においては、回分培養から連続培養に移行した培養開始後12時間目において最大値を示した後は漸減し、培養開始後42時間目には1000IU/mlとなったのに対して、実施例2においては、回分培養から連続培養に移行した培養開始後12時間目において極大値を示した後、24時間目までは減少したが、24時間目以降は再び上昇し、培養開始後42時間目には6300IU/mlに達した。即ち、大麦焼酎蒸留残液から得た前記乳酸菌培養用培地を使用し、且つ連続培養時の培養液のグルコース濃度を4g/Lに保持して培養を行う本発明のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値は、MRS培地を使用し、且つ連続培養時の培養液のグルコース濃度を0.1g/L未満に保持して培養を行う従来公知のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値の6.3倍に達することが判明した。
実施例3及び比較例3の結果からは以下のことが判明した。即ち、実施例3においてナイシン生産能を有する各種乳酸菌菌株を連続培養に付すことにより得られるそれぞれの発酵生産物のナイシン抗菌活性値は、いずれの菌株を使用した場合であっても、比較例3に示す従来公知のナイシンの製造方法を採用した場合よりも顕著に高い値を示した。
【0060】
実施例4及び実施例5の結果からは以下のことが判明した。即ち、本発明において使用する大麦焼酎蒸留残液を固液分離することにより得られる液体分の代わりに、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる前記文献6に記載の非吸着性画分からなる溶液を使用した場合、実施例4及び実施例5において得た発酵生産物のナイシン抗菌活性値は、実施例1及び実施例2のそれぞれにおいて得た発酵生産物のナイシン抗菌活性値と同等であることが判った。
【0061】
実施例6及び実施例7の結果からは以下のことが判明した。即ち、大麦焼酎蒸留残液を固液分離することにより得られる液体分と米焼酎蒸留残液を固液分離することにより得られる液体分の混合物を培地に使用した場合の実施例6及び実施例7において得た発酵生産物のナイシン抗菌活性値は、実施例1及び実施例2のそれぞれにおいて得た発酵生産物のナイシン抗菌活性値と同等であることが判った。
【0062】
【試験例2】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを呈味性について官能試験に供した。即ち、実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを10名のパネラーによる官能試験に付し、該発酵生産物の呈味性を評価した。
【0063】
【評価2】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得たそれぞれの発酵生産物の官能試験結果を表3に示す。表3に示す結果から以下のことが判明した。即ち、比較例1及び比較例2で得たそれぞれの発酵生産物は極めて単調な香味と好ましくない雑味を有することから官能評価の値が極めて低かったのに対して、実施例1、実施例2、及び実施例4乃至実施例7で得た発酵生産物は、いずれも、まろやかで調和のとれた香味と豊かな旨味を呈することから官能評価の値が顕著に高く、調味料あるいは食品素材として好適であることが判明した。そして上記パネラーのコメントから、実施例1、実施例2、実施例4乃至実施例7で得た発酵生産物の中で、実施例4及び実施例5で得た発酵生産物は、いずれも特に際立ったまろやかな香味を呈するという特徴を有し、実施例6及び実施例7で得た発酵生産物は、いずれも、実施例1及び実施例2で得た発酵生産物よりも更に味わいのある豊かな旨味を呈するという特徴を有していることが明らかになった。
【0064】
以上の結果から、本発明によれば、従来公知のナイシンの製造方法と比較してナイシン生産性を飛躍的に高めることが可能であることが理解される。また、本発明よって得られる発酵生産物は、ナイシンを著量含有し、優れた抗菌活性に加えて、まろやかで調和のとれた香味と豊かな旨味を呈することから、食品として極めて好適に使用できる。
【0065】
【表1】

Figure 0003672258
【0066】
【表2】
Figure 0003672258
【0067】
【表3】
Figure 0003672258
【0068】
【発明の効果】
以上詳述したように、本発明のナイシンを含有する発酵生産物の製造方法は、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とし、ナイシンを著量含有する発酵生産物の効率的製造を可能にする。そして、得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として好適に使用することができる。[0001]
[Technical field to which the invention belongs]
The present invention is a method for producing a fermented product containing nisin for culturing lactic acid bacteria having nisin-producing ability using a liquid component obtained by solid-liquid separation of shochu distillation residue as a medium, A liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue, and a solution prepared by adding sugar to a Brix concentration adjusted to a range of 0.5 to 6.0. Culturing is performed by adding lactic acid bacteria having a production ability, and the culturing is performed while controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. The present invention relates to a method for producing a fermented product containing a significant amount of nisin. The method for producing a fermented product containing a significant amount of nisin according to the present invention includes an embodiment in which the culture is performed by a batch culture method and / or a continuous culture method. In addition, the method for producing a fermented product containing a significant amount of nisin of the present invention comprises a part of the liquid (A) obtained by solid-liquid separation of the barley shochu distillation residue, and the rice shochu distillation residue. An embodiment in which the liquid component (B) obtained by solid-liquid separation is replaced is included. The fermented product containing a significant amount of nisin obtained by the present invention has excellent taste and can be used as a food.
[0002]
[Prior art]
What is generally known as nisin is a polypeptide consisting of 34 amino acids, the amino acid sequence whose 27th position is histidine is called nisin A, and the amino acid sequence whose 27th position is asparagine. Say Nisin Z. Such nisin is a bacteriocin produced by Lactococcus lactis subsp. Lactis, and has antibacterial activity against Gram-positive bacteria such as Streptococcus, Bacillus, Clostridium, Staphylococcus and is currently used in certain foods in about 50 countries. Limited use as a preservative is permitted. Examples of such foods include cheese, canned food, milk, cream and mayonnaise.
[0003]
For the manufacture of nisin, the following method has been proposed. That is, in Japanese Laid-Open Patent Publication No. 4-75596 [hereinafter referred to as “Reference 1”], in the fermentation production of nisin using lactic acid bacteria, the growth rate of the produced bacteria is caused by metabolites other than nisin produced by nisin-producing bacteria. Before the growth or the growth stops, the culture solution containing the cells is continuously filtered using a membrane, and separated into a solution containing the cells and a solution containing nisin without the cells, The liquid containing the bacterial cells is returned to the culture tank, the liquid containing no nisin and containing nisin is extracted, and a fresh liquid medium having the same volume as the amount of the extracted liquid is added to the nisin-producing bacterial culture liquid in the culture tank. Dilution rate 0.1 ~ 10hr -1 The nisin is characterized in that nisin is separated from the liquid that does not contain the cells and that contains nisin, the culture solution in the culture tank, or the cells themselves that are contained in the culture solution. A manufacturing method is described. More specifically, Document 1 describes that MRS medium is used as a medium, Streptococcus lactis IFO12007 is used as a lactic acid bacterium strain capable of producing nisin, and fermentation is performed using the above filtration culture method. The nisin concentration in the culture solution obtained by the fermentation is 1.72 × 10 Five It is stated that it is U / L.
[0004]
Japanese Patent Laid-Open No. 4-126093 [hereinafter referred to as “Document 2”] describes that when producing nisin by culturing Streptococcus lactis strain SBT1212 having nisin-producing ability, serine or phenylalanine is added to the culture solution. A method for producing nisin is described which comprises culturing by adding 0.1 to 10 mg / ml to enhance nisin production. Reference 2 describes that a nisin production amount of a fermented product obtained by the production method using a medium composed of whole milk to which serine is added is 1000 (IU / ml).
In JP-A-6-9690 [hereinafter referred to as “Reference 3”], Lactococcus lactis subspecies lactisNRRL-B-18809, MRS medium supplemented with 1% yeast extract, or 0.5% yeast extract are added. A method for producing bacteriocin (nisin) cultured using a medium consisting of 7% whey is described, and the nisin titer of the fermented product obtained by the production method is 1600 AU / ml. ing.
[0005]
However, since the nisin concentration in the fermented product achieved by the nisin production method described in References 1 to 3 is extremely low as described above, these nisin production methods are useful for industrially producing nisin in large quantities. It is not suitable. Incidentally, at present, these nisin production methods are not industrially implemented.
[0006]
By the way, it has been proposed to use a shochu distillation residue as a culture medium for lactic acid bacteria. That is, JP 2000-236891 A [hereinafter referred to as “Document 4”. ] Describes a method for producing lactic acid, characterized in that lactic acid bacteria are added to a medium obtained from solids by solid-liquid separation of rice shochu distiller and subjected to fermentation. JP 2000-245491 A (hereinafter referred to as “Reference 5”) describes a lactic acid bacterium that produces L lactic acid in a medium obtained from a solid content obtained by solid-liquid separation of a shochu-distilled distilled spirit in an open system that is not steam sterilized. A method for producing high-purity L-lactic acid, characterized by being added and subjected to fermentation, is described.
JP-A-2000-342247 (hereinafter referred to as “Reference 6”) discloses a liquid component obtained by solid-liquid separation of a shochu distillation residue obtained as a by-product in the production of shochu using barley as a raw material. Filtration to obtain a clarified liquid, concentrating the clarified liquid to obtain a concentrated liquid, and for microorganisms containing, as an active ingredient, a non-adsorbable fraction obtained by subjecting the concentrated liquid to an adsorption treatment using a synthetic adsorbent It is described that the medium is excellent as a culture medium for yeast, lactic acid bacteria, and bifidobacteria, and when the microorganism medium is used for culturing yeast, lactic acid bacteria, and bifidobacteria, the amount of cultured cells is remarkably increased. .
[0007]
Japanese Patent Laid-Open No. 2002-369672 [hereinafter referred to as Document 7]. ] Describes a food sterilization method using a lactic acid fermentation broth containing bacteriocin such as nisin. And it is described that the antibacterial action which this lactic acid fermentation liquid has can be maintained long by adding this lactic acid fermentation liquid and calcium ion to food.
[0008]
[Patent Document 1]
JP-A-4-75596
[Patent Document 2]
Japanese Patent Laid-Open No. 4-126093
[Patent Document 3]
Japanese Unexamined Patent Publication No. 6-9690
[Patent Document 4]
JP 2000-236891 A
[Patent Document 5]
JP 2000-245491 A
[Patent Document 6]
JP 2000-342247 A
[Patent Document 7]
JP 2002-369672 A
[0009]
However, the solid content of the rice shochu distillation residue and the solid content of the koji shochu distillation residue used as the medium raw material in Reference 4 and Reference 5 are the secondary ingredients in the production of shochu using barley as the raw material used in the present invention. What is objective is the liquid content obtained by solid-liquid separation of the barley shochu distillation residue produced and the liquid fraction obtained by solid-liquid separation of the rice shochu distillation residue produced as a by-product in the production of shochu using rice as a raw material The distinction is clearly different. In addition, the inventions described in Document 4 and Document 5 are intended to produce lactic acid by culturing lactic acid bacteria using a medium consisting of a solid content obtained from rice shochu distillation residue or rice cake shochu distillation residue. Therefore, there is no suggestion about a method for producing lactic acid bacteria fermentation broth containing nisin and having excellent taste.
[0010]
Literature 6 describes that the microorganism medium is effective for the growth of lactic acid bacteria belonging to the genus Lactobacillus, i.e., Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, etc., but Lactococcus lactis subsp. Having nisin-producing ability. There is no description about the cell growth effect of lactic acid bacteria belonging to Lactis. Further, in Document 6, since the microorganism medium is described as being effective for lactic acid bacteria belonging to the genus Lactobacillus, that is, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum, the microorganism medium is used. It may be easy to infer that when the lactic acid bacteria belonging to Lactococcus lactis subsp. However, the amount of nisin produced in the culture solution by culturing the lactic acid bacterium having the ability to produce nisin cannot be inevitably increased only by increasing the amount of cells in the culture solution. This is the same even when the microorganism medium having the above-mentioned cell growth effect is used. Incidentally, the present inventors used the microorganism medium described in Document 6 to culture each of several strains of lactic acid bacteria belonging to Lactococcus lactis subsp. Lactis having the ability to produce nisin by changing the culture conditions. However, the amount of microbial cells and nisin concentration in the obtained fermentation product were examined. In any case, no universal correlation was found between the amount of microbial cells and the nisin concentration. I couldn't.
[0011]
Document 7 describes a method for sterilizing food with a lactic acid fermentation broth containing bacteriocin such as nisin. Moreover, when obtaining the said lactic acid fermentation broth, it describes that shochu can be used as a nitrogen source used for a culture medium. However, Document 7 does not describe at all that the productivity of nisin is remarkably increased when the shochu is used as a nitrogen source, and that the obtained lactic acid fermentation broth has excellent taste.
[0012]
As is clear from the above description, even if the above-mentioned literature is scrutinized, the liquid obtained by solid-liquid separation of the barley shochu distillation residue or rice shochu distillation residue is used as the medium. When lactic acid bacteria having nisin-producing ability are cultured, nisin production is remarkably increased, and the obtained fermentation product contains a significant amount of nisin and has an excellent taste. .
[0013]
[Problems to be solved by the invention]
As described above, in the conventional nisin production technology, the above-mentioned various culture media are used, but the nisin concentration in the obtained fermentation product is extremely low even when any of these conventional culture media is used. . For these reasons, in order to industrially produce nisin in large quantities, early provision of means for further increasing the amount of nisin produced in the fermented product is strongly demanded.
Apart from this, as described above, in Reference 7, lactic acid fermentation broth containing nisin obtained by culturing lactic acid bacteria capable of producing nisin using a culture medium using shochu as a nitrogen source has antibacterial activity. A method for sterilizing food by adding this lactic acid fermentation broth to food is described. However, a lactic acid fermentation broth containing nisin obtained by culturing lactic acid bacteria capable of producing nisin using such a conventional medium has a low nisin concentration as described above, and its taste is satisfactory. It will never be the case. When such a lactic acid fermentation broth is used by adding it to food, it is highly desired that the lactic acid fermentation broth contains a significant amount of nisin and has an excellent taste.
[0014]
The present invention has been completed as a result of further research in view of the above-described problems in the prior art. An object of the present invention is to solve the above-mentioned problems in the conventional nisin production technology and to provide an industrial production method of nisin that enables mass production of nisin. Another object of the present invention is to provide a method that enables efficient production of a fermented product that contains a significant amount of nisin, has excellent taste, and is extremely suitable for use in foods. is there.
[0015]
[Means for Solving the Problems]
The present inventors use the shochu distillation residue more effectively to solve the above-mentioned problems in the conventional nisin manufacturing technology, that is, the use of the shochu distillation residue as a medium enables an increase in nisin production. In order to develop a method to make it.
As a result, it comprises a liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue, and uses a liquid prepared by adding sugar to a liquid in which the Brix concentration is adjusted to a range of 0.5 to 6.0. Culturing by adding lactic acid bacteria capable of producing nisin to the medium, and culturing while controlling the sugar concentration of the culture solution to at least 0.1 g / L and controlling the pH value in the range of 4.0 to 7.0 It has been found that the production amount of nisin is remarkably increased and a fermented product containing a significant amount of nisin can be obtained. And when the fermented product was subjected to a sensory test, it has excellent taste compared to the fermented product obtained by using a conventional medium, and is extremely suitable for use as a food product. understood. The present invention has been completed based on the above findings.
[0016]
The present invention makes it possible to produce a large amount of nisin by using a barley shochu distillation residue that has never been used as a medium in the conventional nisin production technique. That is, the present invention comprises a liquid component (A) obtained by solid-liquid separation of barley shochu distillation residue, and uses as a culture medium a sugar added to a liquid having a Brix concentration adjusted to a range of 0.5 to 6.0. Then, lactic acid bacteria capable of producing nisin are added to the culture medium, and the culture is controlled by controlling the sugar concentration of the culture solution to at least 0.1 g / L and controlling the pH value within the range of 4.0 to 7.0. The present invention provides a method for producing a fermented product containing a significant amount of nisin. The culture in the production method of the present invention may be performed by a batch culture method and / or a continuous culture method. The fermented product containing a significant amount of nisin obtained according to the present invention has excellent taste and can be suitably used as a food.
[0017]
In light of the fact that the amount of cultured cells obtained when the lactic acid bacteria of the genus Lactobacillus are cultured using the culture medium for microorganisms described in Reference 6, the Document 6 describes the above-mentioned for microorganisms. Lactococcus lactis subsp. That has the ability to produce nisin using a culture medium There is no mention of culturing lactic acid bacteria belonging to the genus Lactis, but this lactic acid bacterium that has the ability to produce nisin is cultured using the microorganism medium Regardless of the degree of increase in the amount of cultured cells, the present inventors have conducted intensive studies through experiments, assuming that significant production of nisin would be brought about. That is, the present inventors solid-liquid-separated shochu distillation residue (hereinafter referred to as “barley shochu distillation residue”) produced as a by-product in the production of shochu using barley as described in Document 6. To obtain a liquid component, filter the liquid component to obtain a clarified liquid, concentrate the clarified liquid to obtain a concentrated liquid, and subject the concentrated liquid to an adsorption treatment using a synthetic adsorbent. After adjusting the fraction and the liquid to a Brix concentration of 8.0, add the same amount of glucose to each, then inoculate the lactic acid bacteria belonging to Lactococcus lactis subsp. It was attached to. As a control, an MRS medium supplemented with the same amount of glucose as described above was used, and everything else was subjected to batch culture in the same manner as described above.
[0018]
The amount of lactic acid bacteria and nisin concentration were measured for the fermentation products obtained in each batch culture. As a result, when using the medium composed of the liquid described in Reference 6 and when using the medium composed of the non-adsorbing fraction, the amount of lactic acid bacteria in the fermentation product obtained in these two cases and nisin Concentrations were found to be substantially the same. Further, it was found that the amount of lactic acid bacteria and the concentration of nisin were substantially the same, as compared with the case where the control MRS medium was used. That is, it has been clarified that nisin productivity notably higher than that of the control MRS medium cannot be achieved simply by using the microorganism medium described in Document 6.
[0019]
Therefore, the present inventors conducted an examination through experiments on nisin production using a medium composed of a liquid obtained by solid-liquid separation of the barley shochu distillation residue. That is, in producing nisin using the medium composed of the liquid, it is assumed that the concentration of Brix in the liquid will affect the production of nisin, and the Brix in the liquid suitable for nisin production is estimated. The study was conducted through experiments with the aim of determining the concentration. That is, the Brix concentration of the liquid is adjusted to 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0, and each has the same amount. Glucose was added to obtain liquid media adjusted to the optimum pH value for nisin production of lactic acid bacteria having the following nisin-producing ability, and lactic acid bacteria having nisin-producing ability belonging to Lactococcus lactis subsp. Inoculated and subjected to batch culture separately. As a control, MRS medium added with the same amount of glucose as described above and adjusted to the same pH value as described above was used, and everything else was subjected to batch culture in the same manner as described above. As a result, when a liquid medium obtained by adjusting the Brix concentration of the liquid to a range of 0.5 to 6.0 was used, compared with the case where the control MRS medium was used, nisin in the obtained fermentation product A tendency to increase the concentration was observed.
[0020]
Therefore, in the case of subjecting to culture for the purpose of nisin production using the medium composed of the above liquid, examination was conducted through experiments for the purpose of determining optimum pH conditions for mass production of nisin. That is, a predetermined amount of glucose was added to the liquid component adjusted to the Brix concentration of 4.0 to obtain a plurality of liquid culture media having pH values adjusted to 3.0 to 8.0. Each liquid medium having a different pH value was inoculated with a lactic acid bacterium having an ability to produce nisin belonging to Lactococcus lactis subsp. Lactis, and separately subjected to batch culture while maintaining the adjusted pH value. As a control, an MRS medium adjusted to pH 6.8 by adding the same amount of glucose as described above was used, and everything else was subjected to batch culture in the same manner as described above. As a result, when the culture was performed while maintaining the pH value of the liquid medium in the range of 4.0 to 7.0, compared with the case where the culture was performed using the control MRS medium (maintained at pH 6.8). It was found that the concentration of nisin in the resulting fermentation product was significantly increased.
[0021]
From the above, the Brix concentration of the liquid obtained by solid-liquid separation of the barley shochu distillation residue is adjusted to a range of 0.5 to 6.0, and sugar is added to this to adjust the pH value to a range of 4.0 to 7.0. Inoculated with lactic acid bacteria having the ability to produce nisin belonging to Lactococcus lactis subsp. Lactis and subjected to batch culture, nisin concentration in the obtained fermentation product was cultured using conventional MRS medium It became clear that it increased remarkably compared with the case.
[0022]
In the same manner as in the case of the liquid (A) obtained by solid-liquid separation of the barley shochu distillation residue, the rice shochu distillation residue is solid-liquid separated. As a result, the same results as in the case of the liquid (A) obtained by solid-liquid separation of the barley shochu distillation residual liquid described above were obtained. That is, the Brix concentration of the liquid component (B) obtained by solid-liquid separation of the rice shochu distillation residue is adjusted to a range of 0.5 to 6.0, and sugar is added to this to adjust the pH value to a range of 4.0 to 7.0. Inoculated with lactic acid bacteria having the ability to produce nisin belonging to Lactococcus lactis subsp. Lactis and subjected to batch culture, nisin concentration in the obtained fermentation product was cultured using conventional MRS medium It became clear that it increased remarkably compared with the case.
[0023]
Next, nisin production by a continuous culture method was examined through experiments using a medium composed of the liquid. That is, the Brix concentration of the liquid is adjusted to 4.0, 3% by weight of glucose is added thereto to adjust the pH value to 5.5, and a liquid medium is obtained. The nisin belonging to Lactococcus lactis subsp. Inoculated with lactic acid bacteria having the ability to produce, using a continuous culture apparatus consisting of a jar fermenter, maintaining the pH value at 5.5 with a pH controller, and further, the filtration culture method described in Reference 1, that is, without microbial cells, Nisin The liquid containing was extracted, and continuous culture was performed in which the fresh liquid medium having the same volume as the extracted liquid was supplied to the jar fermenter. As a control, continuous culture was performed in the same manner except that an MRS medium supplemented with 3% by weight of glucose was used instead of using the fresh liquid medium in the filtration culture. As a result, by using the liquid medium as a fresh medium to be supplied to the jar fermenter in filtration culture, the concentration of nisin in the obtained fermentation product is significantly higher than when the MRS medium is used as the fresh medium. It turned out to increase.
[0024]
Further, Table 1 of Document 1 states that the higher the glucose content of the MRS medium used as a fresh medium, the higher the nisin concentration in the culture solution. From FIG. 4 and FIG. As is apparent, the glucose concentration in the culture solution after the transition to the continuous culture is substantially infinitely close to 0 g / L regardless of the glucose concentration of the supplied MRS medium. Therefore, the present inventors presumed that the glucose concentration in the culture medium during continuous culture might affect nisin productivity, and examined it through experiments.
[0025]
That is, the Brix concentration of the above liquid is adjusted to 4.0, and 3% by weight of glucose is added thereto to adjust the pH value to 5.5, thereby obtaining a liquid medium, and nisin belonging to Lactococcus lactis subsp. Inoculate a lactic acid bacterium having a production ability, use a continuous culture apparatus consisting of a jar fermenter, maintain the pH value at 5.5 by a pH controller, and further, filtration culture method described in Reference 1, that is, without microbial cells, nisin The liquid containing was extracted and the continuous culture | cultivation which supplies the said fresh liquid culture medium of the same volume as the extracted liquid quantity to a jar fermenter was performed. At that time, the glucose concentration of the culture solution was measured using an on-line biochemical controller with a glucose electrode, and after shifting to continuous culture, the liquid medium was supplied to the jar fermenter to adjust the glucose concentration of the culture solution to 0.01, 0.1. , 1.0, 5.0, and 10.0 g / L, and each was continuously cultured separately. As a result, when the glucose concentration in the culture solution after transition to continuous culture was maintained at 0.1, 1.0, 5.0, and 10.0 g / L, the glucose concentration in the culture solution was maintained at 0.01 g / L. In comparison, it was revealed that the concentration of nisin in the culture broth was dramatically increased. From this, it is possible to continuously produce a culture solution containing an extremely high concentration of nisin by maintaining the glucose concentration in the culture solution after transition to continuous culture at 0.1 g / L or more. There was found.
[0026]
Accordingly, a liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue is used as a medium in which sugar is added to a liquid in which the Brix concentration is adjusted to a range of 0.5 to 6.0, Culturing by adding a lactic acid bacterium having nisin-producing ability to the culture solution, controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. A fermented product was obtained. When the nisin concentration of the obtained fermentation product was examined, it was found that it was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a miscellaneous taste and an irritating taste and had a taste problem, whereas the former was mild and harmonious. It has been found that it has a very excellent taste consisting of excellent flavor and rich umami, and is extremely suitable as a food material.
[0027]
In addition, when the liquid content (B) of the rice shochu distillation residue was used and the experiment described in the above-mentioned method was performed, as in the case where the liquid content of the barley shochu distillation residue was used, It was found that a culture solution containing an extremely high concentration of nisin can be continuously produced by maintaining the glucose concentration in the culture solution after shifting to culture at 0.1 g / L or more. Therefore, a liquid component (B) obtained by solid-liquid separation of the rice shochu distillation residue is used as a medium with a sugar added to a liquid adjusted to a Brix concentration in the range of 0.5 to 6.0. Culturing by adding a lactic acid bacterium having nisin-producing ability to the culture solution, controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. A fermented product was obtained. When the nisin concentration of the obtained fermentation product was examined, it was found that it was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a miscellaneous taste and an irritating taste and had a taste problem, whereas the former was mild and harmonious. It has been found that it has a very excellent taste consisting of excellent flavor and rich umami, and is extremely suitable as a food material.
[0028]
Further, as the medium, a part of the liquid (A) obtained by solid-liquid separation of the barley shochu distillation residue is a liquid (B) obtained by solid-liquid separation of the rice shochu distillation residue. A liquid prepared by adding a sugar to a liquid whose Brix concentration is adjusted to a range of 0.5 to 6.0 is used, and culturing is performed by adding lactic acid bacteria capable of producing nisin to the medium. The fermentation product was obtained by a method carried out while controlling the sugar concentration of at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. As a result, it has been clarified that the nisin concentration of the fermentation product is remarkably increased as compared with the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a miscellaneous taste and an irritating taste and had a taste problem, whereas the former was mild and harmonious. It has been found that it has a very excellent taste consisting of excellent flavor and rich umami, and is extremely suitable as a food material.
[0029]
In addition to this, a non-adsorbed fraction obtained by subjecting at least a part of the liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue to an adsorption treatment using a synthetic adsorbent, the liquid component A synthetic adsorbent comprising at least part of a liquid component (A ′) containing (A) the non-adsorbed fraction and a liquid component (B) obtained by solid-liquid separation of rice shochu distillation residue A non-adsorbed fraction obtained by subjecting to an adsorption treatment using a liquid component (B ') containing the non-adsorbed fraction as the liquid component (B), and preparing the liquid component (A' ) And a liquid in which the Brix concentration is adjusted to a range of 0.5 to 6.0 and a sugar added, and the Brix concentration in the range of 0.5 to 6.0 using the liquid component (A ′) and the liquid component (B ′). A liquid prepared by adding sugar to a liquid prepared as above is used as a medium, and lactic acid bacteria capable of producing nisin are added to the medium and cultured. The fermentation product was obtained by a method of culturing while controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. When the nisin concentration of the obtained fermentation product was examined, the nisin concentration of any fermentation product was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. understood. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a miscellaneous taste and an irritating taste and had a taste problem, whereas the former was mild and harmonious. It has been found that it has a very excellent taste consisting of excellent flavor and rich umami, and is extremely suitable as a food material.
[0030]
Embodiment Example
Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited by these embodiments. The present invention includes a step (a) of obtaining a liquid component (A) by solid-liquid separation of a barley shochu distillation residue, and diluting the liquid component (A) with water so that the Brix concentration is in the range of 0.5 to 6.0. Step (b) of adjusting, step (c) of adding a saccharide to the product obtained in the step (b) to obtain a medium, and adding lactic acid bacteria capable of producing nisin to the medium and culturing, A fermentation production containing a significant amount of nisin, characterized in that it comprises a step (d) of controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. A method for manufacturing a product is provided. In step (a), a portion of the liquid (A) obtained by solid-liquid separation of the barley shochu distillation residue is used to solidify the rice shochu distillation residue as a by-product in the production of rice shochu. The liquid component (B) obtained by liquid separation may be replaced. Alternatively, at least a part of the liquid component (A) and / or the liquid component (B) may be a non-adsorbed fraction obtained by subjecting it to an adsorption separation process using a synthetic adsorbent. The culture in the step (d) can be performed by a batch culture method and / or a continuous culture method.
[0031]
The barley shochu distillation residual liquid used in the present invention produces barley koji and steamed barley using barley or refined barley as a raw material, koji starch obtained from the barley koji and steamed barley, and / or an enzyme agent. And saccharified using an alcoholic fermentation with yeast to obtain a ripened mash, which is by-produced as a distillation residue when the ripened mash is distilled using a distillation apparatus such as vacuum distillation or atmospheric distillation, This means the distillation residue of barley shochu. Also, in the production of rice shochu, sweet potato shochu, and buckwheat shochu, shochu distillate residue by-produced when barley is used as part of the raw material in the production of shochu is also used as the barley shochu distillate used in the present invention. Is included.
When the barley shochu distillation residue is obtained, the barley koji used for the production of barley shochu may be produced under the koji-making conditions used in normal barley shochu production. Aspergillus kawachii used in the production is preferred. Alternatively, strains of the genus Aspergillus such as Aspergillus awamori used in awamori production and Aspergillus oryzae used in sake production and the like can also be used. Moreover, the yeast used for manufacture of barley shochu can use various yeast for shochu brewing generally used in shochu manufacture.
[0032]
The rice shochu distillation residue used in the present invention is produced by producing rice bran and steamed rice using rice as a raw material, saccharifying the obtained rice bran and starch contained in the steamed rice, and / or using an enzyme agent. In addition, it is subjected to alcohol fermentation with yeast to obtain a mature mash, which is produced as a by-product as a distillation residue when the mature mash is distilled using a distillation apparatus such as vacuum distillation or atmospheric distillation, that is, rice shochu Means distillation residue. Also, in the production of barley shochu, sweet potato shochu, and buckwheat shochu, shochu distillate residue by-produced when using rice as part of the raw material in the production of shochu is also used as the rice shochu distillate used in the present invention. Is included.
In obtaining the rice shochu distillation residue, the rice bran used for the production of the rice shochu may be produced under the koji-making conditions used in normal rice shochu production. Aspergillus kawachii used in the production is preferred. Alternatively, strains of the genus Aspergillus such as Aspergillus awamori used in awamori production and Aspergillus oryzae used in sake production and the like can also be used. Moreover, the yeast used for manufacture of rice shochu can use various shochu liquor yeast generally used in the case of shochu manufacture.
[0033]
In the step (a), the barley shochu distillation residue is separated into solid and liquid to obtain a liquid component. The barley shochu distillation residue is obtained by removing raw barley and water-insoluble fermentation residue derived from barley koji and only the liquid component. Is to use. The solid-liquid separation is performed through a solid-liquid separation method such as a screw press method or a roller press method, or a pre-separation is performed using a filter-press-type solid-liquid separator, and then a centrifuge, a diatomaceous earth filter device, a ceramic A solid-liquid separation process using a filtration device or a filtration press is performed to obtain the liquid component.
[0034]
In the step (I), the reason why the rice shochu distillation residue is obtained by solid-liquid separation is to obtain a liquid component by removing raw rice and rice bran-derived water-insoluble fermentation residue from the rice shochu distillation residue. Is to use. The solid-liquid separation is performed through a solid-liquid separation method such as a screw press method or a roller press method, or a pre-separation is performed using a filter-press-type solid-liquid separator, and then a centrifuge, a diatomaceous earth filter device, a ceramic A solid-liquid separation process using a filtration device or a filtration press is performed to obtain the liquid component.
[0035]
The liquid component (A) and / or the liquid component (B) is subjected to an adsorption separation process using a synthetic adsorbent to make a non-adsorbed fraction, which removes components that present miscellaneous taste contained in the liquid component. It is done for the purpose of doing. Specific examples of the synthetic adsorbent include Amberlite XAD-4, Amberlite XAD-16, Amberlite XAD-1180 and Amberlite XAD-2000 manufactured by Organo Corporation, and Sepa beads manufactured by Mitsubishi Chemical Corporation. Aromatic (or styrene) synthetic adsorbents such as SP850 and Diaion HP20, Amberlite XAD-7 from Organo Corporation, and Methacrylic (or Diaion HP2MG from Mitsubishi Chemical Corporation) (or Synthetic adsorbents may also be mentioned. In addition to these, aromatic modified synthetic adsorbents such as Sephapez SP207 manufactured by Mitsubishi Chemical Corporation may be used in some cases. The non-adsorbed fraction obtained in this manner can be used in place of at least a part of the liquid content.
[0036]
In the step (b), the liquid component (A) supplied from the step (b) [including the non-adsorbed fraction of the liquid component (A)] and the liquid component (B) [the liquid component (B) In order to adjust the concentration of each Brix to 0.5 to 6.0, the medium component concentration suitable for nisin productivity of lactic acid bacteria having nisin-producing ability is included. This can increase the productivity of nisin. The Brix concentration is more preferably adjusted to a range of 2.0 to 4.0. That is, in this case, the nisin productivity can be significantly improved.
[0037]
Preferable specific examples of the sugar added in the step (c) include glucose, xylose, sucrose, fructose, maltose, ribose, galactose, mannose, mannitol, cellobiose, saccharose, and trehalose. The sugar concentration of the liquid medium varies depending on the type of sugar used, but is generally in the range of 5 to 70 g / L. Among these sugars, glucose is particularly preferable, and the glucose concentration in this case is preferably set in the range of 5 to 70 g / L.
[0038]
The lactic acid bacterium having nisin-producing ability used in the step (d) may be any strain as long as it has nisin-producing ability, and lactic acid bacteria belonging to Lactococcus lactis subsp. Lactis are particularly preferable. Specifically, preferred examples of strains to be produced when nisin is nisin A include Lactococcus lactis NCDO497, Lactococcus lactis NIZO R5, Lactococcus lactis ATCC 7962, and Lactococcus lactis ATCC11454. In addition, as a strain when nisin to be produced is Nisin Z, Lactococcus lactis NIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis NIZO 221186, Lactoc 1 (JCM7638), Lactococcus lactis subsp.Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp.Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B (JCM11183) and Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B (JCM11184) can be mentioned as preferable examples.
[0039]
The step of culturing in step (d) while controlling the sugar concentration of the culture solution to at least 0.1 g / L and controlling the pH value of the culture solution in the range of 4.0 to 7.0 is a batch culture method or a continuous culture method. Can be done. In addition, a fed-batch culture method can be employed. When controlling the pH value of the culture solution in the range of 4.0 to 7.0, as described above, a pH measurement composite glass electrode is attached to the culture tank and measured with a pH meter, and the actual pH value is set to the set pH value. When the pH is lower than that, it can be maintained at a set pH value by supplying an alkaline solution such as a sodium hydroxide solution to the culture tank using a pH controller or the like, and preferably within a pH value range of 5.0 to 6.5. adjust. Note that the fluctuation range of the predetermined pH value is preferably 0.1 or less. In the step (d), when the sugar concentration (glucose concentration) of the culture solution is controlled to at least 0.1 g / L or more, when the culture is performed in a continuous culture method or a fed-batch culture method, a glucose analyzer or the like is used. Can be controlled using. In this step, in addition to glucose, a substrate solution containing a nitrogen source consisting of yeast extract or polypeptone or a substrate solution consisting of the above liquid medium can be supplied to the culture tank, whereby the liquid in the culture step The glucose concentration of the medium can be maintained at a desired value. The glucose concentration is at least 0.1 g / L or more, but preferably by maintaining it at 1.0 g / L or more, the activity of lactic acid bacteria having nisin production ability and the specific nisin production rate can be maintained at high values. The culture temperature during the culture may be set to an optimum temperature for the growth of the lactic acid bacteria to be used, and is generally in the range of 20 to 40 ° C, preferably in the range of 25 to 37 ° C. The stirring speed is 10 to 1000 rpm, preferably 50 to 300 rpm.
[0040]
When the culture in the step (d) is performed in a continuous culture mode, the culture is started in accordance with the above-described culture conditions, and the bacterial cell concentration is increased, and the process shifts to continuous culture at the stage where the latter stage of the logarithmic growth phase is reached. In the continuous culture method, a pH measurement composite glass electrode is attached to the culture tank, measured with a pH meter, and an alkaline solution such as a sodium hydroxide solution is cultured when the actual pH value is lower than the set pH value. By supplying to the tank, the set pH value can be maintained. At this time, the same amount of the sterilization solution as the liquid medium or alkaline solution supplied to the culture tank is withdrawn from the culture tank via an ultrafiltration membrane or a microfiltration membrane, so that the liquid volume of the culture tank is kept constant. Can be held. In addition to the pH control, a process online turbidimeter probe is attached to the culture tank, the output is input to the DDC controller, and the same amount of culture solution (bacteria) as the sterilized water or liquid medium supplied to the culture tank Is extracted from the culture tank, the turbidity of the culture tank can be controlled, and the cell concentration and the amount of the culture solution in the culture solution can be kept constant. The bacterial cell concentration is set in the range of 4.0 to 18.0 g / L, preferably in the range of 8.0 to 15.0 g / L. The dilution rate of the medium can be set to an arbitrary value depending on the cell concentration of the culture solution and the nisin production rate, and generally 0.1 to 2.0 hr. -1 The range is preferably 0.2 to 1.2 hr. -1 The range.
[0041]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0042]
Barley shochu was produced for the purpose of providing the following examples. Barley (70% refined) was used as a raw material.
[Manufacture of barley straw]
After absorbing 40% (w / w) of barley and steaming for 40 minutes, it is allowed to cool to 40 ° C, inoculated with 1 kg of seed meal (birch) per ton of barley, 38 ° C, RH 95% for 24 hours, 32 hours Barley straw was produced by maintaining at ℃ 92% RH for 20 hours.
[Manufacture of steamed barley]
Barley was absorbed by 40% (w / w), steamed for 40 minutes, and then allowed to cool to 40 ° C. to produce steamed barley.
[Manufacture of barley shochu and barley shochu distillation residue]
In the first preparation, barley koji (3 tons as barley) produced by the above method was added with 3.6 kiloliters of water and 1 kg (wet weight) of cultured cells of shochu yeast as yeast to obtain primary mash. The first moromi was subjected to fermentation for 5 days (first stage fermentation). Next, in the secondary charge, 11.4 kiloliters of water and steamed barley (7 tons as barley) produced by the method described above were added to the primary mash after the first stage fermentation for 11 days (2nd stage fermentation). (Fermentation of the eyes). The fermentation temperature was set to 25 ° C. for both the primary charge and the secondary charge. The secondary mash after the second stage fermentation was subjected to simple distillation by a conventional method to obtain 10 kiloliters of barley shochu and 15 kiloliters of barley shochu distillation residue. The obtained barley shochu distillation residue was used in the following examples.
[0043]
Rice shochu was produced for the purpose of providing the following examples. As a raw material, polished rice (70% polished) was used.
[Manufacture of rice bran]
Rice bran is made by absorbing 35% (w / w) water of rice, steaming for 40 minutes, allowing to cool to 40 ° C, inoculating 1g of white koji mold per kg of rice, 38 ° C, RH95% for 24 hours , 32 ° C., RH 92% for 20 hours.
[Manufacture of steamed rice]
Steamed rice was produced by absorbing 35% (w / w) of rice, steaming for 40 minutes, and allowing to cool to 40 ° C.
[Manufacture of rice shochu and rice shochu distillation residue]
In the first preparation, the rice bran (3 tons as rice) produced by the method described above was added with 3.6 kiloliters of water and 1 kg (wet weight) of cultured cells of shochu yeast as yeast to obtain primary mash. The first moromi was subjected to fermentation for 5 days (first stage fermentation). Next, in the secondary charging, 11.4 kiloliters of water and 7 tons of steamed rice (7 tons of rice) produced by the method described above were added to the primary mash after the first stage fermentation for 15 days (second stage fermentation). Of fermentation). The fermentation temperature was set to 25 ° C. for both the primary charge and the secondary charge. The secondary mash after the second stage fermentation was subjected to single distillation by a conventional method to obtain 10 kiloliters of rice shochu and 15 kiloliters of rice shochu distillation residue. The obtained rice shochu distillation residue was used in the following examples.
[0044]
[Example 1]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid content of the barley shochu distillation residue. The liquid was diluted with water to adjust its Brix concentration to 4, added with 3.6% by weight of glucose, adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C for 15 minutes. A lactic acid bacteria culture medium was obtained.
2. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium and cultured at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and 3 ml at 37 ° C. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
3. Main culture of lactic acid bacteria capable of producing nisin
Into a 2 L jar fermenter, 500 ml of the lactic acid bacteria culture medium obtained in 1 above and 25 ml of the lactic acid bacteria preculture solution obtained in 2 above were introduced, stirring speed 250 rpm, culture temperature 30 ° C., culture time 24 hours, pH 5. Batch culture was performed under the conditions of 5.
[0045]
[Comparative Example 1]
1. Preparation of MRS medium
MRS medium (1% by weight of peptone, 1% by weight of meat extract, 0.5% by weight of yeast extract, K 2 HPO Four 0.2 wt%, diammonium citrate 0.2 wt%, glucose 3.6 wt%, Tween 80 0.1 wt%, sodium acetate 0.5 wt%, MGSO Four ・ 7H 2 O 0.058 wt%, MnSO Four ・ 4H 2 O 0.028 wt%) was adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain a medium for lactic acid bacteria culture.
2. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 is inoculated into 10 ml of TGC medium and cultured by standing at 37 ° C. for 18 hours to obtain a culture medium. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
3. Main culture of lactic acid bacteria capable of producing nisin
Into a 2 L jar fermenter, introduce 500 ml of the MRS medium prepared in 1 above and 25 ml of the lactic acid bacteria preculture solution obtained in 2 above, stirring speed 250 rpm, culture temperature 30 ° C., culture time 24 hours, pH 5.5 Batch culture was performed under conditions.
[0046]
[Example 2]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid content of the barley shochu distillation residue. Then, dilute the liquid with water to adjust its Brix concentration to 4, add 3.6% glucose, adjust pH to 5.5 with sodium hydroxide, and then sterilize at 121 ° C for 15 minutes To obtain a culture medium for lactic acid bacteria culture.
2. Preparation of substrate solution for glucose concentration adjustment from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid content of the barley shochu distillation residue. Then, dilute the liquid with water to adjust its Brix concentration to 4, add 1.0 wt% glucose, adjust to pH 5.5 with sodium hydroxide, and then sterilize at 121 ° C for 15 minutes To obtain a glucose concentration adjusting substrate solution.
[0047]
3. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 is inoculated into 10 ml of TGC medium and cultured by standing at 37 ° C. for 18 hours to obtain a culture medium. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour. Four. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having the ability to produce nisin was performed in a continuous culture system using a continuous culture apparatus consisting of a 3 L jar fermenter.
That is, 1800 ml of the lactic acid bacteria culture medium obtained in 1 above and 90 ml of the lactic acid bacteria preculture solution obtained in 3 above were introduced into the 3 L jar fermenter, and batched under the conditions of stirring speed 250 rpm, culture temperature 30 ° C., pH 5.5. When the glucose concentration of the culture solution reaches 4 g / L 8 hours after the start of culture, the culture solution is transferred to continuous culture with pH control, glucose concentration control, and turbidity control. The concentration was maintained at 4 g / L, and the continuous culture was performed until 42 hours after the start of the culture.
The pH control was performed by supplying a 5N sodium hydroxide solution to the culture tank and maintaining the pH at 5.5 using a pH sensor. The glucose concentration control is performed by measuring the glucose concentration of the culture solution using an on-line biochemical controller BF-410 (manufactured by Able Co., Ltd.) with a glucose electrode. The adjustment substrate solution was supplied to the culture tank, and the glucose concentration of the culture solution was maintained at 4 g / L. In the pH control and the glucose concentration control, a sterilization solution having the same amount as the total amount of the 5N sodium hydroxide solution and the glucose concentration adjusting substrate solution supplied to the culture tank is microfiltered. By pulling out from the culture tank through the membrane, the liquid volume of the culture tank was kept constant. The turbidity control uses a laser turbidimeter, and the same amount of culture solution (containing bacterial cells) as the turbidity control supply solution (0.5% by weight of yeast extract, 0.5% by weight of polypeptone) supplied to the culture tank. Was extracted from the culture tank, thereby maintaining the cell concentration and liquid volume of the culture tank at a constant level.
[0048]
[Comparative Example 2]
1. Preparation of MRS medium
MRS medium (1% by weight of peptone, 1% by weight of meat extract, 0.5% by weight of yeast extract, K 2 HPO Four 0.2 wt%, diammonium citrate 0.2 wt%, glucose 3.6 wt%, Tween 80 0.1 wt%, sodium acetate 0.5 wt%, MGSO Four ・ 7H 2 O 0.058 wt%, MnSO Four ・ 4H 2 O 0.028 wt%) was adjusted to pH 5.5 with sodium hydroxide and then sterilized at 121 ° C. for 15 minutes to obtain an MRS medium for lactic acid bacteria culture.
2. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 is inoculated into 10 ml of TGC medium and cultured by standing at 37 ° C. for 18 hours to obtain a culture medium. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
3. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having the ability to produce nisin was performed in a continuous culture system using a continuous culture apparatus consisting of a 3 L jar fermenter.
That is, 1800 ml of the lactic acid bacteria culture medium obtained in 1 above and 90 ml of the lactic acid bacteria preculture solution obtained in 3 above were introduced into the 3 L jar fermenter, and the stirring speed was 250 rpm, the culture temperature was 30 ° C., and the pH was 5.5. At the time when the glucose concentration of the culture solution reached less than 0.1 g / L at 12 hours after the start of culture, it was transferred to continuous culture with pH control, glucose concentration control, and turbidity control. The glucose concentration of the liquid was kept below 0.1 g / L, and the continuous culture was performed until 42 hours after the start of the culture.
The pH control was performed by supplying a 5N sodium hydroxide solution to the culture tank and maintaining the pH at 5.5 using a pH sensor. The glucose concentration control is performed by measuring the glucose concentration of the culture solution using an on-line biochemical controller BF-410 (manufactured by Able Co., Ltd.) with a glucose electrode. Yeast extract 0.5% by weight, polypeptone 0.5% by weight, NaCl 0.5% by weight) was supplied to the culture tank to keep the glucose concentration of the culture solution below 0.1 g / L. Further, in the pH control and the glucose concentration control, by removing the same amount of sterilization solution as the 5N sodium hydroxide solution and the substrate solution supplied to the culture tank from the culture tank through the microfiltration membrane, The liquid volume of the culture tank was kept constant. The turbidity control uses a laser turbidimeter, and the same amount of culture solution (containing bacterial cells) as the turbidity control supply solution (0.5% by weight of yeast extract, 0.5% by weight of polypeptone) supplied to the culture tank. Was extracted from the culture tank, thereby maintaining the cell concentration and liquid volume of the culture tank at a constant level.
[0049]
[Example 3]
Instead of Lactococcus lactis IO-1 used in Example 2, Lactococcus lactis NIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis subactocius lactis NIZOoc221 Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp.Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B (JCM11182), Lactococcus lactis subsp. And Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B (JCM11184) were used for continuous culture in the same manner as in Example 2.
[0050]
[Comparative Example 3]
Instead of Lactococcus lactis IO-1 used in Comparative Example 2, Lactococcus lactis NIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis NIZO 221cusLact. Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp.Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B (JCM11182), Lactococcus lactis subsp. And Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B (JCM11184) were used for continuous culture in the same manner as in Comparative Example 2.
[0051]
[Example 4]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid content of the barley shochu distillation residue. The liquid was subjected to a ceramic filtration device to obtain a clarified liquid, and the clarified liquid was subjected to a vacuum evaporator to concentrate it to about 3 times to obtain a concentrated liquid, which was filled with a synthetic adsorbent. Contact the column to obtain a non-adsorbable fraction solution that is non-adsorbable to the synthetic adsorbent eluted from the packed column, dilute the non-adsorbable fraction solution with water, and adjust its Brix concentration to 4. Then, 3.6% by weight of glucose was added, and then adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain a culture medium for lactic acid bacteria culture.
2. Pre-culture of lactic acid bacteria
50 μl of a stock strain of Lactococcus lactis IO-1 is inoculated into 10 ml of TGC medium and cultured by standing at 37 ° C. for 18 hours to obtain a culture medium. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
3. Main culture of lactic acid bacteria
Into a 2L jar fermenter, introduce 500 ml of the lactic acid bacteria culture medium obtained in 1 above and 25 ml of the lactic acid bacteria preculture medium obtained in 2 above, stirring speed 250 rpm, culture temperature 30 ° C., culture time 24 hours, pH 5.5 Batch culture was performed under conditions.
[0052]
[Example 5]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above is centrifuged under the conditions of 8000 rpm and 10 min to obtain a liquid, and the liquid is A clarified liquid is obtained by attaching to a filtration apparatus, and the clarified liquid is subjected to a vacuum evaporator to concentrate it to about 3 times to obtain a concentrated liquid, and the concentrated liquid is contacted with a column filled with a synthetic adsorbent, A non-adsorbable fraction solution showing non-adsorbability with respect to the synthetic adsorbent eluted from the column was obtained, the non-adsorbable fraction solution was diluted with water to adjust its Brix concentration to 4, and glucose was adjusted to 3.6. After adjusting the pH to 5.5 with sodium hydroxide, sterilization was performed at 121 ° C. for 15 minutes to obtain a medium for culturing lactic acid bacteria.
2. Preparation of substrate solution for glucose concentration adjustment from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above is centrifuged under the conditions of 8000 rpm and 10 min to obtain a liquid, and the liquid is A clarified liquid is obtained by attaching to a filtration apparatus, and the clarified liquid is subjected to a vacuum evaporator to concentrate it to about 3 times to obtain a concentrated liquid, and the concentrated liquid is contacted with a column filled with a synthetic adsorbent, A non-adsorbable fraction solution showing non-adsorbability to the synthetic adsorbent eluted from the column is obtained, the non-adsorbable fraction solution is diluted with water to adjust its Brix concentration to 4, and glucose is adjusted to 1.0. % By weight, adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain a substrate solution for adjusting glucose concentration.
3. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 is inoculated into 10 ml of TGC medium, and left to stand at 37 ° C. for 18 hours to obtain a culture medium. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
[0053]
Four. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having the ability to produce nisin was carried out in a continuous culture system using a continuous culture apparatus consisting of a 3L jar fermenter.
That is, 1800 ml of the lactic acid bacteria culture medium obtained in 1 above and 90 ml of the lactic acid bacteria preculture solution obtained in 3 above were introduced into the 3 L jar fermenter, and the stirring speed was 250 rpm, the culture temperature was 30 ° C., and the pH was 5.5. At the time when the glucose concentration of the culture solution reached 4 g / L at 8 hours after the start of the culture, it was transferred to continuous culture with pH control, glucose concentration control, and turbidity control. The continuous culture was performed up to 42 hours after the start of culture while maintaining the glucose concentration at 4 g / L.
The pH control was performed by supplying a 5N sodium hydroxide solution to the culture tank and maintaining the pH at 5.5 using a pH sensor. The glucose concentration control is performed by measuring the glucose concentration of the culture solution using an on-line biochemical controller BF-410 (manufactured by Able Co., Ltd.) with a glucose electrode. The adjustment substrate solution was supplied to the culture tank, and the glucose concentration of the culture solution was maintained at 4 g / L. Further, in the pH control and the glucose concentration control, the same amount of the sterilization solution as the 5N sodium hydroxide solution and the glucose concentration adjusting substrate solution supplied to the culture tank is removed from the culture tank through the microfiltration membrane. By extracting, the liquid volume of the culture tank was kept constant. The turbidity control uses a laser turbidimeter, and the same amount of culture solution (containing bacterial cells) as the turbidity control supply solution (0.5% by weight of yeast extract, 0.5% by weight of polypeptone) supplied to the culture tank. Was extracted from the culture tank, thereby maintaining the cell concentration and liquid volume of the culture tank at a constant level.
[0054]
[Example 6]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Production of barley shochu and barley shochu distillation residue] as described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid content of the barley shochu distillation residue. Then, dilute the liquid with water to adjust its Brix concentration to 4, add 3.6% glucose, adjust pH to 5.5 with sodium hydroxide, and then sterilize at 121 ° C for 15 minutes To obtain a culture medium for lactic acid bacteria culture.
2. Preparation of lactic acid bacteria culture medium from rice shochu distillation residue
The rice shochu distillation residue obtained in [Production of rice shochu and rice shochu distillation residue] described in [0043] above is centrifuged at 8000 rpm for 10 min to obtain a liquid, and the liquid is washed with water. Adjust the Brix concentration to 4 and add 3.6% by weight of glucose, adjust to pH 5.5 with sodium hydroxide, sterilize at 121 ° C for 15 minutes, and culture medium for lactic acid bacteria Got.
3. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium and cultured at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and 3 ml at 37 ° C. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
Four. Main culture of lactic acid bacteria capable of producing nisin
Into a 2L jar fermenter, introduce 250 ml of the lactic acid bacteria culture medium obtained in 1 above, 250 ml of the lactic acid bacteria culture medium obtained in 2 above, and 25 ml of the lactic acid bacteria preculture solution obtained in 3 above, stirring speed 250 rpm, culture temperature Batch culture was performed under the conditions of 30 ° C., culture time of 24 hours, and pH 5.5.
[0055]
[Example 7]
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
The barley shochu distillation residue obtained in [Manufacture of barley shochu and barley shochu distillation residue] described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid component, and the liquid component was Adjust the Brix concentration to 4 and add 3.6% by weight of glucose, adjust to pH 5.5 with sodium hydroxide, sterilize at 121 ° C for 15 minutes, and culture medium for lactic acid bacteria Got.
2. Preparation of substrate solution for glucose concentration adjustment from barley shochu distillation residue
The barley shochu distillation residue obtained in [Manufacture of barley shochu and barley shochu distillation residue] described in [0042] above was centrifuged at 8000 rpm for 10 min to obtain a liquid component, and the liquid component was Adjust the Brix concentration to 4 and add 1.0% by weight of glucose, adjust to pH 5.5 with sodium hydroxide, and sterilize at 121 ° C for 15 minutes to adjust the glucose concentration A substrate solution was obtained.
3. Preparation of lactic acid bacteria culture medium from rice shochu distillation residue
The rice shochu distillation residue obtained in the distillation step of rice shochu production was centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the rice shochu distillation residue, the liquid content was adjusted to Brix 4, and glucose was 3.6. After adjusting the pH to 5.5 with sodium hydroxide, sterilization was performed at 121 ° C. for 15 minutes to obtain a medium for culturing lactic acid bacteria.
Four. Preparation of substrate solution for adjusting glucose concentration from rice shochu distillation residue
The rice shochu distillation residue obtained in [Production of rice shochu and rice shochu distillation residue] described in [0043] above is centrifuged at 8000 rpm for 10 min to obtain a liquid, and the liquid is washed with water. Adjust the Brix concentration to 4 and add 1.0% by weight of glucose, adjust to pH 5.5 with sodium hydroxide, and sterilize at 121 ° C for 15 minutes to adjust the glucose concentration A substrate solution was obtained.
[0056]
Five. Pre-culture of lactic acid bacteria capable of producing nisin
50 μl of a stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium and cultured at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and 3 ml at 37 ° C. A pre-culture solution of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
6. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having the ability to produce nisin was carried out in a continuous culture system using a continuous culture apparatus consisting of a 3L jar fermenter.
Specifically, 900 ml of the lactic acid bacteria culture medium obtained in 1 above, 900 ml of the lactic acid bacteria culture medium obtained in 3 above, and 90 ml of the lactic acid bacteria preculture solution obtained in 5 above were introduced into the 3 L jar fermenter, and the stirring speed was 250 rpm. , When subjected to batch culture under conditions of culture temperature 30 ° C, pH 5.5, pH control, glucose concentration control, and turbidity when the glucose concentration of the culture solution reaches 4g / L 8 hours after the start of culture The system was shifted to continuous culture with control, and the continuous culture was performed up to 42 hours after the start of culture while maintaining the glucose concentration of the culture solution at 4 g / L.
The pH control was performed by supplying a 5N sodium hydroxide solution to the culture tank and maintaining the pH at 5.5 using a pH sensor. The glucose concentration control is performed by measuring the glucose concentration of the culture solution using an on-line biochemical controller BF-410 (manufactured by Able Co., Ltd.) with a glucose electrode. Supply the mixed solution obtained by mixing the substrate solution for adjustment and the substrate solution for glucose concentration adjustment obtained in the above 4 at a ratio of 1: 1 to the culture tank to keep the glucose concentration of the culture solution at 4 g / L Was done. Further, in the pH control and the glucose concentration control, the same amount of the sterilization solution as the 5N sodium hydroxide solution and the glucose concentration adjusting substrate solution supplied to the culture tank is removed from the culture tank through the microfiltration membrane. By extracting, the liquid volume of the culture tank was kept constant. The turbidity control uses a laser turbidimeter, and the same amount of culture solution (containing bacterial cells) as the turbidity control supply solution (0.5% by weight of yeast extract, 0.5% by weight of polypeptone) supplied to the culture tank. Was extracted from the culture tank, and thereby the cell concentration and the amount of liquid in the culture tank were kept constant.
[0057]
Each of the fermented products obtained in Example 1, Example 2, Example 4 to Example 7, Comparative Example 1 and Comparative Example 2 was subjected to the following Test Example 1, and the nisin concentration of the fermented product was measured. .
[0058]
[Test Example 1]
Each fermentation product obtained in Example 1, Example 2, Example 4 to Example 7, Comparative Example 1 and Comparative Example 2 was subjected to centrifugation at 9000 rpm for 30 minutes to obtain a top of the fermentation product. After adding the concentrated hydrochloric acid to the supernatant 1 of each fermentation product to adjust the pH to 3.0, leave it overnight at 4 ° C, and again centrifuge at 9000 rpm for 30 min. The supernatant 2 of the fermentation product was obtained, and the nisin concentration of the culture solution was measured according to the following method using the obtained supernatant 2 of each fermentation product as a sample. That is, Micrococcus luteus (IFO N0.3333) was used as an indicator bacterium, and nisin (ICN) dissolved in 0.01N HCl to 3000 IU / ml was used as a nisin A standard solution. Inoculate 10 ml of LB liquid medium with the above indicator bacteria in a platinum loop, shake culture under conditions of a culture temperature of 30 ° C., a stirring speed of 100 rpm, and a culture time of 18 hours to obtain a culture solution, and 100 μl of the culture solution was cooled to an appropriate temperature Suspend in 2.0 ml of soft agar to obtain a suspension. The suspension is layered on LB agar medium and allowed to stand for 1 hour, and then the fermentation product supernatant 2 diluted to an appropriate concentration with 0.01 N HCl is used. Spot 10 μl each on the LB agar medium, incubate at 30 ° C. for 24 hours, confirm the presence or absence of growth-inhibiting circles that have inhibited growth around the spot, and the maximum dilution rate of the sample when the growth-inhibiting circles appear D was determined, and the nisin antibacterial activity value was calculated from the relational expression of nisin antibacterial activity (AU / ml) = 1 / D × sample addition amount (ml).
[0059]
[Evaluation 1]
Table 1 shows the nisin antibacterial activity values of the fermented products obtained in Example 1 and Comparative Example 1 24 hours after the start of culture. The results shown in Table 1 revealed the following. That is, the nisin antibacterial activity value 24 hours after the start of the culture was as low as 1200 IU / ml for the fermented product obtained in Comparative Example 1, whereas the fermented product obtained in Example 1 was 4500 IU. The value was extremely high at / ml. That is, the nisin antibacterial activity value of the fermented product obtained by the nisin production method of the present invention using the culture medium for lactic acid bacteria obtained from the barley shochu distillation residue is determined by the conventional nisin production method using the MRS medium. It was found that the fermentation product obtained reached about 3.8 times the nisin antibacterial activity value.
The nisin antibacterial activity values in the continuous culture of Example 2 and Comparative Example 2 are shown in Table 2. The results shown in Table 2 revealed the following. That is, in the comparative example 2, the nisin antibacterial activity value gradually decreased after showing the maximum value at the 12th hour after the start of the culture, which was transferred from the batch culture to the continuous culture, and 1000 IU / ml at the 42th hour after the start of the culture. In contrast, in Example 2, after showing a maximum value at 12 hours after the start of culture from batch culture to continuous culture, it decreased until 24 hours, but after 24 hours, It rose again and reached 6300 IU / ml 42 hours after the start of culture. That is, it is obtained by the method for producing nisin of the present invention, wherein the culture medium for lactic acid bacteria obtained from the barley shochu distillation residue is used, and the culture is maintained while maintaining the glucose concentration of the culture solution at 4 g / L during continuous culture. The nisin antibacterial activity value of the fermented product is a fermentation obtained by a conventionally known nisin production method using MRS medium and culturing while maintaining the glucose concentration of the culture solution at less than 0.1 g / L during continuous culture. It was found to reach 6.3 times the nisin antibacterial activity value of the product.
The results of Example 3 and Comparative Example 3 revealed the following. That is, the nisin antibacterial activity value of each fermentation product obtained by subjecting various lactic acid bacteria strains having nisin-producing ability to continuous culture in Example 3, even when any strain is used, Comparative Example 3 The value was significantly higher than when the conventionally known nisin production method shown in FIG.
[0060]
The results of Example 4 and Example 5 revealed the following. That is, instead of the liquid obtained by solid-liquid separation of the barley shochu distillation residue used in the present invention, the liquid is filtered to obtain a clarified liquid, and the clarified liquid is concentrated to obtain a concentrated liquid. When the solution comprising the non-adsorbable fraction described in the above-mentioned Document 6 obtained by subjecting the concentrated solution to an adsorption treatment using a synthetic adsorbent is used, the fermentation product obtained in Example 4 and Example 5 is used. The nisin antibacterial activity value was found to be equivalent to the nisin antibacterial activity value of the fermented products obtained in Example 1 and Example 2, respectively.
[0061]
The results of Example 6 and Example 7 revealed the following. That is, Example 6 and Example in the case where a liquid mixture obtained by solid-liquid separation of barley shochu distillation residue and a liquid component obtained by solid-liquid separation of rice shochu distillation residue is used in the medium It was found that the nisin antibacterial activity value of the fermented product obtained in 7 was equivalent to the nisin antibacterial activity value of the fermented product obtained in each of Example 1 and Example 2.
[0062]
[Test Example 2]
Each of the fermented products obtained in Example 1, Example 2, Example 4 to Example 7, Comparative Example 1 and Comparative Example 2 was subjected to a sensory test for taste. That is, each of the fermentation products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2 was subjected to a sensory test by 10 panelists, and the fermentation products The taste was evaluated.
[0063]
[Evaluation 2]
Table 3 shows the sensory test results of the respective fermentation products obtained in Example 1, Example 2, Example 4 to Example 7, Comparative Example 1 and Comparative Example 2. The results shown in Table 3 revealed the following. That is, each fermentation product obtained in Comparative Example 1 and Comparative Example 2 had a very monotonous flavor and an unfavorable miscellaneous taste, so the value of sensory evaluation was extremely low, whereas Example 1 and Example 2, and the fermented products obtained in Examples 4 to 7 both have a mellow, harmonious flavor and rich umami, so the sensory evaluation value is remarkably high. As a result, it turned out to be suitable. And from the comments of the above panelers, among the fermented products obtained in Example 1, Example 2, Example 4 to Example 7, all the fermented products obtained in Example 4 and Example 5, The fermentation product obtained in Example 6 and Example 7 has a characteristic of exhibiting an outstanding mellow flavor, and both the fermentation products obtained in Example 1 and Example 2 have a further taste. It became clear that it has the characteristic of exhibiting rich umami.
[0064]
From the above results, it is understood that according to the present invention, it is possible to dramatically increase nisin productivity as compared with a conventionally known nisin production method. In addition, the fermented product obtained by the present invention contains a significant amount of nisin and, in addition to excellent antibacterial activity, exhibits a mellow and harmonious flavor and rich umami, so it can be used very suitably as a food. .
[0065]
[Table 1]
Figure 0003672258
[0066]
[Table 2]
Figure 0003672258
[0067]
[Table 3]
Figure 0003672258
[0068]
【The invention's effect】
As described above in detail, the method for producing a fermented product containing nisin of the present invention comprises a liquid component (A) obtained by solid-liquid separation of a barley shochu distillation residue, and a Brix concentration of 0.5 to 6.0. A medium prepared by adding sugar to a liquid adjusted to the above range is used as a medium, and culturing is performed by adding lactic acid bacteria capable of producing nisin to the medium. The culture is performed at a sugar concentration of at least 0.1 g / L or more. And the pH value is controlled in the range of 4.0 to 7.0, and enables efficient production of a fermented product containing a significant amount of nisin. The fermented product containing a significant amount of nisin thus obtained has excellent taste and can be suitably used as a food.

Claims (6)

微生物を培養してナイシン含有発酵生産物を製造する方法であって、微生物としてナイシン生産能を有する乳酸菌を用いること、該乳酸菌を培養する培地として大麦焼酎蒸留残液を固液分離することにより得られる液体分そのものを使用すること、該液体分そのものの使用に際し、該液体分のBrix濃度を0.5乃至6.0の範囲に調整しそれに糖を添加することを特徴とするナイシン含有発酵生産物の製造方法。  A method of culturing microorganisms to produce a nisin-containing fermented product, using lactic acid bacteria having nisin-producing ability as microorganisms, and solid-liquid separation of barley shochu distillation residue as a medium for culturing the lactic acid bacteria. The method for producing a nisin-containing fermented product, characterized in that the liquid component itself is used, and when the liquid component itself is used, the Brix concentration of the liquid component is adjusted to a range of 0.5 to 6.0 and sugar is added thereto. . 前記微生物の培養が、前記糖を添加した培地に前記乳酸菌を加え、培養液の糖濃度を少なくとも0.1g/L以上に、かつ、そのpH 値を4.0乃至7.0の範囲に制御しながら行われることを特徴とする請求項1のナイシン含有発酵生産物の製造方法。  In culturing the microorganism, the lactic acid bacterium is added to the medium to which the sugar is added, and the sugar concentration of the culture solution is controlled to at least 0.1 g / L and the pH value is controlled within the range of 4.0 to 7.0. The method for producing a nisin-containing fermented product according to claim 1, wherein the method is performed. 前記液体分のBrix濃度の調整は、液体分を水で希釈することにより行う請求項1または2のナイシン含有発酵生産物の製造方法。  The method for producing a nisin-containing fermented product according to claim 1 or 2, wherein the Brix concentration of the liquid is adjusted by diluting the liquid with water. 前記液体分そのものの使用に際し、液体分の少なくとも一部を合成吸着剤を用いる吸着処理に付して非吸着画分としてから、Brix濃度の調整を行う請求項1、2または3のナイシン含有発酵生産物の製造方法。  The nisin-containing fermentation according to claim 1, 2 or 3, wherein when the liquid component itself is used, at least a part of the liquid component is subjected to an adsorption treatment using a synthetic adsorbent to form a non-adsorbed fraction, and the Brix concentration is adjusted. Production method of the product. 前記合成吸着剤は、芳香族系、芳香族系修飾型、及びメタクリル系の合成吸着剤よりなる群より選ばれるものである請求項4のナイシン含有発酵生産物の製造方法。  The method for producing a nisin-containing fermentation product according to claim 4, wherein the synthetic adsorbent is selected from the group consisting of aromatic, aromatic modified, and methacrylic synthetic adsorbents. 前記培養は、回分培養方式及び/又は連続培養方式で行うことを特徴とする請求項1または2のナイシン含有発酵生産物の製造方法。The method for producing a nisin- containing fermented product according to claim 1 or 2, wherein the culture is performed by a batch culture method and / or a continuous culture method.
JP2003078903A 2002-03-22 2003-03-20 Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue Expired - Fee Related JP3672258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078903A JP3672258B2 (en) 2002-03-22 2003-03-20 Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002081321 2002-03-22
JP2003078903A JP3672258B2 (en) 2002-03-22 2003-03-20 Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue

Publications (2)

Publication Number Publication Date
JP2004000167A JP2004000167A (en) 2004-01-08
JP3672258B2 true JP3672258B2 (en) 2005-07-20

Family

ID=30445813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078903A Expired - Fee Related JP3672258B2 (en) 2002-03-22 2003-03-20 Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue

Country Status (1)

Country Link
JP (1) JP3672258B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852683B2 (en) * 2005-09-26 2012-01-11 三和酒類株式会社 A composition having an angiogenesis-inhibiting action, comprising as an active ingredient barley fermented
WO2009030040A1 (en) * 2007-09-05 2009-03-12 Institut National De La Recherche Scientifique Antimicrobial activity of bacteriocin-producing lactic acid bacteria
KR20170030572A (en) * 2014-07-21 2017-03-17 질레코 인코포레이티드 Processing biomass
KR101825667B1 (en) 2014-09-30 2018-02-06 주식회사 알엔에이 Method of Producing Microbial Agent Comprising Intracellular Accumulated Aglycon Therein and Microbial Agent Produced Therefrom
CN108374033A (en) * 2018-02-13 2018-08-07 钟文文 A kind of extracting method of nisin

Also Published As

Publication number Publication date
JP2004000167A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
EP2042590B1 (en) Enhancer of proliferation of lactic acid bacterium, and agent for improvement in survivability of lactic acid bacterium
JP2000210075A (en) Lactic acid bacterium having high productivity of gamma- aminobutyric acid, fermented food with high content of gamma-aminobutyric acid using the same lactic acid bacterium and its production
US5879915A (en) Method for the natural production of formic acid or formate
JP5011543B2 (en) Method for producing fermented material containing GABA
JP3672258B2 (en) Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue
JP3672259B2 (en) A method for producing a fermented product containing a significant amount of nisin using barley shochu distillation residue and rice shochu distillation residue as a medium
EP0266088B1 (en) Quality improvement of alcoholic liquors
KR102013010B1 (en) Strain producing turanose and uses thereof
JP2001112437A (en) Production of food and drink containing bacteria of genus bifidobacterium
JP5626915B2 (en) Method for producing γ-aminobutyric acid
US20220104523A1 (en) Food and beverage products comprising ascomycetes
Jain et al. Production of propionic acid from whey ultrafiltrate by immobilized cells of Propionibacterium shermanii in batch process
KR102243418B1 (en) Novel acetic acid bacteria and process for preparing Kombucha beverages using the same
CA2540507C (en) Process for producing 1,4-dihydoxy-2-naphthoic acid
JPH0675490B2 (en) Fermented ginseng beverage containing soy peptides
JPH0775520A (en) Taste-improving material for seasoning liquid and seasoning liquid having improved taste
JPH08242880A (en) Production of gamma-polyglutamic acid
JP4020444B2 (en) Method for producing liquid composition containing γ-lactone
KR101804778B1 (en) Lactobacillus plantarum HY7716 having production capability of the rare sugar allulose, and Products containing thereof as effective component
JP2005198578A (en) METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID AND FERMENTED LIQUID YIELDED THEREBY
JPH0783706B2 (en) How to improve the quality of alcoholic beverages
JP2004159612A (en) METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID
JP4101553B2 (en) Method for producing antibacterial active substance
JP2003079363A (en) Culture medium for separating soy sauce lactic bacterium having low turbidity, method for separating soy sauce lactic bacterium having low turbidity by using the medium, and method for producing soy sauce having high clarity by using the lactic bacterium
WO2023032371A1 (en) METHOD FOR PRODUCING γ-AMINOBUTYRIC ACID (GABA) POWDER AND PRODUCT USING SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040624

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150428

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees