JPH11229859A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH11229859A
JPH11229859A JP10029477A JP2947798A JPH11229859A JP H11229859 A JPH11229859 A JP H11229859A JP 10029477 A JP10029477 A JP 10029477A JP 2947798 A JP2947798 A JP 2947798A JP H11229859 A JPH11229859 A JP H11229859A
Authority
JP
Japan
Prior art keywords
catalyst
deterioration
sensor
value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10029477A
Other languages
Japanese (ja)
Inventor
Kojiro Okada
公二郎 岡田
Hiromitsu Ando
弘光 安東
Takashi Dougahara
隆 堂ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP10029477A priority Critical patent/JPH11229859A/en
Publication of JPH11229859A publication Critical patent/JPH11229859A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Testing Of Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To always accurately determine the deterioration of NOx catalyst regardless of the state of the NOx sensor. SOLUTION: The temperature of the NOx catalyst 19, which occludes NOx in the exhaust in an excess oxygen atmosphere and discharges the occluded NOx in a decreased oxygen atmosphere, is detected by a temperature sensor 21. Also, the NOx concentration downstream of the NOx catalyst 19 is detected by a NOx sensor 22. The deterioration state value of the NOx catalyst 19 is determined based on the purification rate of NOx at low and high temperatures corresponding to temperature information against time and concentration information against time. Then, the deterioration state value and the deterioration determination value are compared to determine the deterioration of the NOx catalyst 19. Further, deterioration of the NOx catalyst 19 is determined by relative detected values of the NOx sensor 22. Accordingly, deterioration of the NOx catalyst 19 is always accurately determined regardless of the state of the NOx sensor 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、混合気の空燃比を
理論空燃比よりも燃料希薄側に制御して燃費特性を改善
した内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine in which the air-fuel ratio of an air-fuel mixture is controlled to be leaner than the stoichiometric air-fuel ratio to improve fuel economy.

【0002】排気中のNOx を浄化するNOx 触媒として
は、酸素過剰雰囲気中ではNOx を触媒上に吸蔵させるこ
とにより排気中のNOx を浄化し、酸素濃度が低下すると
付着したNOx を放出する機能を有していることが知られ
ている。つまり、NOx 触媒は、酸素濃度過剰雰囲気で
は、排気中のNOx を酸化させて硝酸塩を生成し、これに
よりNOx を吸蔵する一方、酸素濃度が低下した雰囲気で
は、NOx 触媒に吸蔵した硝酸塩と排気中のCOとを反応さ
せて炭酸塩を生成し、これによりNOx を放出させるよう
になっている。所定時間酸素過剰雰囲気での運転が実行
された後、排気の空燃比を酸素濃度低下雰囲気にして
(燃料の投入)NOx を放出させるようにしている(リッ
チスパイク)。
[0002] As the NO x catalyst for purifying NO x in the exhaust, the NO x in an oxygen-rich atmosphere to purify NO x in the exhaust by occluding on the catalyst, NO x concentration of oxygen adhering to decrease It is known to have the function of releasing That, the NO x catalyst, in an oxygen concentration excess atmosphere, the NO x in the exhaust is oxidized to produce nitrate, thereby while occluding NO x in the atmosphere in which the oxygen concentration is lowered, and occluded in the NO x catalyst reacting the CO in the exhaust nitrates to produce a carbonate, thereby so as to release NO x. After operation at a predetermined time oxygen-rich atmosphere is executed, and so as to release the air-fuel ratio of the exhaust oxygen concentration lowering atmosphere (introduction of fuel) NO x (rich spike).

【0003】ところで、燃料や潤滑油内には、イオウ成
分(S成分)が含まれており、このようなイオウ成分も
排気中に含まれている。NOx 触媒では、酸素濃度過剰雰
囲気で、NOx の吸蔵とともにイオウ成分も吸蔵する。つ
まり、イオウ成分は燃焼し、更にNOx 触媒上で酸化され
てSO3 になる。そして、このSO3 の一部はNOx 触媒上で
さらにNOx 用の吸蔵剤と反応して硫酸塩となってNOx
媒に吸蔵する。
[0003] Incidentally, a sulfur component (S component) is contained in fuel and lubricating oil, and such a sulfur component is also contained in exhaust gas. In the NO x catalyst, an oxygen concentration excess atmosphere, sulfur components together with storage of the NO x is also occluded. That is, the sulfur component burns and is further oxidized on the NO x catalyst to SO 3 . Then, a part of the SO 3 reacts with the NO x storage agent on the NO x catalyst to form a sulfate, which is stored in the NO x catalyst.

【0004】従って、NOx 触媒には、硝酸塩と硫酸塩と
が付着することになるが、硫酸塩は硝酸塩よりも塩とし
ての安定度が高く、酸素濃度が低下した雰囲気になって
もその一部しか分解されないため、NOx 触媒に残留する
硫酸塩の量は時間とともに増加する。これにより、NOx
触媒の吸蔵能力が時間とともに低下し、NOx 触媒として
の性能が悪化することになる(S被毒)。
[0004] Therefore, nitrate and sulfate adhere to the NO x catalyst. Sulfate has higher stability as a salt than nitrate, and even in an atmosphere where the oxygen concentration is reduced, the sulfate is one of them. since part only degraded, the amount of sulfate remaining in the nO x catalyst is increased with time. This results in NO x
Storage capacity of the catalyst decreases with time, the performance of the the NO x catalyst will worsen (S poisoning).

【0005】NOx 触媒のNOx 吸蔵能力を低下させる硫酸
塩は、温度が高くなると分解する性質を有している。こ
のため、NOx 触媒に一定量以上のイオウ成分(SOx )が
付着したときに、排気の空燃比を酸素濃度低下雰囲気に
して(燃料の投入)多量のHCやCOを発生させ、これらを
排気中で酸化させ、またこれらをNOx 触媒に残った酸素
と反応させてNOx 触媒を高温にし、SOx を放出するよう
にしている(Sパージ運転)。
[0005] sulfate reducing the the NO x storage capacity of the NO x catalyst has decomposed properties at higher temperatures. Therefore, when a certain amount or more of sulfur component (SO x ) adheres to the NO x catalyst, the air-fuel ratio of the exhaust gas is changed to an atmosphere with a low oxygen concentration (fuel injection) to generate a large amount of HC and CO, and these are removed. is oxidized in the exhaust, and these are reacted with the remaining oxygen in the NO x catalyst was the NO x catalyst at a high temperature, so that to release the sO x (S purge operation).

【0006】Sパージ運転実施の判定に際し、NOx 触媒
の劣化具合を把握するため、従来から、NOx 触媒の後流
側にNOx センサを装着し、リッチスパイク後の排気中の
NOx濃度をNOx センサで検出することで、NOx 触媒の劣
化具合を判定するようにしている(特開平7-208151号公
報)。
[0006] Upon determination of the S purge operation implemented in order to grasp the deterioration degree of the NO x catalyst, conventionally, the NO x sensor is mounted on the downstream side of the NO x catalyst, after the rich spike in the exhaust
The concentration of NO x to detect in NO x sensor, and so as to determine the deterioration degree of the NO x catalyst (JP-A-7-208151).

【0007】[0007]

【発明が解決しようとする課題】従来の内燃機関は、NO
x センサにより排気中のNOx 濃度を検出しているので、
NOx 触媒の劣化を判定することができる。しかし、従来
の内燃機関では、リッチスパイク後の時間の経過に対す
るNOx センサの絶対出力値に基づくNOx 濃度の変化状況
によってNOx 触媒の劣化を判定している。即ち、リッチ
スパイク後の所定時間内にNOx 濃度が所定値以上になっ
た場合にNOx 触媒が劣化したと判定している。このた
め、NOx センサに固体ばらつきがあったり、経時変化に
よりNOx センサ自体の能力に変化が生じた場合、NOx
度の検出状況が変化してしまい、NOx触媒の劣化を正し
く判定することができない。
The conventional internal combustion engine has NO
Since the x sensor detects the NO x concentration in the exhaust,
It is possible to determine the deterioration of the NO x catalyst. However, in the conventional internal combustion engine, which determines the deterioration of the NO x catalyst by a change status of the NO x concentration based on the absolute output value of the NO x sensor with respect to the elapsed time after the rich spike. That, NO x catalyst is determined to have deteriorated when the concentration of NO x within the predetermined time after the rich spike exceeds the predetermined value. Accordingly, or have individual variations in NO x sensor, if the change in the NO x sensor itself capacity caused by aging, the detection status of the NO x concentration will vary, correctly determine the deterioration of the NO x catalyst Can not do.

【0008】本発明は上記状況に鑑みてなされたもの
で、NOx センサの状態に拘らずNOx 触媒の劣化を常に正
確に判定することができる内燃機関を提供することを目
的とする。
[0008] The present invention has been made in view of the above circumstances, and an object thereof is to provide an internal combustion engine capable of determining at all times accurately the deterioration of despite the NO x catalyst on the state of the NO x sensor.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明では、機関の排気通路に設けられ酸素過剰雰囲気
中で排気中のNOx を吸蔵すると共に酸素濃度低下雰囲気
中で吸蔵したNOx を放出するNOx 触媒の下流における排
気中のNOx 濃度をNOx センサで検出すると共に、NOx
媒の温度を温度特定手段で特定し、劣化判定手段により
NOx センサ及び温度特定手段の経時情報に応じたNOx
媒における低温時及び高温時のNOx の浄化状態に基づい
てNOx 触媒の劣化を判定するようにしたので、NOx 触媒
の温度情報に応じたNOx センサの相対的な検出値によっ
てNOx 触媒の劣化が判定でき、NO x センサの状態に拘ら
ずNOx 触媒の劣化が判定できる。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
In the present invention, an oxygen-excess atmosphere provided in the exhaust passage of the engine is provided.
NO in exhaustxAtmosphere that absorbs oxygen and lowers oxygen concentration
NO absorbed inxRelease NOxExhaust downstream of the catalyst
NO in the airxNO concentrationxDetected by sensor and NOxTouch
The temperature of the medium is specified by the temperature specifying means, and
NOxNO according to time information of sensor and temperature specifying meansxTouch
NO at low and high temperatures in the mediumxBased on the purification state of
NOxSince the catalyst deterioration was determined, NOxcatalyst
NO according to the temperature information ofxDepending on the relative detection value of the sensor
NOxCatalyst deterioration can be determined and NO xRegardless of sensor status
NOxThe deterioration of the catalyst can be determined.

【0010】NOx 触媒の温度情報に応じたNOx センサの
出力値に基づいてNOx 触媒の劣化を判定する場合、低温
時及び高温時におけるNOx センサの出力値に応じたNOx
の浄化率や、低温時及び高温時のNOx センサの出力値を
比較し、NOx 触媒の劣化を判定する。この時の浄化率及
び差や比の所定値は、予め設定してもよいし、劣化前の
浄化率及び差や比の所定値に対し所定の係数を乗じた値
を適用してもよい。
[0010] NO x If the catalyst based on the output value of the NO x sensor in accordance with the temperature information to determine the deterioration of the NO x catalyst, NO x in accordance with the output value of the NO x sensor at low temperature and high temperature
Of and purification rate, compares the output value of the NO x sensor at low temperature and high temperature, determines the deterioration of the NO x catalyst. At this time, the predetermined values of the purification rate, the difference, and the ratio may be set in advance, or a value obtained by multiplying a predetermined value of the purification rate, the difference, and the ratio before deterioration by a predetermined coefficient may be applied.

【0011】また、劣化前のNOx 触媒の低温時と高温時
のNOx センサの出力値に応じたNOxの浄化率と、その後
の運転中においての低温時及び高温時のNOx センサの出
力値に応じたNOx の浄化率とをそれぞれ比較し、NOx
媒の劣化を判定する。また、劣化前のNOx 触媒の低温時
及び高温時のNOx センサの出力値の状況と、その後の運
転中においての低温時及び高温時のNOx センサの出力値
の状況とをそれぞれ比較し、NOx 触媒の劣化を判定す
る。
Further, the purification rate of degradation before of the NO x NO x in accordance with the output value of the NO x sensor at the time of high temperature low temperature catalyst, of the NO x sensor at low temperature and at high temperatures during subsequent operation and purification rate of the NO x in accordance with the output value is compared respectively to determine the deterioration of the NO x catalyst. Also, compared to the situation of low temperature and the output value of the NO x sensor at a high temperature of the NO x catalyst before degradation, then at low temperatures during the operation and the status of the output value of the NO x sensor at a high temperature, respectively determine the deterioration of the NO x catalyst.

【0012】[0012]

【発明の実施の形態】以下図面に基づいて本発明の一実
施形態例を説明する。本実施形態例は、混合気の空燃比
を理論空燃比よりも燃料希薄側に制御して燃費特性を改
善した内燃機関として、燃焼室内に燃料を直接噴射する
ようにした多気筒型筒内噴射内燃機関を例に挙げて説明
してある。図1には本発明の一実施形態例に係る内燃機
関の概略構成、図2には燃料噴射制御マップを示してあ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. This embodiment is a multi-cylinder in-cylinder injection in which fuel is directly injected into a combustion chamber as an internal combustion engine in which the air-fuel ratio of an air-fuel mixture is controlled to be leaner than the stoichiometric air-fuel ratio to improve fuel economy characteristics. The internal combustion engine is described as an example. FIG. 1 shows a schematic configuration of an internal combustion engine according to an embodiment of the present invention, and FIG. 2 shows a fuel injection control map.

【0013】多気筒型筒内噴射内燃機関としては、例え
ば、燃料を直接燃焼室に噴射する筒内噴射型直列4気筒
ガソリンエンジン(筒内噴射エンジン)1が適用され
る。筒内噴射エンジン1は、燃焼室や吸気装置及び排気
ガス再循環装置(EGR装置)等が筒内噴射専用に設計
されている。
As the multi-cylinder in-cylinder injection internal combustion engine, for example, an in-cylinder in-line 4-cylinder gasoline engine (in-cylinder injection engine) 1 for injecting fuel directly into a combustion chamber is applied. In the direct injection engine 1, a combustion chamber, an intake device, an exhaust gas recirculation device (EGR device), and the like are designed exclusively for direct injection.

【0014】筒内噴射エンジン1のシリンダヘッド2に
は各気筒毎に点火プラグ3が取り付けられると共に、各
気筒毎に電磁式の燃料噴射弁4が取り付けられている。
燃焼室5内には燃料噴射弁4の噴射口が開口し、燃料噴
射弁4から噴射される燃料が燃焼室5内に直接噴射され
るようになっている。筒内噴射エンジン1のシリンダ6
にはピストン7が上下方向に摺動自在に支持され、ピス
トン7の頂面には半球状に窪んだキャビティ8が形成さ
れている。キャビティ8により、吸気流に通常のタンブ
ル流とは逆の逆タンブル流を発生させるようになってい
る。
The cylinder head 2 of the in-cylinder injection engine 1 is provided with an ignition plug 3 for each cylinder and an electromagnetic fuel injection valve 4 for each cylinder.
An injection port of the fuel injection valve 4 is opened in the combustion chamber 5, and fuel injected from the fuel injection valve 4 is directly injected into the combustion chamber 5. Cylinder 6 of in-cylinder injection engine 1
A piston 7 is slidably supported in the up-down direction, and a hemispherically concave cavity 8 is formed on the top surface of the piston 7. The cavity 8 generates a reverse tumble flow in the intake flow, which is opposite to a normal tumble flow.

【0015】シリンダヘッド2には燃焼室5を臨む吸気
ポート9及び排気ポート10が形成され、吸気ポート9
は吸気弁11の駆動によって開閉され、排気ポート10
は排気弁12の駆動によって開閉される。排気ポート1
0には大径の排気ガス再循環ポート(EGRポート)1
3が分岐している。
An intake port 9 and an exhaust port 10 facing the combustion chamber 5 are formed in the cylinder head 2.
Is opened and closed by the drive of the intake valve 11, and the exhaust port 10
Is opened and closed by driving the exhaust valve 12. Exhaust port 1
0 is a large-diameter exhaust gas recirculation port (EGR port) 1
3 branches.

【0016】吸気ポート9には吸気管14が接続され、
吸気管14には図示しないサージタンク、エアクリー
ナ、スロットルボデー等が接続されている。一方、排気
ポート10には排気管15が接続され、排気管15には
触媒16及び図示しないマフラーが備えられている。ま
た、EGRポート13は大径のEGRパイプ17を介し
て吸気管14側に接続され、EGRパイプ17にはステ
ッパモータ式のEGR弁18が設けられている。
An intake pipe 14 is connected to the intake port 9.
A surge tank, an air cleaner, a throttle body, and the like (not shown) are connected to the intake pipe 14. On the other hand, an exhaust pipe 15 is connected to the exhaust port 10, and the exhaust pipe 15 is provided with a catalyst 16 and a muffler (not shown). The EGR port 13 is connected to the intake pipe 14 via a large-diameter EGR pipe 17, and the EGR pipe 17 is provided with a stepper motor type EGR valve 18.

【0017】触媒16は、酸素過剰雰囲気中ではNOx
触媒上に吸蔵させることにより排気中のNOx を浄化し、
酸素濃度が低下すると付着したNOx を放出する機能を有
したNOx 触媒19と、理論空燃比の雰囲気でCO,HC 及び
NOx を浄化可能な三元機能を有した三元触媒20とを備
えている。NOx 触媒19の温度はNOx 触媒19の後流側
もしくはNOx 触媒19の温度が代表できる位置に設けら
れた温度特定手段としての温度センサ21により検出さ
れ、温度センサ21によりNOx 触媒19の温度が特定さ
れる。また、NOx 触媒19の後流側の排気中のNOx の濃
度がNOx センサ22により検出される。
The catalyst 16 is in an oxygen-rich atmosphere to purify NO x in the exhaust by occluding NO x on the catalyst,
And the NO x catalyst 19 having an oxygen concentration having a function of releasing NO x adhering to decrease, CO in the atmosphere of the stoichiometric air-fuel ratio, HC and
And a three-way catalyst 20 to the NO x had can purify ternary functions. Temperature of the NO x catalyst 19 is detected by the temperature sensor 21 as a temperature specifying means provided at a position where the temperature can representatives stream side or the NO x catalyst 19 after of the NO x catalyst 19, the NO x catalyst 19 by the temperature sensor 21 Is specified. The NO x concentration in the exhaust gas on the downstream side of the NO x catalyst 19 is detected by the NO x sensor 22.

【0018】尚、触媒16の構成は、NOx 触媒19を少
なくとも一つ備えたものであれば、配置や機能等は上記
実施形態例に限定されるものではない。
[0018] The configuration of the catalyst 16, as long as having at least one the NO x catalyst 19, disposed and function and the like are not limited to the above embodiment.

【0019】車両には電子制御ユニット(ECU)23
が設けられ、このECU23には、入出力装置、制御プ
ログラムや制御マップ等の記憶を行う記憶装置、中央処
理装置及びタイマやカウンタ類が備えられている。EC
U23によって筒内噴射エンジン1の総合的な制御が実
施される。各種センサ類の検出情報はECU23に入力
され、ECU23は各種センサ類の検出情報に基づい
て、燃料噴射モードや燃料噴射量を始めとして点火時期
やEGRガスの導入量等を決定し、燃料噴射弁4や点火
プラグ3、EGR弁18等を駆動制御する。
The vehicle has an electronic control unit (ECU) 23
The ECU 23 is provided with an input / output device, a storage device for storing a control program, a control map, and the like, a central processing unit, and a timer and counters. EC
Comprehensive control of the direct injection engine 1 is performed by U23. The detection information of the various sensors is input to the ECU 23. The ECU 23 determines the ignition timing, the amount of the EGR gas introduced, etc., including the fuel injection mode and the fuel injection amount, based on the detection information of the various sensors. 4, the spark plug 3, the EGR valve 18 and the like are drive-controlled.

【0020】また、ECU23には、機関の負荷Peと機
関回転速度Neとに応じてNOx 触媒19に流入するNOx
濃度がマップ等によって記憶されている。尚、NOx 触媒
19に流入するNOx の濃度は、NOx 触媒19の上流側に
NOx センサを設けて直接検出するようにしてもよい。ま
た、ECU23に入力される各種検出情報によりNOx
媒19の温度を推定し、ECU23に前述した温度特定
手段の機能を持たせることも可能である。
Further, the ECU 23, the concentration of the NO x flowing into the NO x catalyst 19 in accordance with the load Pe and engine speed Ne of the engine stored by the map or the like. The concentration of the NO x flowing into the NO x catalyst 19, the upstream side of the NO x catalyst 19
It may be detected directly by providing a NO x sensor. Also, to estimate the temperature of the NO x catalyst 19 by various detection information input to the ECU 23, it is also possible to have a function of temperature specific means described above to ECU 23.

【0021】上述した筒内噴射エンジン1では、吸気ポ
ート9から燃焼室5内に流入した吸気流が逆タンブル流
を形成し、圧縮行程中期以降に燃料を噴射して逆タンブ
ル流を利用しながら燃焼室5の頂部中央に配設された点
火プラグ3の近傍のみに少量の燃料を集め、点火プラグ
3から離隔した部分で極めてリーンな空燃比状態とす
る。点火プラグ3の近傍のみを理論空燃比又はリッチな
空燃比とすることで、安定した層状燃焼(層状超リーン
燃焼)を実現しながら燃料消費を抑制する。
In the above-described in-cylinder injection engine 1, the intake air flowing into the combustion chamber 5 from the intake port 9 forms a reverse tumble flow, and the fuel is injected after the middle stage of the compression stroke to utilize the reverse tumble flow. A small amount of fuel is collected only in the vicinity of the ignition plug 3 disposed at the center of the top of the combustion chamber 5, and an extremely lean air-fuel ratio state is formed in a portion separated from the ignition plug 3. By setting the stoichiometric air-fuel ratio or the rich air-fuel ratio only in the vicinity of the spark plug 3, fuel consumption is suppressed while achieving stable stratified combustion (stratified super-lean combustion).

【0022】また、このエンジンから高出力を得る場合
には、インジェクタ8からの燃料を吸気行程に噴射する
ことにより燃焼室1全体に均質化し、予混合燃焼を行
う。もちろん、理論空燃比もしくはリッチ空燃比による
方がリーン空燃比によるよりも高出力が得られるため、
この際にも、燃料の霧化及び気化が十分に行なわれるよ
うなタイミングで燃料噴射を行ない、効率よく高出力を
得るようにしている。
In order to obtain a high output from the engine, fuel from the injector 8 is injected into the intake stroke to homogenize the entire combustion chamber 1 and perform premix combustion. Of course, higher output can be obtained with the stoichiometric air-fuel ratio or rich air-fuel ratio than with the lean air-fuel ratio,
Also at this time, the fuel is injected at a timing such that the fuel is sufficiently atomized and vaporized, so that a high output is efficiently obtained.

【0023】ECU23は、スロットル弁の開度に応じ
た運転中の負荷Peと機関回転速度Neとに基づき、図2の
燃料噴射マップから現在の燃料噴射領域を検索して燃料
噴射モードを決定する。これにより、各燃料噴射モード
での目標空燃比に応じた燃料噴射量が決定され、この燃
料噴射量に応じて燃料噴射弁4が駆動制御されると共
に、点火プラグ3が駆動制御される。また、同時にEG
R弁18の開閉制御も実施される。
The ECU 23 determines the fuel injection mode by searching the current fuel injection area from the fuel injection map of FIG. 2 based on the operating load Pe and the engine speed Ne according to the opening of the throttle valve. . Thereby, the fuel injection amount according to the target air-fuel ratio in each fuel injection mode is determined, and the drive of the fuel injection valve 4 and the drive control of the ignition plug 3 are controlled according to the fuel injection amount. At the same time, EG
Open / close control of the R valve 18 is also performed.

【0024】触媒16のNOx 触媒19は、酸素過剰雰囲
気中ではNOx を触媒上に吸蔵させることにより排気中の
NOx を浄化する機能を有している。つまり、NOx 触媒1
9は、圧縮リーンモードや吸気リーンモードにおける層
状超リーン燃焼運転時のような酸素濃度過剰雰囲気で
は、排気中のNOx が酸化されて硝酸塩が生成され、これ
によりNOx が吸蔵され、排気の浄化が行われる。
[0024] the NO x catalyst 19 of the catalyst 16, in the exhaust by occluding NO x on the catalyst in an oxygen-rich atmosphere
It has a function of purifying NO x. That, NO x catalyst 1
9, the oxygen concentration excess atmosphere such as during stratified super lean burn operation in the compressed lean mode and the intake lean mode, the NO x in the exhaust gas is oxidized nitrates are produced, thereby NO x is occluded, the exhaust Purification is performed.

【0025】一方、触媒16のNOx 触媒19は、酸素濃
度が低下すると付着したNOx を放出する機能を有してい
る。つまり、酸素濃度が低下した雰囲気では、NOx 触媒
19に吸蔵した硝酸塩と排気中のCOとが反応して炭酸塩
が生成され、これによりNOxが放出される。従って、NO
x 触媒19へのNOx の吸蔵が進むと、追加の燃料噴射を
行う等して酸素濃度を低下させてNOx 触媒19からNOx
を放出させ、NOx 触媒19の機能を維持するようにして
いる(再生手段)。
On the other hand, NO x catalyst 19 of the catalyst 16, the oxygen concentration has a function of releasing NO x adhering to decrease. In other words, the oxygen concentration in the atmosphere decreases, carbonate is generated by reaction with CO in the exhaust and nitrate occluded in the NO x catalyst 19, thereby NO x is released. Therefore, NO
When the NO x storage of the x catalyst 19 proceeds, additional to such the fuel is injected to reduce the oxygen concentration to the NO x catalyst 19 from the NO x
And the function of the NO x catalyst 19 is maintained (regeneration means).

【0026】ところで、燃料や潤滑油内に含まれるイオ
ウ成分(SOx )も排気中に存在し、NOx 触媒19では、
酸素濃度過剰雰囲気で、NOx の吸蔵とともにSOx も吸蔵
する。つまり、イオウ成分は燃焼し、更にNOx 触媒19
上で酸化されてSO3 になる。そして、このSO3 の一部は
NOx 触媒19上でさらにNOx 用の吸蔵剤と反応して硫酸
塩となってNOx 触媒19に吸蔵する。
By the way, the sulfur components contained in fuel and lubrication in oil (SO x) is also present in the exhaust, in the NO x catalyst 19,
In an oxygen-rich atmosphere, SO x is also stored together with NO x . That is, the sulfur component is burned, further the NO x catalyst 19
Is oxidized above becomes SO 3. And part of this SO 3
Reacts with occluding agent for the NO x catalyst 19 on an additional NO x occluding the the NO x catalyst 19 becomes sulfate.

【0027】また、NOx 触媒19は、酸素濃度が低下す
ると付着したSOx を放出する機能を有している。つま
り、酸素濃度が低下した雰囲気では、NOx 触媒19に吸
蔵した硫酸塩の一部と排気中のCOとが反応して炭酸塩が
生成されてSO3 が放出される。
The NO x catalyst 19 has a function of releasing the attached SO x when the oxygen concentration decreases. In other words, the oxygen concentration in the atmosphere decreases, NO x partially CO and carbonates react in the exhaust gas of the occluded sulfate in the catalyst 19 is produced SO 3 is released.

【0028】しかし、硫酸塩は硝酸塩よりも塩としての
安定度が高く、酸素濃度が低下した雰囲気になってもそ
の一部しか分解されないため、NOx 触媒19に残留する
硫酸塩の量は時間とともに増加する。これにより、NOx
触媒19の吸蔵能力が時間とともに低下し、NOx 触媒1
9としての性能が悪化することになる(S被毒)。
[0028] However, sulfates have high stability as salts than nitrates, since the oxygen concentration is not decomposed only a part thereof even if the atmosphere is reduced, time is the amount of sulfate remaining in the NO x catalyst 19 Increase with. This results in NO x
Storage capacity of the catalyst 19 decreases with time, NO x catalyst 1
The performance as No. 9 will be deteriorated (S poisoning).

【0029】このため、NOx 触媒19に一定量以上のイ
オウ成分(SOx )が付着してNOx 触媒19が劣化したと
判定されたときには、再生手段としての燃料の投入によ
り、排気の空燃比を酸素濃度低下雰囲気にして多量のHC
やCOを発生させ、NOx 触媒19を高温にし、吸蔵したSO
x を放出するようにしている(Sパージ運転)。
[0029] Therefore, when the NO x catalyst 19 adheres more than a certain amount of sulfur components (SO x) is the the NO x catalyst 19 is determined to be deteriorated, the introduction of fuel as a reproduction unit, empty exhaust Change the fuel ratio to an atmosphere with a low oxygen concentration and use a large amount of HC
And CO is generated, the the NO x catalyst 19 to a high temperature, and occluded SO
x is released (S purge operation).

【0030】即ち、燃焼室5内の通常の燃焼のための主
燃料噴射(圧縮行程や吸気行程での燃料噴射)における
燃料噴射弁4の駆動とは別に、機関の出力に影響しにく
いタイミング(膨張行程の末期)で燃料噴射弁4を駆動
して追加燃料を噴射し、この追加燃料を燃焼させること
によりNOx 触媒19に多量のHCやCOを供給し、SO3 を還
元させると共にNOx 触媒19を高温にすることで、吸蔵
したSOx を放出する。
That is, apart from the driving of the fuel injection valve 4 in the main fuel injection for normal combustion in the combustion chamber 5 (fuel injection in the compression stroke and the intake stroke), it is difficult to influence the output of the engine ( At the end of the expansion stroke), the fuel injection valve 4 is driven to inject additional fuel, and by burning this additional fuel, a large amount of HC and CO is supplied to the NO x catalyst 19, so that SO 3 is reduced and NO x is reduced. by the catalyst 19 to a high temperature, to release the occluded SO x.

【0031】尚、上述した例では、膨張行程で追加燃料
を噴射するようにしているが、混合気の空燃比をリッチ
側に制御して通常運転よりも多めに燃料を供給しNOx
媒19に多量のHCやCOを供給するという方法でもよい。
[0031] In the example described above, but so as to inject additional fuel in the expansion stroke, the air-fuel ratio of the mixture is controlled to the rich side to supply larger amount fuel than normal operation the NO x catalyst 19 Alternatively, a method of supplying a large amount of HC or CO to the fuel cell may be used.

【0032】上述した筒内噴射エンジン1では、リーン
運転時における温度センサ21及びNOx センサ22の検
出情報に基づいてNOx 触媒19の劣化が判定されるよう
になっている(劣化判定手段)。即ち、リーン運転時間
に基づいて適宜NOx 放出処理(リッチスパイク)が実施
され、リッチスパイク後のリーン運転時に、低温時及び
高温時の浄化状態である浄化率が求められ、低温時及び
高温時の浄化率に基づいてNOx 触媒19の劣化が判断さ
れるようになっている。
[0032] In-cylinder injection engine 1 described above, the deterioration of the NO x catalyst 19 based on the detection information of the temperature sensor 21 and NO x sensor 22 is adapted to be determined at the time of lean operation (deterioration determination means) . That is implemented properly the NO x releasing processing based on the lean operation time (rich spike), when the lean operation after the rich spike, purification rate is purification state at low temperature and high temperature is required, at low temperature and high temperature deterioration of the NO x catalyst 19 based on the purification rate is adapted to be determined.

【0033】つまり、NOx 触媒19は、低温側(例えば
450 ℃以下)より高温側(例えば450 ℃以上)が劣化し
やすいので、低温時及び高温時のNOx の浄化率を求め、
低温時のNOx の浄化率に対する高温時のNOx の浄化率の
割合が所定値以下となった時にNOx 触媒19の劣化を判
定するようにしている。尚、NOx 触媒19があまり劣化
しない低温時の範囲でのみの運転の場合、NOx 触媒19
の浄化効率は高い状態のままであるので、排気中のNOx
量は増大することはないと共に、劣化の判定は行われな
いので、低温時の範囲でNOx 触媒19の温度が維持され
る運転状況では、追加燃料を噴射する等燃費に影響する
Sパージ運転は実施されず、結果的に燃費の悪化を防止
できることになる。
That is, the NO x catalyst 19 is placed on the low temperature side (for example,
Since the higher temperature side (e.g., 450 ° C or higher) is more likely to degrade than the lower temperature (450 ° C or lower), the NO x purification rates at low and high temperatures are determined.
The proportion of the purification rate of the NO x at a high temperature for purifying ratio at a low temperature of the NO x is to be determined deterioration of the NO x catalyst 19 when it becomes less than a predetermined value. In the case of operation only in the low temperature range where the NO x catalyst 19 does not deteriorate much, the NO x catalyst 19
Purification efficiency remains high, so NO x
Together never amount increases, since not performed determination of deterioration in the operating conditions in which the temperature of the NO x catalyst 19 in the range of low temperature is maintained, S purge operation affecting the equal fuel consumption for injecting additional fuel Is not implemented, and as a result, deterioration of fuel efficiency can be prevented.

【0034】以下、NOx 触媒19の劣化の判定の動作を
含めたSパージ運転の状況を図3乃至図7に基づいて説
明する。図3にはSパージ運転の全体状況を表すフロー
チャート、図4、図5にはNOx 触媒19の劣化の判定状
況である劣化判定処理を表すフローチャート、図6には
劣化判定処理における空燃比とNOx 濃度の変化を表すグ
ラフ、図7には劣化判定処理における低温時及び高温時
の浄化率の変化を表すグラフを示してある。
[0034] Hereinafter, will be explained on the basis of the status of the S purge operation, including the operation of the determination of deterioration of the NO x catalyst 19 in FIGS. 3-7. Flow chart showing the overall status of the S purge operation in FIG. 3, FIG. 4, a flow chart representing the deterioration determination process is a determination condition of deterioration of the NO x catalyst 19 in FIG. 5, the air-fuel ratio in the deterioration determination process in FIG. 6 FIG. 7 is a graph showing a change in the NO x concentration, and FIG. 7 is a graph showing a change in the purification rate at low and high temperatures in the deterioration determination process.

【0035】図3に示すように、ステップS1で、NOx
放出処理(リッチスパイク)が実施され、リッチスパイ
ク後ステップS2でNOx 触媒19の劣化判定処理が実施
される。ステップS2でNOx 触媒19の劣化が判定され
ると、ステップS3でSパージ運転が実行される。
As shown in FIG. 3, in step S1, NO x
Be implemented release process (rich spike) is, the deterioration determination process of the NO x catalyst 19 is carried out in the rich spike after step S2. The deterioration of the NO x catalyst 19 is determined in step S2, S purge operation is performed in step S3.

【0036】NOx 触媒19の劣化判定処理を説明する。
図4に示すように、ステップS11で機関の負荷Pe及び
機関回転速度Neが一定(一定とみなせる範囲で略一定)
か否かが判断され、ステップS11で一定であると判断
された場合、ステップS12でNOx センサ22が正常か
否かが判断される。NOx センサ22が正常であると判断
された場合、ステップS13で温度センサ21及びNOx
センサ22の検出値を読み込む。ステップS14で、リ
ッチスパイクからA秒経過してからのa秒間の間(図6
参照)にNOx 触媒19の温度が低温時所定温度(例えば
350 度以上400度未満)及び高温時所定温度(例えば500
度以上550 度未満) の範囲に存在したか否か、即ち、
所定範囲に存在したか否かが判断される。
[0036] illustrating a deterioration determination process of the NO x catalyst 19.
As shown in FIG. 4, in step S11, the load Pe of the engine and the engine speed Ne are constant (substantially constant within a range that can be regarded as constant).
Whether it is determined, when it is determined to be constant in step S11, NO x or not sensor 22 is normal in step S12 is determined. If NO x sensor 22 is determined to be normal, the temperature sensor 21 and NO x in step S13
The detection value of the sensor 22 is read. In step S14, for a second after a lapse of A seconds from the rich spike (FIG. 6)
Temperature of the NO x catalyst 19 to the reference) is low at a predetermined temperature (e.g.
350 ° C or higher and lower than 400 ° C) and a predetermined temperature at high temperature (eg 500
Degrees or less and less than 550 degrees), that is,
It is determined whether or not it is within a predetermined range.

【0037】ステップS11、ステップS12及びステ
ップS14のいずれかがNOであると判断された場合、劣
化判定の条件がそろっていないので、ステップS15で
ECU23内のカウンタの値Cをリセットしてリターン
となる。ステップS14でNO x 触媒19の温度が所定範
囲に存在したと判断された場合、ステップS16で低温
時におけるNOx 触媒19のNOx の浄化率εL及び高温時
におけるNOx 触媒19のNOx の浄化率εHが演算され
る。
Steps S11, S12 and
If it is determined that any of steps S14 is NO,
Since the conditions for the determination of conversion are not complete, in step S15
Resets the value C of the counter in the ECU 23 and returns
Becomes NO in step S14 xThe temperature of the catalyst 19 is within a predetermined range.
If it is determined that it is located in the
NO at the timexNO of catalyst 19xPurification rate εL and high temperature
NO inxNO of catalyst 19xIs calculated.
You.

【0038】NOx 触媒19のNOx の浄化率εは、ECU
23に記憶された流入NOx 濃度cnoxと、リッチスパイク
からA秒経過してからのa秒間の間(図6参照)NOx
ンサ22で検出された検出値bとにより(1)式によって
算出される。a秒間の間(図6参照)における{(cnox
−b)/cnox}の平均(または一次フィルタ値)εaを
求め、NOx 触媒19のNOx の浄化率εを ε=εa・k・・・(1) とする。但しkは運転状態補正係数であり、機関負荷Pe
と機関回転速度Neの関数である。(1)式に基づいて、a
秒間の間(図6参照)における低温時のNOx の浄化率ε
L及び高温時の浄化率εHがそれぞれ演算される。ここ
で、運転状態補正係数kを乗じているのは、運転状態の
変化により排気の流速が変化すると、NOx 触媒19にお
けるNOx の吸蔵の反応時間が変化するため、流速の影響
を加味するためである。
The NO x purification rate ε of the NO x catalyst 19 is determined by the ECU
An inlet concentration of NO x cnox stored in 23, calculated by a second period of (see FIG. 6) NO x sensor by a detection value b detected in 22 (1) from the elapsed A seconds from the rich spike Is done. {(cnox) during a seconds (see FIG. 6)
-B) / CNOx average} (or seeking primary filter value) .epsilon.a, the purification rate epsilon of the NO x of the NO x catalyst 19 ε = εa · k and (1). Here, k is an operating condition correction coefficient, and the engine load Pe
And the engine speed Ne. Based on equation (1), a
NO x purification rate ε at low temperature during the second (see FIG. 6)
L and the purification rate εH at high temperature are calculated respectively. Here, the reason why the operating state correction coefficient k is multiplied is that when the flow rate of the exhaust gas changes due to a change in the operating state, the reaction time of the NO x storage in the NO x catalyst 19 changes, so that the influence of the flow rate is taken into account. That's why.

【0039】ステップS16で低温時におけるNOx 触媒
19のNOx の浄化率εL及び高温時におけるNOx 触媒1
9のNOx の浄化率εHが演算された後、ステップS17
で浄化率εL、浄化率εHに基づいて浄化率εL,εH
の比により劣化の状況値D(D=εH/εL)を設定
し、予め設定されている劣化判定値dをステップS18
で読み込む。劣化判定値dは、予めECU23に記憶さ
れた値としてもよいが、機関の運転初期(所定走行距離
以下)における劣化の状況値Dに劣化係数(1以下)を
乗じた値に設定しておけば、機関の運転初期における劣
化の状況値Dに基づいて劣化判定値dを設定することに
より、機関の固体ばらつきを吸収することができる。
尚、劣化判定値dは別のパラメータを用いて演算するこ
とも可能である。
In step S16, the NO x purification rate εL of the NO x catalyst 19 at a low temperature and the NO x catalyst 1 at a high temperature
After the NO x purification rate εH of 9 is calculated, step S17 is performed.
And the purification rates εL and εH based on the purification rate εH.
, A deterioration situation value D (D = εH / εL) is set, and a preset deterioration determination value d is set in step S18.
Read with The deterioration determination value d may be a value stored in the ECU 23 in advance, but may be set to a value obtained by multiplying a deterioration situation value D in an initial operation of the engine (a predetermined traveling distance or less) by a deterioration coefficient (1 or less). For example, by setting the deterioration determination value d based on the deterioration situation value D in the early stage of operation of the engine, it is possible to absorb the individual variation of the engine.
Note that the deterioration determination value d can be calculated using another parameter.

【0040】ステップS18で劣化判定値dを読み込ん
だ後、図5に示すように、ステップS21で劣化の状況
値Dが劣化判定値d以下か否かが判断される。つまり、
低温時のNOx の浄化率εLに対する高温時のNOx の浄化
率εHの割合が所定値以下となったか否かが判断され
る。
After reading the deterioration judgment value d in step S18, as shown in FIG. 5, it is judged in step S21 whether or not the deterioration situation value D is equal to or smaller than the deterioration judgment value d. That is,
Ratio of purification rate εH of the NO x at a high temperature for purifying rate εL the low temperature of the NO x is whether it is equal to or less than a predetermined value.

【0041】ステップS21で劣化の状況値Dが劣化判
定値d以下になった場合、高温時のNOx の浄化率εHが
低下したので(図7中点線で示してある)、ステップS
22でNOx 触媒19が劣化したと判定される。ステップ
S21で劣化の状況値Dが劣化判定値dを越えていると
判断された場合、低温時のNOx の浄化率εLに対して高
温時のNOx の浄化率εHが低下していないので(図7中
実線で示してある)、NOx センサ22の検出値の絶対値
に拘らずNOx 触媒19は劣化していないと判定されてス
テップS15に移行する。
[0041] If the status value D degradation in step S21 is equal to or less than the degradation determination value d, the purification rate εH of high temperature of NO x (is shown by dotted lines in FIG. 7) so it dropped, step S
The NO x catalyst 19 at 22 is determined to have deteriorated. If the status value D degradation in step S21 is judged to exceed the degradation determination value d, since the purification rate εH of the NO x at high temperature with respect to purification rate εL the low temperature of the NO x is not reduced (shown in FIG. 7 the solid line), regardless the nO x catalyst 19 to the absolute value of the detected value of the nO x sensor 22 is determined not to be degraded proceeds to step S15.

【0042】尚、劣化の状況値Dは、浄化率εL,εH
の差(D=εL−εH)によって設定するようにしても
よい。この場合、劣化の状況値Dが大きくなった時にNO
x 触媒19が劣化しているので、劣化の状況値Dが劣化
判定値d以上の時に、NOx 触媒19が劣化したと判定さ
れる。
Note that the deterioration status value D is the purification rate εL, εH
(D = εL−εH). In this case, when the deterioration situation value D becomes large, NO
Since the x catalyst 19 has deteriorated, it is determined that the NO x catalyst 19 has deteriorated when the deterioration situation value D is equal to or greater than the deterioration determination value d.

【0043】ステップS22でNOx 触媒19が劣化した
と判定された場合、ステップS23でカウンタの値Cを
C+1としてステップS24でカウンタの値Cが所定回
n以上(例えば5回以上)となった否かが判断される。
ステップS24でカウンタの値Cが所定回nに満たない
と判断された場合、リターンとなり劣化判定処理を繰り
返す。ステップS24でカウンタの値Cが所定回n以上
となったと判断された場合、劣化判定の条件が連続して
成立したとしてステップS25でカウンタの値Cをリセ
ットし、劣化判定処理を終了してステップS3に移行し
Sパージ運転の処理を実行する。
[0043] If the NO x catalyst 19 in step S22 is determined to be deteriorated, the value C of the counter in step S24 the counter value C at step S23 as C + 1 is equal to or greater than a predetermined times n (e.g. more than 5 times) It is determined whether or not.
If it is determined in step S24 that the value C of the counter is less than the predetermined number n, the process returns and the deterioration determination process is repeated. If it is determined in step S24 that the counter value C has become equal to or greater than n a predetermined number of times, it is determined that the conditions for the deterioration determination have been continuously satisfied, and in step S25 the counter value C is reset, and the deterioration determination process is terminated. The process shifts to S3 and executes the process of the S purge operation.

【0044】上述したように、温度センサ21及びNOx
センサ22の経時情報に応じたNOx触媒19における低
温時のNOx の浄化率εL及び高温時のNOx の浄化率εH
を演算し、低温時の浄化率εLに対して高温時の浄化率
εHが低下し、この状態が連続してn回繰り返された場
合に、NOx センサ22の検出値の絶対値に拘らずNOx
媒19が劣化していると判断されるようになっている。
As described above, the temperature sensor 21 and the NO x
Purification rate εH of the NO x during purification rate εL and high temperature low temperature of the NO x in the NO x catalyst 19 in accordance with the time information of the sensor 22
Calculating a, reduces the purification rate εH at high temperature with respect to purification ratio εL at low temperature, if this state is repeated n times in succession, irrespective of the absolute value of the detected value of the NO x sensor 22 the NO x catalyst 19 is adapted to be determined to be deteriorated.

【0045】従って、NOx センサ22の固体ばらつきや
機関の固体ばらつき等でNOx センサ22の検出値が異な
っていたり、経時変化によりNOx センサ22の検出値が
漸次変化しても、正確にNOx 触媒19の劣化を判定する
ことができる。
[0045] Therefore, it has detected value is different of the NO x sensor 22 of individual variations and institutions of the NO x sensor 22 in solid and variation, even if the detection value is gradual change of the NO x sensor 22 due to aging, precisely it is possible to determine the deterioration of the NO x catalyst 19.

【0046】尚、上述した実施形態例では、低温時の浄
化率εLに対して高温時の浄化率εHが低下した状態が
連続してn回繰り返された場合に、NOx 触媒19の劣化
を判定しているが、リセット回数に対するカウント回数
を記憶する機能等をカウンタに備え、所定のカウント回
数Nの間に高温時の浄化率εHが低下した状態が所定回
nとなった場合に、NOx 触媒19の劣化を判定するよう
にしてもよい。また、上述した処理を単独で実行する他
に、他の劣化判定手段を備え、先にどちらかが劣化判定
となった時にNOx 触媒19の劣化を判定するようにした
り、他の劣化判定手段を用いて上述したNOx 触媒19の
劣化判定が正しいか否かを確認した後、最終的にNOx
媒19の劣化を判断する機能を持たせることも可能であ
る。
[0046] In the embodiment example described above, when the state where the purification rate εH at high temperature with respect to purification ratio εL at low temperature is lowered is repeated n times in succession, the deterioration of the NO x catalyst 19 The counter is provided with a function of storing the number of counts with respect to the number of resets, and when the state in which the purification rate εH at high temperature has decreased during the predetermined number of counts N has reached the predetermined number n, NO The deterioration of the x catalyst 19 may be determined. Further, in addition to running alone process described above, comprise other deterioration determining means, or so as to determine the deterioration of the NO x catalyst 19 when either ahead becomes deterioration determination, other degradation determination means after deterioration determination of the NO x catalyst 19 described above and it was confirmed whether correct or not using, it is also possible to finally have the function of determining the deterioration of the NO x catalyst 19.

【0047】劣化の状況値Dの設定について他の例を説
明する。
Another example of setting the deterioration situation value D will be described.

【0048】NOx 触媒19が劣化していない状態での
低温時の浄化率εL及び高温時の浄化率εHに対応する
浄化率εfL及びεfHを予め記憶しておき、(εfH
−εH)と(εfL−εL)との差を劣化の状況値Dと
する。そして、劣化の状況値Dが劣化判定値d以上にな
った場合に劣化の判断とする。即ち、(εfH−εH)
−(εfL−εL)≧dの時、劣化の判断とする。
The purification rates εfL and εfH corresponding to the purification rate εL at a low temperature and the purification rate εH at a high temperature when the NO x catalyst 19 is not deteriorated are stored in advance, and (εfH
The difference between (−εH) and (εfL−εL) is defined as the deterioration situation value D. When the deterioration situation value D becomes equal to or greater than the deterioration determination value d, the deterioration is determined. That is, (εfH−εH)
When − (εfL−εL) ≧ d, the deterioration is determined.

【0049】NOx 触媒19が劣化していない状態での
低温時の浄化率εL及び高温時の浄化率εHに対応する
浄化率εfL及びεfHを予め記憶しておき、(εL/
εfL)と(εH/εfH)との差を劣化の状況値Dと
する。そして、劣化の状況値Dが劣化判定値d以上にな
った場合に劣化の判断とする。即ち、(εL/εfL)
−(εH/εfH)≧dの時、劣化の判断とする。
The purification rates εfL and εfH corresponding to the purification rate εL at a low temperature and the purification rate εH at a high temperature when the NO x catalyst 19 is not deteriorated are stored in advance, and (εL /
The difference between (εfL) and (εH / εfH) is defined as the deterioration situation value D. When the deterioration situation value D becomes equal to or greater than the deterioration determination value d, the deterioration is determined. That is, (εL / εfL)
When − (εH / εfH) ≧ d, the deterioration is determined.

【0050】NOx 触媒19が劣化していない状態での
低温時の浄化率εL及び高温時の浄化率εHに対応する
浄化率εfL及びεfHを予め記憶しておき、(εH/
εfH)と(εL/εfL)との比を劣化の状況値Dと
する。そして、劣化の状況値Dが劣化判定値d以下にな
った場合に劣化の判断とする。即ち、(εH/εfH)
/(εL/εfL)≦dの時、劣化の判断とする。
The purification rates εfL and εfH corresponding to the purification rate εL at a low temperature and the purification rate εH at a high temperature when the NO x catalyst 19 is not deteriorated are stored in advance, and (εH /
The ratio between (εfH) and (εL / εfL) is defined as the deterioration situation value D. When the deterioration situation value D becomes equal to or smaller than the deterioration determination value d, the deterioration is determined. That is, (εH / εfH)
When / (εL / εfL) ≦ d, it is determined that deterioration has occurred.

【0051】上述したように、車両の走行距離が少な
く、NOx 触媒19が劣化していない状態(もしくはSパ
ージ運転の直後)の低温時の浄化率εfL及び高温時の
浄化率εfHと、実際の検出値に基づく低温時の浄化率
εL及び高温時の浄化率εHとを比較して劣化の状況値
Dを設定することにより、NOx センサ22の固体ばらつ
きに加え機関の固体ばらつきにより検出値が異なって
も、極めて正確にNOx 触媒19の劣化を判定することが
できる。
[0051] As described above, the travel distance of the vehicle is small, the purification rate εfH purification rate εfL and at a high temperature at a low temperature in a state where the NO x catalyst 19 is not deteriorated (or immediately after the S purge operation), indeed by setting the status value D of the low temperature of the purification rate εL and deterioration by comparing the purification rate εH at high temperatures based on the detection value of the detection value by the individual variations of the engine in addition to individual variations of the NO x sensor 22 even different, it is possible to determine very accurately the deterioration of the NO x catalyst 19.

【0052】上記実施形態例では、低温時及び高温時に
おけるNOx 触媒19の浄化状態として、NOx センサ22
の検出値から求めたNOx の浄化率を適用する方法を例に
挙げて説明したが、NOx 触媒19の浄化状態としては、
NOx センサ22の検出値をそのまま適用することも可能
である。つまり、{(cnox−b)/cnox}の平均に代え
て、リッチスパイクからA秒経過してからのa秒間の間
(図6参照)におけるNOx センサ22で検出されたNOx
濃度(検出値b)の平均(または一次フィルタ値)を浄
化状態としての濃度δaとする。
In the above embodiment, the NO x sensor 22 is used as the purification state of the NO x catalyst 19 at low and high temperatures.
Although the method of applying the NO x purification rate determined from the detected value of the NO x catalyst has been described as an example, as the purification state of the NO x catalyst 19,
It is also possible to directly apply the detection value of the NO x sensor 22. That is, instead of the average of {(cnox−b) / cnox}, the NO x detected by the NO x sensor 22 during a seconds (see FIG. 6) after A seconds elapse from the rich spike.
The average (or primary filter value) of the density (detected value b) is defined as the density δa in the purified state.

【0053】そして、(1)式(ε=εa・k)と同様
に、 δ=δa・k・・・(2) に基づいて、a秒間の間(図6参照)における低温時の
NOx の濃度δL及び高温時の濃度δHがそれぞれ演算さ
れ、濃度δL及び濃度δHの比や差に応じて劣化の状況
値Dが設定される。そして、劣化の状況値Dと劣化判定
値dとを比較してNOx 触媒19の劣化を判定する。尚、
前述同様に、車両の走行距離が少なく(もしくはSパー
ジ運転の直後)、NOx 触媒19が劣化していない状態の
低温時のNO x の濃度δfL及び高温時の濃度δfHを用
いることも可能である。
Then, as in the equation (1) (ε = εa · k),
Δ = δa · k (2) based on
NOxΔL and δH at high temperature are calculated respectively.
And the state of deterioration according to the ratio or difference between the concentration δL and the concentration δH.
The value D is set. Then, the deterioration status value D and the deterioration determination
NO by comparing with the value dxThe deterioration of the catalyst 19 is determined. still,
As described above, the traveling distance of the vehicle is small (or S
Immediately after operation), NOxWhen the catalyst 19 is not deteriorated
NO at low temperature xConcentration δfL and high temperature concentration δfH
It is also possible.

【0054】NOx センサ22の検出値をそのまま適用し
た場合、簡単な制御により、NOx センサ22の固体ばら
つきや機関の固体ばらつき等でNOx センサ22の検出値
が異なっていたり、経時変化によりNOx センサ22の検
出値が漸次変化しても、正確にNOx 触媒19の劣化を判
定することができる。
[0054] When applied as a detection value of the NO x sensor 22, by a simple control, or have different detection value of the NO x sensor 22 in a solid dispersion or institutions solid variations in of the NO x sensor 22, by aging even detection value progressively changes of the NO x sensor 22, it is possible to determine accurately the deterioration of the NO x catalyst 19.

【0055】上述した筒内噴射エンジン1では、リッチ
スパイク後のリーン運転時における温度センサ21及び
NOx センサ22の検出情報に基づいてNOx 触媒19の劣
化が判断されるようになっているが、リッチスパイク中
の所定期間における低温時のNOx の浄化率及び高温時の
NOx の浄化率を演算し、または、低温時のNOx の濃度及
び高温時の濃度を演算し、浄化率やNOx の濃度に基づい
て前述と同様にNOx 触媒19の劣化を判断するようにし
てもよい。
In the in-cylinder injection engine 1 described above, the temperature sensor 21 and the temperature sensor 21 during the lean operation after the rich spike are operated.
While the deterioration of the NO x catalyst 19 based on the detection information of the NO x sensor 22 is adapted to be determined, purification efficiency and at high temperature of low temperature of the NO x in a predetermined period during the rich spike
Calculates the purification rate of the NO x, or calculates the concentration and concentration at high temperature of the NO x at low temperatures, to determine the deterioration of the NO x catalyst 19 in the same manner as described above based on the concentration of the purification rate and NO x You may do so.

【0056】リッチスパイク中は、リーン運転時にNOx
触媒19に吸蔵されたNOx が還元されてN2となって放出
されるが、実際にはNOx が一度にでるため、全てのNOx
をN2に還元することはできず、ある程度はNOx のままNO
x 触媒19から放出される。この時放出されるNOx の量
はNOx 触媒19に吸蔵されているNOx の量に比例するた
め、NOx 触媒19が劣化している前は吸蔵されているNO
x の量が多いのでリッチスパイク中のNOx の放出量は多
くなり、NOx 触媒19が劣化すると吸蔵されるNOx の量
が少ないのでリッチスパイク中のNOx の放出量は少なく
なる。
During a rich spike, NO x during lean operation
The NO x stored in the catalyst 19 is reduced and released as N 2. However, since NO x comes out at once, all the NO x
The can not be reduced to N 2, while NO in some extent NO x
x Released from the catalyst 19. Since the amount of the NO x to be the time release is proportional to the amount of the NO x occluded in the the NO x catalyst 19, NO which is before the NO x catalyst 19 has deteriorated is occluded
Since the amount of x is large emissions of the NO x in the rich spike increases, the amount of the NO x which the NO x catalyst 19 is occluded when less deterioration emissions of the NO x in the rich spike is reduced.

【0057】このため、リッチスパイク中にNOx 触媒1
9の劣化を判定する場合は、リーン運転中とは逆の劣化
するとNOx の放出量が少なくなるという現象によってNO
x 触媒19が劣化していると判定される。
Therefore, during the rich spike, the NO x catalyst 1
When determining the deterioration of the 9, NO by a phenomenon that the amount released in the reverse degradation to the NO x is reduced and during the lean operation
It is determined that the x catalyst 19 has deteriorated.

【0058】従って、リッチスパイク中に判定する方法
であっても、NOx センサ22の固体ばらつき等で検出値
が異なっていたり、経時変化によりNOx センサ22の検
出値が漸次変化しても、正確にNOx 触媒19の劣化を判
定することができる。
[0058] Therefore, even if a method for determining during the rich spike, or have detected value differs solid variations in of the NO x sensor 22, even if the gradual change in the detection value of the NO x sensor 22 due to aging, The deterioration of the NO x catalyst 19 can be accurately determined.

【0059】尚、上述したNOx 触媒19の劣化の判定
は、吸蔵型のNOx 触媒19を備えた内燃機関であれば、
ディーゼルエンジン等様々な態様の内燃機関に適用する
ことが可能である。
[0059] Incidentally, the determination of deterioration of the NO x catalyst 19 described above, if the internal combustion engine equipped with a the NO x catalyst 19 of the occlusion-type,
It can be applied to various types of internal combustion engines such as a diesel engine.

【0060】[0060]

【発明の効果】本発明の内燃機関は、機関の排気通路に
設けられ酸素過剰雰囲気中で排気中のNOx を吸蔵すると
共に酸素濃度低下雰囲気中で吸蔵したNOx を放出するNO
x 触媒の下流における排気中のNOx 濃度をNOx センサで
検出すると共に、NOx 触媒の温度を温度特定手段で特定
し、劣化判定手段によりNOx センサ及び温度特定手段の
経時情報に応じたNOx 触媒における低温時及び高温時の
NOx の浄化状態に基づいてNOx 触媒の劣化を判定するよ
うにしたので、NOx 触媒の温度情報に応じたNOxセンサ
の相対的な検出値によってNOx 触媒の劣化が判定でき
る。
The internal combustion engine of the present invention exhibits, release the occluded NO x in an oxygen concentration reduction atmosphere while absorbing the NO x in the exhaust in provided an oxygen-rich atmosphere in the exhaust passage of the engine NO
The concentration of NO x in the exhaust downstream of x catalyst and detects in NO x sensor, identified by the temperature specifying means the temperature of the NO x catalyst, in accordance with the time information of the NO x sensor and the temperature specifying means by the deterioration determination means at low temperature and high temperature in the NO x catalyst
Since so as to determine the deterioration of the NO x catalyst on the basis of the purification state of the NO x, it can be determined deterioration of the NO x catalyst by the relative detection value of the NO x sensor according to the temperature information of the NO x catalyst.

【0061】この結果、NOx センサの状態に拘らずNOx
触媒の劣化を常に正確に判定することが可能となり、NO
x の排出量を常に正確に低減することができ、酸素過剰
雰囲気域での運転領域を広げて燃費の更なる向上が可能
となる。
As a result, regardless of the state of the NO x sensor, NO x
It is possible to always accurately determine the deterioration of the catalyst, NO
The amount of x emission can always be accurately reduced, and the operating range in an oxygen-excess atmosphere region can be widened to further improve fuel efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例に係る内燃機関の概略構
成図。
FIG. 1 is a schematic configuration diagram of an internal combustion engine according to an embodiment of the present invention.

【図2】燃料噴射制御マップ。FIG. 2 is a fuel injection control map.

【図3】Sパージ運転の全体状況を表すフローチャー
ト。
FIG. 3 is a flowchart showing the overall situation of the S purge operation.

【図4】劣化判定処理を表すフローチャート。FIG. 4 is a flowchart illustrating a deterioration determination process.

【図5】劣化判定処理を表すフローチャート。FIG. 5 is a flowchart illustrating a deterioration determination process.

【図6】劣化判定処理における空燃比とNOx 濃度の経時
変化を表すグラフ。
[6] Graph representing changes with time of the air-fuel ratio and the concentration of NO x in the deterioration determination process.

【図7】劣化判定処理における低温時及び高温時の浄化
率の変化を表すグラフ。
FIG. 7 is a graph showing a change in a purification rate at a low temperature and at a high temperature in a deterioration determination process.

【符号の説明】[Explanation of symbols]

1 筒内噴射エンジン 16 触媒 19 NOx 触媒 20 三元触媒 21 温度センサ 22 NOx センサ 23 電子制御ユニット1 cylinder injection engine 16 catalyst 19 NO x catalyst 20 three-way catalyst 21 the temperature sensor 22 NO x sensor 23 Electronic control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機関の排気通路に設けられ酸素過剰雰囲
気中で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲
気中で吸蔵したNOx を放出するNOx 触媒と、前記NOx
媒の下流における前記排気通路に設けられ排気中のNOx
濃度を検出するNOx センサと、前記NOx 触媒の温度を特
定する温度特定手段と、前記NOx センサ及び前記温度特
定手段の経時情報に応じた前記NOx 触媒における高温時
及び低温時のNOx の浄化状態に基づいて前記NOx 触媒の
劣化を判定する劣化判定手段とを備えたことを特徴とす
る内燃機関。
1. A and the NO x catalyst to release the occluded NO x in an oxygen concentration reduction atmosphere while absorbing the NO x in the exhaust in an oxygen-rich atmosphere is provided in an exhaust passage of the engine, downstream of the the NO x catalyst NO x in the exhaust is provided in the exhaust passage in
And NO x sensor for detecting the concentration, the NO x and the temperature specifying means for specifying the temperature of the catalyst, the NO x sensor and NO at high temperature and low temperature in the the NO x catalyst in accordance with the time information of the temperature specifying means internal combustion engine, characterized in that a degradation determiner means deterioration of the the NO x catalyst on the basis of the state of purification x.
JP10029477A 1998-02-12 1998-02-12 Internal combustion engine Withdrawn JPH11229859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029477A JPH11229859A (en) 1998-02-12 1998-02-12 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029477A JPH11229859A (en) 1998-02-12 1998-02-12 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11229859A true JPH11229859A (en) 1999-08-24

Family

ID=12277177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029477A Withdrawn JPH11229859A (en) 1998-02-12 1998-02-12 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11229859A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754464A (en) * 1993-08-13 1995-02-28 Matsushita Electric Works Ltd Fitting structure of stone
WO2001049994A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating a storage catalyst of an internal combustion engine
WO2001049990A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating a three-way catalyst of an internal combustion engine
EP2031201A1 (en) * 2006-05-24 2009-03-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification system of internal combustion engine
DE10300555B4 (en) * 2002-01-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A deterioration determination device for an engine exhaust gas control device and deterioration determination method
WO2014002866A1 (en) * 2012-06-28 2014-01-03 ボッシュ株式会社 Abnormality diagnosis device, and exhaust purification device of internal combustion engine
KR101509750B1 (en) * 2013-12-03 2015-04-07 현대자동차 주식회사 Determining Apparatus of Selective Catalytic Reduction Catalyst Aging and Method thereof
JP2016044659A (en) * 2014-08-26 2016-04-04 トヨタ自動車株式会社 Internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754464A (en) * 1993-08-13 1995-02-28 Matsushita Electric Works Ltd Fitting structure of stone
WO2001049994A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating a storage catalyst of an internal combustion engine
WO2001049990A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating a three-way catalyst of an internal combustion engine
US6550236B1 (en) 1999-12-31 2003-04-22 Robert Bosch Gmbh Method for operating a three-way catalyst of an internal combustion engine
DE10300555B4 (en) * 2002-01-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A deterioration determination device for an engine exhaust gas control device and deterioration determination method
EP2031201A1 (en) * 2006-05-24 2009-03-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification system of internal combustion engine
EP2031201A4 (en) * 2006-05-24 2010-03-31 Toyota Motor Co Ltd Exhaust emission purification system of internal combustion engine
WO2014002866A1 (en) * 2012-06-28 2014-01-03 ボッシュ株式会社 Abnormality diagnosis device, and exhaust purification device of internal combustion engine
JP5837197B2 (en) * 2012-06-28 2015-12-24 ボッシュ株式会社 Abnormality diagnosis device and exhaust gas purification device for internal combustion engine
KR101509750B1 (en) * 2013-12-03 2015-04-07 현대자동차 주식회사 Determining Apparatus of Selective Catalytic Reduction Catalyst Aging and Method thereof
JP2016044659A (en) * 2014-08-26 2016-04-04 トヨタ自動車株式会社 Internal combustion engine
US10317328B2 (en) 2014-08-26 2019-06-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Similar Documents

Publication Publication Date Title
JP3067685B2 (en) Exhaust purification system for spark ignition type direct injection type internal combustion engine
US6588205B1 (en) Exhaust gas purifying apparatus
US6907862B2 (en) Combustion control apparatus for internal combustion engine
JPH11280452A (en) Exhaust emission control device for engine
JP3769944B2 (en) Exhaust gas purification device for internal combustion engine
US7454895B2 (en) Diagnosing an aftertreatment system with a nonthermal plasma discharge device coupled to a lean burn engine
JP4244562B2 (en) Exhaust gas purification device for internal combustion engine
JPH11229859A (en) Internal combustion engine
WO2011055456A1 (en) Controller for internal combustion engine
JP6278344B2 (en) Engine exhaust purification system
JPH10274085A (en) Exhaust emission control device for inter-cylinder injection type internal combustion engine
KR100408757B1 (en) Exhaust gas cleaning device of internal combustion engine
JP6270247B1 (en) Engine exhaust purification system
US7114324B2 (en) Method for operating a lean burn engine with an aftertreatment system including nonthermal plasma discharge device
JP4161429B2 (en) Lean combustion internal combustion engine
JPH11229864A (en) Exhaust emission control device of internal combustion engine
JP3334593B2 (en) Internal combustion engine
JP3867182B2 (en) Internal combustion engine
JPH11229858A (en) Internal combustion engine
JPH11315713A (en) Exhaust purification controlling device for engine
JP3815023B2 (en) Internal combustion engine
JP3634167B2 (en) Exhaust gas purification device for internal combustion engine
JPH10266884A (en) Exhaust emission control device of lean-burn internal combustion engine
JP6270245B1 (en) Engine exhaust purification system
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510