JP3671647B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3671647B2
JP3671647B2 JP01410498A JP1410498A JP3671647B2 JP 3671647 B2 JP3671647 B2 JP 3671647B2 JP 01410498 A JP01410498 A JP 01410498A JP 1410498 A JP1410498 A JP 1410498A JP 3671647 B2 JP3671647 B2 JP 3671647B2
Authority
JP
Japan
Prior art keywords
nox
air
fuel ratio
fuel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01410498A
Other languages
Japanese (ja)
Other versions
JPH11210525A (en
Inventor
岩雄 吉田
康二 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP01410498A priority Critical patent/JP3671647B2/en
Publication of JPH11210525A publication Critical patent/JPH11210525A/en
Application granted granted Critical
Publication of JP3671647B2 publication Critical patent/JP3671647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明はリーン空燃比による運転時に排気中のNOxを吸着保持し、ストイキもしくはリッチ空燃比に切換わったときにNOxを脱離還元するNOx吸蔵触媒を備えた内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
特開平6−10725号公報にもあるように、リーン空燃比により運転される内燃機関の排気中に含まれるNOxを低減するために、NOx吸蔵触媒を排気系に設置することが知られている。
【0003】
NOx吸蔵触媒は、リーン空燃比での運転中は排気中に含まれるNOxを吸着保持し、空燃比がリッチに切換えられたときに、吸着保持していたNOxを脱離、還元するもので、従来の三元触媒が理論空燃比のときにのみNOxの還元作用を発揮するのと異なり、リーン空燃比であってもNOxの外部への放出が防げるという利点がある。
【0004】
NOx吸蔵触媒では、NOxの吸着保持量が一定の飽和値に達するとそのままNOxが排出されしまうため、飽和状態の少し前に空燃比を一時的にリッチに切換え(これをリッチスパイクという)、保持されているNOxの脱離還元を行い、触媒を再生する必要がある。ただし、このリッチスパイクは内燃機関にとっては空燃比が不必要に濃くなるだけのため、その分の燃費の悪化は避けられず、したがってNOx吸蔵触媒の再生時には空燃比を過剰に濃くすることなく、効率のよいリッチスパイクを行わないといけない。
【0005】
上記した従来例では、NOx吸蔵触媒のNOxの脱離反応速度が触媒が高温のときに速く、低温のときに遅いことに着目して、触媒温度に対応してリッチスパイクの濃度(空燃比)とその維持時間を制御している。
【0006】
【発明が解決しようとする課題】
ところで、NOx吸蔵触媒における再生時のNOxの離脱特性をみると、リッチスパイクの直後に最大値をとるが、それ以降は徐々に減少していくことが分かっている。NOxの脱離反応には、理論空燃比よりも濃くすることで発生する排気中の余剰のHC、COなどが用いられる。しかし、反応直後は供給されたHCのほぼ全量がNOxの脱離に供されたとしても、それ以降はNOxの脱離量が減少するのにしたがい、供給されたHCは余剰となってしまうのであり、この場合には、無駄にHCが供給されたことになり、その分だけ燃費が悪化することになる。
【0007】
しかし、従来のリッチスパイク制御によると、触媒温度が高いときには空燃比を濃く、維持時間を短く、また触媒温度が低いときは、空燃比を薄く(ただし理論空燃比よりは濃い)維持時間を長くしているが、この期間中の空燃比はそれぞれ一定値に維持しているため、反応直後には過不足なくHCを供給できても、その後、反応が完了するまでの大半の期間はHCが過剰に供給されることになり、これが燃費を悪化させる原因となっている。
【0008】
本発明はこのような問題を解決するために提案されたもので、リッチスパイク時にNOx吸蔵触媒におけるNOx脱離特性に合わせて空燃比を徐々に変化させることにより、NOxの浄化効率を良好に維持しつつ燃費の向上を図ることを目的とする。
【0009】
【課題を解決するための手段】
本発明はリーン空燃比運転中に排気中のNOxを吸着保持するとともにリッチ空燃比運転中に吸着保持したNOxを脱離、還元するNOx吸蔵触媒を備えた内燃機関において、NOx吸蔵触媒の下流のNOx濃度を検出する手段と、リーン運転中にNOx吸蔵触媒でのNOxの吸着保持量を推定する手段と、この吸着保持量が所定値に達したときに空燃比を一時的にリッチ空燃比に切り換えてNOxを脱離還元するリッチ制御手段とを備え、このリッチ制御手段はリッチ制御開始から所定の時間はほぼ一定のリッチ空燃比の初期値を維持し、その後はNOxの脱離特性に応じて空燃比の濃化度合いを小さくしていき、かつこのとき検出されたNOx吸蔵触媒の下流側のNOx濃度の変化量が大きいほど空燃比の濃化度合いを小さくするように補正することを特徴とする
【0015】
【作用および発明の効果】
本発明では、触媒再生時に、リッチ制御開始から所定の時間はほぼ一定のリッチ空燃比の初期値を維持し、その後はNOxの脱離特性に応じて空燃比の濃化度合いを小さくしていき、かつこのとき検出されたNOx吸蔵触媒の下流側のNOx濃度の変化量が大きいほど空燃比の濃化度合いを小さくするように補正する。この場合には、実際のNOxの脱離、還元状態を検出しながら空燃比を調整することで、最も効率的にHCの供給を行うことが可能となり、NOxの浄化、燃費にとって最良の制御が行える。
【0020】
【実施の形態】
以下本発明の最良の実施の形態について図面に基づいて説明する。
【0021】
図1において、1は機関本体、2は吸気通路、3は排気通路であり、燃焼室4には、直接的に燃料を噴射する燃料インジェクタ5、及びこの噴射燃料を含む混合気を点火するための点火栓6が備えられる。
【0022】
燃料インジェクタ5からは、機関の部分負荷時など圧縮行程の後半に燃料が噴射され、点火栓近傍に可燃混合気層を形成維持し、全体的には超リーン混合気であっても、安定した成層燃焼を実現する。なお、機関の高負荷時など混合気は理論空燃比に切り替えられ、このときには燃料噴射時期は吸気行程に移り、均質的な理論空燃比の混合気を形成し、通常の予混合燃焼を行う。
【0023】
排気通路3にはリーン運転時に排気中のNOxを吸着保持するNOx吸蔵触媒7が設けられる。このNOx吸蔵触媒7の吸着保持量が所定の状態に達したときに、空燃比を一時的にリーンからリッチに切り替え、つまりリッチスパイクを行い、保持していたNOxを脱離還元し、触媒を再生するため、燃料インジェクタ5からの燃料噴射量を制御装置10が切り替え制御する。
【0024】
なお、図中8は排気の一部を吸気中に還流するための排気還流装置を示す。
【0025】
上記制御装置10は運転条件に応じてNOx吸蔵触媒7のNOxの吸着保持量を予測し、これに基づいて所定のタイミングでリッチスパイクを行い、かつこのときの空燃比をNOx還元特性に対応して徐々に変化させていき、燃費を悪化させることなく、NOxの浄化効率を最良に制御するようになっている。
【0026】
このため、制御装置10には、吸気通路2のスロットルバルブ開度を検出するスロットル開度センサ11、吸入空気量を測定するエアフロメータ12、クランク角度を検出するクランク角センサ13、冷却水温を検出する水温センサ14などからの運転状態を代表する信号が入力し、さらに、排気通路3のNOx吸蔵触媒7の上流の排気空燃比を検出するための空燃比センサ15と、触媒直前の排気温度を検出する排気温度センサ16と、触媒温度を代表する温度を検出する触媒温度センサ17、さらには触媒下流のNOx濃度を検出するNOxセンサ18などからの信号が入力するようになっている。
【0027】
制御装置10において実行される上記した制御内容について、図2のフローチャートにしたがって詳しく説明する。
【0028】
まず、ステップS1でエンジン回転数Ne、吸入空気量Q、排気ガス温度Ta、触媒温度Tc、冷却水温Tw、NOx濃度などを読み込み、ステップS2においてリッチスパイクの許可判定を行う。この許可判定は、リーン運転中にNOx吸蔵触媒のNOxの吸着保持量が限界能力によりもある程度の余裕のある所定値に達したかどうかを、リーン運転中の単位時間当たりのNOx排出量の積算値などにより判断するもので、所定値に達したと判断されたときにのみステップS3に進む。
【0029】
ステップS3ではそのときのNOx吸着保持量Nmasを演算により求め、次いでステップS4でリッチスパイクのための燃料増量補正係数の初期値K0を決定する。このK0は図3に示すようなマップを参照して、そのときの吸入空気量とNOx吸着保持量に基づいてK0>1.0の値が算出される。
【0030】
この場合、燃料増量補正係数の初期値K0は、NOxの吸着保持量が多いほど空燃比が濃くなるように設定され、また、吸入空気量が大きいときは、同一の空燃比の変化量でもHCの供給量の絶対量が大きくなるため、吸入空気量が大きくなるほど空燃比の濃化度合いが小さくなるように設定される。
【0031】
さらに、ステップS5ではリッチスパイク開始時のNOxの脱離反応の応答遅れ時間T0を、例えば触媒温度や排気温度に基づいて算出する。
【0032】
ステップS6において燃料噴射パルス幅Tiを次式のように算出する。
【0033】
Ti=Tp*α*K0(T0)+Ts
ただし、Tpは吸入空気量と回転数に基づいて算出される基本燃料噴射パルス幅、αは空燃比センサの出力に基づいて決まる空燃比フィードバック補正係数で、リーン運転時にはα<1.0のある定数、リッチスパイク時にはα=1.0にクランプされる。またTsは無効燃料パルス幅である。
【0034】
そして、ステップS7において、この燃料噴射パルス幅Tiに基づいて燃料の増量噴射、つまりリッチスパイクが開始される。このときの空燃比は理論空燃比よりも所定値だけ濃い空燃比となり、これによりNOx吸収触媒でのNOxの脱離反応が開始される。
【0035】
ステップS8ではこの燃料増量補正係数K0に基づいての増量補正に入ってからの経過時間Tnを、前記遅れ時間T0と比較し、遅れ時間T0が経過するまでの間は、ステップS6に戻り、同一の増量補正値(空燃比)を維持する。
【0036】
そして、遅れ時間T0を経過するとステップS9に進み、例えば次式のようにして燃料増量補正係数KnTnを演算する。
【0037】
Kn(Tn)=C*[2*K(n−1)2(T(n−1))−K(n−2)2(T(n−2))]1/2
ただし、遅れ時間T0の経過時にKn=K0であり、またCは定数、n≧2(整数)である。
【0038】
この燃料増量補正係数Kn(Tn)は触媒からのNOx脱離特性に応じて、時間の経過とともに緩やかに二次関数的に減少していくが、この他にも、例えば次式のように指数関数的に演算することもできる。
【0039】
Kn(Tn)=K(n−1)(T(n−1))/eAT(n-1)
ただし、Aは定数、n≧1(整数)である。
【0040】
このようにして時間の経過とともに変化する燃料増量補正増量Kn(Tn)を求めたら、ステップS10において、これに基づいて燃料噴射パルス幅Tiを次式のようして算出する。
【0041】
Ti=Tp*α*Kn(Tn)+Ts
そして、ステップS11において、このTiによって増量燃料(空燃比)を補正し、ステップS12でKn(Tn)=1かどうか判断し、Kn(Tn)=1になるまでの間はステップS9に戻り、徐々に燃料噴射量を減らしていく。
【0042】
そして、燃料増量補正係数Kn(Tn)=1になったら、ステップS13に移り、触媒再生が終了したものとしてリッチスパイクを終了し、リーン空燃比に戻す。なお、この状態では、空燃比補正係数αは1.0以下の定数となり、空燃比は理論空燃比よりも薄くなる。
【0043】
次に全体の作用を図4を参照しながら説明する。
【0044】
内燃機関をリーン空燃比により成層燃焼している運転中は、排気中のNOxはNOx吸蔵触媒7に吸着保持されていき、外部への放出が阻止される。運転条件に応じてのNOx排出量の積算値から、NOx吸蔵触媒7での吸着保持量が予測され、これが限界保持能力付近の所定値に達したと判断されると、燃料の増量補正が行われ、空燃比のリッチスパイク制御が行われる。このリッチスパイクにより排気中のHCが増え、いわゆる還元雰囲気となり、NOx吸蔵触媒7に吸着保持されていたNOxが離脱、還元される。
【0045】
リッチスパイク制御時の空燃比の初期値は、NOxの吸着保持量、そのときの吸入空気量などに応じて設定される一定値(最大値)となり、この値はNOx吸蔵触媒7でのNOxの脱離に必要なHCを供給、つまり還元雰囲気を形成するのに過不足のない値となり、かつ反応開始後、所定の遅れ時間T0の間は、同一値が維持される。
【0046】
そして、遅れ時間T0が経過すると、それ以降は、図4のように、NOxの脱離量が減少するのに対応して、増量燃料が減少していき、脱離が終了した時点でほぼ増量補正も終了するように制御される。
【0047】
このため、空燃比のリッチ化がNOxの脱離反応に応じて適切に設定され、従来のように、脱離量が減少するにもかかわらず空燃比が一定量だけリッチ化されるのと異なり、過剰にHCが供給されることがなく、燃費の悪化を最小限に止められる。
【0048】
他の実施の形態を、図5〜図10に示す。
【0049】
まず、図5の実施形態は、燃料増量補正係数の初期値K0を脱離反応開始時の触媒温度に基づいて補正するようにしたものである。
【0050】
NOx吸蔵触媒7の温度により脱離特性は変化し、一般的に温度が高まるほど脱離要求空燃比は濃くなる。
【0051】
そのため、ステップS4で燃料増量補正係数の初期値K0を算出したら、ステップS4−1において、NOx吸蔵触媒温度Tcに基づいて、図6に示すようなマップから補正係数C1(触媒温度が高いほど大きくなる)を算出する。このようにして補正係数C1を算出したならば、ステップS4−2において、燃料増量補正係数K0にこの補正係数C1を掛け、つまり、K0=K0*C1として、これをステップS6で燃料噴射パルス幅Tiを演算するときの燃料増量補正係数K0=K0*C1と置き換える。
【0052】
この結果、リッチスパイク時の燃料噴射量の初期値、つまり初期空燃比は触媒温度が高いほど濃くなり、反対に触媒温度が低くなるほど、濃化の度合いが少なくなる。
【0053】
したがって、温度に応じて変化するNOx吸蔵触媒7でのNOx脱離特性に合わせてHCの供給量が制御され、過剰のHCが供給され、燃費が悪化したり、NOxの脱離反応が不完全になったりすることが回避できる。
【0054】
図7の実施形態は、触媒の劣化度合いに応じて燃料増量補正係数の初期値K0を補正するものである。NOx吸蔵触媒7の劣化度合いに応じてNOxの吸着保持能力が変化し、かつこれに応じてNOxの脱離反応に必要な空燃比は変化し、劣化が進むほど空燃比の濃化要求は少なくなる。
【0055】
そこで、この実施形態においては、図7のステップS4−1において、エンジン運転状態、例えば吸入空気量や回転数、あるいは触媒温度の積算値などから、触媒の劣化度合いを算出し、ステップS4−2で、この劣化度合いに基づいて補正係数C2を、図8に示すようなマップから算出する。補正係数C2は触媒の劣化が進むほど小さくなる。
【0056】
ステップS4−3において、燃料増量補正係数K0にこの補正係数C2を掛け、つまり、K0=K0*C2とし、これをステップS6で燃料噴射パルス幅Tiを演算するときの燃料増量補正係数K0として、K0*C2を置き換える。
【0057】
そして、この補正係数C2に含めて、ステップS6で燃料噴射パルス幅Tiを演算することにより、触媒の劣化が進むほどリッチスパイク時の空燃比の濃化の度合いを少なくする。したがってNOx吸蔵触媒7が劣化していくにしたがって不要なHCの供給量を減らすことができ、過剰なHCの供給による燃費の悪化を阻止できる。
【0058】
図9の実施の形態は、リッチスパイク制御時にNOx吸蔵触媒7の下流の実際のNOxの濃度を検出し、NOx濃度の変化度合いに応じて燃料増量補正係数をさらに補正することで、リッチスパイク空燃比を適正に制御するようにしたものである。
【0059】
このため、ステップS9で燃料増量補正係数Kn(Tn)を算出したら、ステップS9−1で、NOxセンサの出力から単位時間当たりのNOx濃度の変化量ΔNOxを算出する。ステップS9−2では変化量ΔNOxを所定値と比較し、所定値よりも大きい間は、ステップS9−3において、この変化量ΔNOxに基づいて、図10に示すようなマップにしたがって補正係数C3を求める。
【0060】
そして、ステップS9−4において、この補正係数C3を用いて、燃料増量補正係数Kn(Tn)として、Kn(Tn)*C3に置き換えて、ステップS10でこれに基づいて燃料噴射パルス幅Tiを演算する。
【0061】
補正係数C3は単位時間当たりのNOx変化量ΔNOxが小さいときほど大きくなるように設定され、これによりNOxの脱離速度が低ければ、空燃比の濃化度合いを大きくして、脱離反応を促進させるし、脱離速度が早ければ、濃化度合いを小さくし、過剰なHCの供給を回避するのである。
【0062】
このようにして、NOx脱離反応の最適化を図り、排気性能の向上と燃費の悪化防止を両立させることができる。
【0063】
なお、上記実施の形態において、第2〜第4の実施の形態の内容のすべてを同時に含むように、リッチスパイクの制御を行うことも勿論可能である。
【0064】
また、上記実施の形態では、筒内直噴式の内燃機関によりリーン空燃比運転を行う例を示したが、これに限定されるわけではなく、その他のリーン燃焼方式を採用することもできる。
【図面の簡単な説明】
【図1】本発明の各実施形態に共通な全体構成を示す概略構成図てある。
【図2】第1の実施形態におけるリッチスパイク制御を示すフローチャートである。
【図3】燃料増量補正係数の初期値を設定した特性図である。
【図4】リッチスパイク制御中のNOxの脱離特性を示す説明図である。
【図5】第2の実施形態におけるリッチスパイク制御を示すフローチャートである。
【図6】燃料増量補正係数の特性を設定した特性図である。
【図7】第3の実施形態におけるリッチスパイク制御を示すフローチャートである。
【図8】燃料増量補正係数の特性を設定した特性図である。
【図9】第4の実施形態におけるリッチスパイク制御を示すフローチャートである。
【図10】燃料増量補正係数の特性を設定した特性図である。
【符号の説明】
1 機関本体
4 燃焼室
5 燃料インジェクタ
6 点火栓
7 NOx吸蔵触媒
10 制御装置
15 空燃比センサ
17 触媒温度センサ
18 NOxセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that includes an NOx storage catalyst that adsorbs and holds NOx in exhaust during operation with a lean air-fuel ratio and desorbs and reduces NOx when switched to a stoichiometric or rich air-fuel ratio.
[0002]
[Prior art]
As disclosed in Japanese Patent Laid-Open No. 6-10725, it is known to install a NOx storage catalyst in an exhaust system in order to reduce NOx contained in the exhaust gas of an internal combustion engine operated with a lean air-fuel ratio. .
[0003]
The NOx storage catalyst adsorbs and holds NOx contained in the exhaust during operation at a lean air-fuel ratio, and desorbs and reduces NOx held by adsorption when the air-fuel ratio is switched to rich. Unlike the conventional three-way catalyst that exhibits NOx reduction only when the stoichiometric air-fuel ratio is the stoichiometric air-fuel ratio, there is an advantage that NOx can be prevented from being released to the outside even at a lean air-fuel ratio.
[0004]
In the NOx storage catalyst, NOx is exhausted as it is when the NOx adsorption retention amount reaches a certain saturation value. Therefore, the air-fuel ratio is temporarily switched to rich (this is called a rich spike) and held slightly before the saturation state. Thus, it is necessary to regenerate the catalyst by desorbing and reducing NOx. However, since this rich spike only unnecessarily increases the air-fuel ratio for the internal combustion engine, deterioration of the fuel consumption is unavoidable, and therefore, when the NOx storage catalyst is regenerated, the air-fuel ratio is not excessively increased. You have to do an efficient rich spike.
[0005]
In the conventional example described above, focusing on the fact that the NOx desorption reaction rate of the NOx occlusion catalyst is fast when the catalyst is high temperature and slow when the catalyst is low temperature, the concentration of rich spike (air-fuel ratio) corresponding to the catalyst temperature. And controlling its maintenance time.
[0006]
[Problems to be solved by the invention]
By the way, when the NOx detachment characteristics at the time of regeneration in the NOx storage catalyst are observed, it is known that the maximum value is taken immediately after the rich spike but gradually decreases thereafter. In the NOx desorption reaction, surplus HC, CO, etc., in the exhaust gas generated by making the concentration higher than the stoichiometric air-fuel ratio is used. However, even if almost all of the supplied HC is used for NOx desorption immediately after the reaction, the supplied HC becomes surplus as the NOx desorption amount decreases thereafter. In this case, HC is supplied unnecessarily, and the fuel efficiency is deteriorated accordingly.
[0007]
However, according to the conventional rich spike control, when the catalyst temperature is high, the air-fuel ratio is high and the maintenance time is short, and when the catalyst temperature is low, the air-fuel ratio is thin (but higher than the theoretical air-fuel ratio) and the maintenance time is long. However, since the air-fuel ratio during this period is maintained at a constant value, even if HC can be supplied without excess or shortage immediately after the reaction, the HC remains for most of the period until the reaction is completed thereafter. It will be supplied excessively, which causes the fuel consumption to deteriorate.
[0008]
The present invention has been proposed to solve such a problem, and the NOx purification efficiency is maintained well by gradually changing the air-fuel ratio in accordance with the NOx desorption characteristics of the NOx storage catalyst during a rich spike. The purpose is to improve fuel efficiency.
[0009]
[Means for Solving the Problems]
The present invention relates to an internal combustion engine having a NOx storage catalyst that adsorbs and holds NOx in exhaust during lean air-fuel ratio operation and desorbs and reduces NOx that is held in adsorption during rich air-fuel ratio operation . Means for detecting the NOx concentration, means for estimating the NOx adsorption retention amount in the NOx storage catalyst during lean operation, and when the adsorption retention amount reaches a predetermined value, the air-fuel ratio is temporarily changed to a rich air-fuel ratio. Rich control means for desorbing and reducing NOx by switching, and this rich control means maintains a substantially constant rich air-fuel ratio for a predetermined time from the start of the rich control, and thereafter according to the NOx desorption characteristics The degree of enrichment of the air-fuel ratio is made smaller and the degree of enrichment of the air-fuel ratio is made smaller as the amount of change in the NOx concentration downstream of the NOx storage catalyst detected at this time is larger. It is characterized by correcting .
[0015]
[Operation and effect of the invention]
In the present invention, at the time of catalyst regeneration, the initial value of the rich air-fuel ratio is maintained substantially constant for a predetermined time from the start of rich control, and thereafter the degree of enrichment of the air-fuel ratio is reduced according to the NOx desorption characteristics. In addition, correction is performed so that the degree of enrichment of the air-fuel ratio decreases as the amount of change in the NOx concentration downstream of the NOx storage catalyst detected at this time increases. In this case, it is possible to supply HC most efficiently by adjusting the air-fuel ratio while detecting the actual NOx desorption / reduction state, and the best control for NOx purification and fuel consumption is achieved. Yes.
[0020]
Embodiment
The best mode for carrying out the present invention will be described below with reference to the drawings.
[0021]
In FIG. 1, 1 is an engine body, 2 is an intake passage, 3 is an exhaust passage, and a combustion injector 4 for directly injecting fuel and an air-fuel mixture containing this injected fuel are ignited in the combustion chamber 4. The spark plug 6 is provided.
[0022]
Fuel is injected from the fuel injector 5 in the latter half of the compression stroke, such as when the engine is partially loaded, and a combustible mixture layer is formed and maintained in the vicinity of the spark plug. Realize stratified combustion. Note that the air-fuel mixture is switched to the stoichiometric air-fuel ratio, such as when the engine is at a high load. At this time, the fuel injection timing shifts to the intake stroke to form a homogeneous stoichiometric air-fuel mixture and normal premixed combustion is performed.
[0023]
The exhaust passage 3 is provided with a NOx storage catalyst 7 that adsorbs and holds NOx in the exhaust during lean operation. When the adsorption holding amount of the NOx storage catalyst 7 reaches a predetermined state, the air-fuel ratio is temporarily switched from lean to rich, that is, rich spike is performed, the held NOx is desorbed and reduced, and the catalyst is In order to regenerate, the control device 10 switches and controls the fuel injection amount from the fuel injector 5.
[0024]
In the figure, reference numeral 8 denotes an exhaust gas recirculation device for recirculating a part of the exhaust gas into the intake air.
[0025]
The control device 10 predicts the NOx adsorption / retention amount of the NOx storage catalyst 7 according to the operating conditions, performs a rich spike at a predetermined timing based on this, and corresponds the air-fuel ratio at this time to the NOx reduction characteristics. Thus, the NOx purification efficiency is best controlled without deteriorating the fuel consumption.
[0026]
Therefore, the control device 10 includes a throttle opening sensor 11 that detects the throttle valve opening of the intake passage 2, an air flow meter 12 that measures the intake air amount, a crank angle sensor 13 that detects the crank angle, and a coolant temperature detection. A signal representative of the operation state from the water temperature sensor 14 or the like is input, an air-fuel ratio sensor 15 for detecting the exhaust air-fuel ratio upstream of the NOx storage catalyst 7 in the exhaust passage 3, and an exhaust temperature immediately before the catalyst. Signals from an exhaust temperature sensor 16 to be detected, a catalyst temperature sensor 17 to detect a temperature representative of the catalyst temperature, and a NOx sensor 18 to detect the NOx concentration downstream of the catalyst are input.
[0027]
The above-described control content executed in the control device 10 will be described in detail according to the flowchart of FIG.
[0028]
First, in step S1, the engine speed Ne, the intake air amount Q, the exhaust gas temperature Ta, the catalyst temperature Tc, the cooling water temperature Tw, the NOx concentration, and the like are read, and in step S2, the rich spike permission determination is performed. This permission determination is based on whether or not the NOx adsorption / holding amount of the NOx storage catalyst has reached a predetermined value with a certain margin due to the limit capability during the lean operation, and the integration of the NOx emission amount per unit time during the lean operation. The process proceeds to step S3 only when it is determined that the predetermined value has been reached.
[0029]
In step S3, the NOx adsorption retention amount Nmas at that time is obtained by calculation, and then in step S4, an initial value K0 of the fuel increase correction coefficient for the rich spike is determined. For this K0, a map as shown in FIG. 3 is referred to, and a value of K0> 1.0 is calculated based on the intake air amount and the NOx adsorption hold amount at that time.
[0030]
In this case, the initial value K0 of the fuel increase correction coefficient is set so that the air-fuel ratio becomes denser as the NOx adsorption / holding amount increases, and when the intake air amount is large, even if the amount of change in the same air-fuel ratio is HC Since the absolute amount of the supply amount increases, the degree of enrichment of the air-fuel ratio decreases as the intake air amount increases.
[0031]
Further, in step S5, the response delay time T0 of the NOx desorption reaction at the start of the rich spike is calculated based on, for example, the catalyst temperature or the exhaust temperature.
[0032]
In step S6, the fuel injection pulse width Ti is calculated as follows.
[0033]
Ti = Tp * α * K0 (T0) + Ts
Where Tp is a basic fuel injection pulse width calculated based on the intake air amount and the rotational speed, α is an air-fuel ratio feedback correction coefficient determined based on the output of the air-fuel ratio sensor, and α <1.0 during lean operation. At constant, rich spike, it is clamped to α = 1.0. Ts is an invalid fuel pulse width.
[0034]
In step S7, fuel injection, that is, rich spike, is started based on the fuel injection pulse width Ti. The air-fuel ratio at this time becomes an air-fuel ratio that is higher than the stoichiometric air-fuel ratio by a predetermined value, thereby starting the NOx desorption reaction in the NOx absorption catalyst.
[0035]
In step S8, the elapsed time Tn from the start of the increase correction based on the fuel increase correction coefficient K0 is compared with the delay time T0, and until the delay time T0 elapses, the process returns to step S6 and the same. The increase correction value (air-fuel ratio) is maintained.
[0036]
Then, when the delay time T0 has elapsed, the process proceeds to step S9, and the fuel increase correction coefficient KnTn is calculated, for example, as in the following equation.
[0037]
Kn (Tn) = C * [2 * K (n−1) 2 (T (n−1)) − K (n−2) 2 (T (n−2))] 1/2
However, Kn = K0 when the delay time T0 has elapsed, and C is a constant, n ≧ 2 (integer).
[0038]
The fuel increase correction coefficient Kn (Tn) gradually decreases in a quadratic function over time according to the NOx desorption characteristics from the catalyst. It can also be calculated functionally.
[0039]
Kn (Tn) = K (n -1) (T (n-1)) / e A * T (n-1)
However, A is a constant and n ≧ 1 (integer).
[0040]
When the fuel increase correction increase Kn (Tn) that changes with the elapse of time is obtained in this way, in step S10, the fuel injection pulse width Ti is calculated as follows based on this.
[0041]
Ti = Tp * α * Kn (Tn) + Ts
In step S11, the increased fuel (air-fuel ratio) is corrected by this Ti. In step S12, whether or not Kn (Tn) = 1 is determined. Until Kn (Tn) = 1, the process returns to step S9. Gradually reduce the fuel injection amount.
[0042]
Then, when the fuel increase correction coefficient Kn (Tn) = 1, the routine proceeds to step S13, where the rich spike is ended and the lean air-fuel ratio is returned as the catalyst regeneration is completed. In this state, the air-fuel ratio correction coefficient α is a constant of 1.0 or less, and the air-fuel ratio is thinner than the stoichiometric air-fuel ratio.
[0043]
Next, the overall operation will be described with reference to FIG.
[0044]
During operation in which the internal combustion engine is stratified combustion with a lean air-fuel ratio, NOx in the exhaust is adsorbed and held by the NOx storage catalyst 7 and is prevented from being released to the outside. From the integrated value of the NOx emission amount according to the operating conditions, the adsorption holding amount at the NOx storage catalyst 7 is predicted, and if it is determined that this has reached a predetermined value near the limit holding capacity, the fuel increase correction is performed. In other words, air-fuel ratio rich spike control is performed. Due to this rich spike, the HC in the exhaust gas increases and a so-called reducing atmosphere is created, and the NOx adsorbed and held by the NOx storage catalyst 7 is released and reduced.
[0045]
The initial value of the air-fuel ratio at the time of rich spike control is a constant value (maximum value) set according to the NOx adsorption holding amount, the intake air amount at that time, and this value is the NOx storage catalyst 7 NOx storage amount. Supplying HC necessary for desorption, that is, a value that is not excessive or insufficient for forming a reducing atmosphere, and the same value is maintained for a predetermined delay time T0 after the start of the reaction.
[0046]
When the delay time T0 elapses, thereafter, as shown in FIG. 4, the increased amount of fuel decreases in response to the decrease in the amount of NOx desorbed, and the amount of increase is substantially increased when the desorption is completed. Control is also performed to end the correction.
[0047]
Therefore, the enrichment of the air-fuel ratio is appropriately set according to the NOx desorption reaction, and unlike the conventional case, the air-fuel ratio is enriched by a certain amount despite the desorption amount being reduced. HC is not supplied excessively, and deterioration of fuel consumption can be minimized.
[0048]
Other embodiments are shown in FIGS.
[0049]
First, in the embodiment of FIG. 5, the initial value K0 of the fuel increase correction coefficient is corrected based on the catalyst temperature at the start of the desorption reaction.
[0050]
The desorption characteristics vary depending on the temperature of the NOx storage catalyst 7, and generally the desorption required air-fuel ratio becomes deeper as the temperature increases.
[0051]
Therefore, when the initial value K0 of the fuel increase correction coefficient is calculated in step S4, the correction coefficient C1 (the higher the catalyst temperature is, the larger the correction coefficient C1 is based on the NOx occlusion catalyst temperature Tc based on the NOx storage catalyst temperature Tc in step S4-1. Calculated). If the correction coefficient C1 is calculated in this way, in step S4-2, the fuel increase correction coefficient K0 is multiplied by this correction coefficient C1, that is, K0 = K0 * C1, and this is set in step S6 as the fuel injection pulse width. Replace with the fuel increase correction coefficient K0 = K0 * C1 when calculating Ti.
[0052]
As a result, the initial value of the fuel injection amount at the time of rich spike, that is, the initial air-fuel ratio becomes deeper as the catalyst temperature is higher, and conversely, the degree of concentration becomes lower as the catalyst temperature becomes lower.
[0053]
Therefore, the supply amount of HC is controlled in accordance with the NOx desorption characteristics of the NOx storage catalyst 7 that changes according to the temperature, excessive HC is supplied, fuel consumption is deteriorated, and NOx desorption reaction is incomplete. Can be avoided.
[0054]
In the embodiment of FIG. 7, the initial value K0 of the fuel increase correction coefficient is corrected according to the degree of deterioration of the catalyst. The NOx adsorption / holding capacity changes according to the degree of deterioration of the NOx storage catalyst 7, and the air-fuel ratio required for the NOx desorption reaction changes accordingly, and the request for enrichment of the air-fuel ratio decreases as the deterioration progresses. Become.
[0055]
Therefore, in this embodiment, in step S4-1 in FIG. 7, the degree of catalyst deterioration is calculated from the engine operating state, for example, the intake air amount and rotation speed, or the integrated value of the catalyst temperature, and step S4-2. Thus, the correction coefficient C2 is calculated from a map as shown in FIG. 8 based on the degree of deterioration. The correction coefficient C2 becomes smaller as the deterioration of the catalyst proceeds.
[0056]
In step S4-3, the fuel increase correction coefficient K0 is multiplied by this correction coefficient C2, that is, K0 = K0 * C2, and this is set as the fuel increase correction coefficient K0 when calculating the fuel injection pulse width Ti in step S6. Replace K0 * C2.
[0057]
Then, by including the correction coefficient C2 and calculating the fuel injection pulse width Ti in step S6, the degree of enrichment of the air-fuel ratio at the time of rich spike decreases as the deterioration of the catalyst proceeds. Accordingly, the amount of unnecessary HC supplied can be reduced as the NOx storage catalyst 7 deteriorates, and the deterioration of fuel consumption due to the excessive supply of HC can be prevented.
[0058]
The embodiment of FIG. 9 detects the actual NOx concentration downstream of the NOx storage catalyst 7 during the rich spike control, and further corrects the fuel increase correction coefficient in accordance with the degree of change in the NOx concentration. The fuel ratio is appropriately controlled.
[0059]
For this reason, after calculating the fuel increase correction coefficient Kn (Tn) in step S9, in step S9-1, the NOx concentration change amount ΔNOx per unit time is calculated from the output of the NOx sensor. In step S9-2, the amount of change ΔNOx is compared with a predetermined value, and while it is larger than the predetermined value, in step S9-3, based on this amount of change ΔNOx, the correction coefficient C3 is set according to a map as shown in FIG. Ask.
[0060]
In step S9-4, using this correction coefficient C3, the fuel increase correction coefficient Kn (Tn) is replaced with Kn (Tn) * C3, and the fuel injection pulse width Ti is calculated based on this in step S10. To do.
[0061]
The correction coefficient C3 is set so as to increase as the NOx change amount ΔNOx per unit time is smaller. With this, if the NOx desorption rate is low, the degree of concentration of the air-fuel ratio is increased to promote the desorption reaction. In addition, if the desorption rate is fast, the concentration degree is reduced and excessive supply of HC is avoided.
[0062]
In this way, it is possible to optimize the NOx desorption reaction and achieve both improvement in exhaust performance and prevention of deterioration of fuel consumption.
[0063]
In the above embodiment, it is of course possible to control the rich spike so as to include all the contents of the second to fourth embodiments at the same time.
[0064]
In the above embodiment, an example in which a lean air-fuel ratio operation is performed by an in-cylinder direct injection internal combustion engine is shown, but the present invention is not limited to this, and other lean combustion methods can also be adopted.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an overall configuration common to each embodiment of the present invention.
FIG. 2 is a flowchart showing rich spike control in the first embodiment.
FIG. 3 is a characteristic diagram in which an initial value of a fuel increase correction coefficient is set.
FIG. 4 is an explanatory diagram showing desorption characteristics of NOx during rich spike control.
FIG. 5 is a flowchart showing rich spike control in the second embodiment.
FIG. 6 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.
FIG. 7 is a flowchart showing rich spike control in the third embodiment.
FIG. 8 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.
FIG. 9 is a flowchart showing rich spike control in the fourth embodiment.
FIG. 10 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine body 4 Combustion chamber 5 Fuel injector 6 Spark plug 7 NOx occlusion catalyst 10 Control device 15 Air-fuel ratio sensor 17 Catalyst temperature sensor 18 NOx sensor

Claims (1)

リーン空燃比運転中に排気中のNOxを吸着保持するとともにリッチ空燃比運転中に吸着保持したNOxを脱離、還元するNOx吸蔵触媒を備えた内燃機関において、
NOx吸蔵触媒の下流のNOx濃度を検出する手段と、
リーン運転中にNOx吸蔵触媒でのNOxの吸着保持量を推定する手段と、
この吸着保持量が所定値に達したときに空燃比を一時的にリッチ空燃比に切り換えてNOxを脱離還元するリッチ制御手段とを備え、
このリッチ制御手段はリッチ制御開始から所定の時間はほぼ一定のリッチ空燃比の初期値を維持し、その後はNOxの脱離特性に応じて空燃比の濃化度合いを小さくしていき、かつこのとき検出されたNOx吸蔵触媒の下流側のNOx濃度の変化量が大きいほど空燃比の濃化度合いを小さくするように補正する
ことを特徴とする内燃機関の排気浄化装置。
In an internal combustion engine equipped with a NOx storage catalyst that adsorbs and holds NOx in exhaust during lean air-fuel ratio operation and desorbs and reduces NOx adsorbed and held during rich air-fuel ratio operation,
Means for detecting the NOx concentration downstream of the NOx storage catalyst;
Means for estimating the amount of NOx adsorbed and retained by the NOx storage catalyst during lean operation;
Rich control means for desorbing and reducing NOx by temporarily switching the air-fuel ratio to a rich air-fuel ratio when the adsorption holding amount reaches a predetermined value;
The rich control means maintains a substantially constant initial value of the rich air-fuel ratio for a predetermined time from the start of the rich control, and thereafter decreases the degree of enrichment of the air-fuel ratio in accordance with the NOx desorption characteristics. An exhaust gas purification apparatus for an internal combustion engine , wherein correction is performed such that the degree of concentration of the air-fuel ratio decreases as the amount of change in NOx concentration downstream of the NOx storage catalyst detected at this time increases .
JP01410498A 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3671647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01410498A JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01410498A JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11210525A JPH11210525A (en) 1999-08-03
JP3671647B2 true JP3671647B2 (en) 2005-07-13

Family

ID=11851822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01410498A Expired - Lifetime JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3671647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608758B2 (en) * 2000-10-10 2011-01-12 株式会社デンソー Air-fuel ratio control device for internal combustion engine
US6860101B2 (en) * 2001-10-15 2005-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP1767762B1 (en) 2004-06-25 2019-11-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JPH11210525A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP1067277B1 (en) Exhaust emission control device for internal combustion engines
EP1028243B1 (en) Control apparatus for direct injection engine
US6325041B1 (en) Control apparatus for spark ignition type direct injection engine
JP3769944B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP3932642B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP4207295B2 (en) In-cylinder injection engine control device
JPH10274085A (en) Exhaust emission control device for inter-cylinder injection type internal combustion engine
JP3671647B2 (en) Exhaust gas purification device for internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP3944988B2 (en) Exhaust gas purification device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JPH11229859A (en) Internal combustion engine
JP3663895B2 (en) Exhaust gas purification device for internal combustion engine
JP4492414B2 (en) Control device for internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP4231958B2 (en) Engine control device
JP3520731B2 (en) Engine exhaust purification device
JP2002097976A (en) Exhaust emission control device of engine
JP4196465B2 (en) Control device for spark ignition direct injection engine
JP3815023B2 (en) Internal combustion engine
JP3684929B2 (en) Engine exhaust purification system
JP4289389B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP4231969B2 (en) In-cylinder internal combustion engine
JPH10266884A (en) Exhaust emission control device of lean-burn internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

EXPY Cancellation because of completion of term