JP3670641B2 - 位置決め制御装置 - Google Patents

位置決め制御装置 Download PDF

Info

Publication number
JP3670641B2
JP3670641B2 JP2002347351A JP2002347351A JP3670641B2 JP 3670641 B2 JP3670641 B2 JP 3670641B2 JP 2002347351 A JP2002347351 A JP 2002347351A JP 2002347351 A JP2002347351 A JP 2002347351A JP 3670641 B2 JP3670641 B2 JP 3670641B2
Authority
JP
Japan
Prior art keywords
signal
speed
motor
deviation
feedforward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002347351A
Other languages
English (en)
Other versions
JP2004178520A (ja
Inventor
貞雄 紙本
Original Assignee
日本リライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本リライアンス株式会社 filed Critical 日本リライアンス株式会社
Priority to JP2002347351A priority Critical patent/JP3670641B2/ja
Publication of JP2004178520A publication Critical patent/JP2004178520A/ja
Application granted granted Critical
Publication of JP3670641B2 publication Critical patent/JP3670641B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はモータの位置決め制御装置に関し、より詳細には、フィードバック補償およびフィードフォワード補償を行う位置決め制御装置に関するものである。
【0002】
【従来の技術】
長尺物(以下、シートと呼ぶ)を移動させる回転系のモータの位置決め制御装置を用いたシートフィードストップ型シートカッティングシステムを、図2にもとづいて説明する。
【0003】
このシステムは、モータ2によって駆動される主軸6にシート1を介して圧接するピンチロール7によってシート1に一定の送りをかけ停止させ、停止後たとえばシート1を切断するシャー工程を含むシステムである。さらに詳しく説明すると、このシステムはシート1が巻き取られた巻出しロール8、走行するシート1の移動量を検出するための測長ロール10、シート1を測長ロール10に押しつける押えロール11によって押圧された測長ロール10の軸に備えられた移動量を検出するためのパルスジェネレータ(PG)3、主軸6、ピンチロール7、モータ2、モータ2の回転速度を検出するためのパルスジェネレータ(PG)4、予めシャー9で切断するシート1の切断長さを入力設定するためのシート切断長設定器12、制御装置38から構成される。
【0004】
制御装置38は、長さ設定器12により、切断される長さに相当するパルス信号を入力信号として演算処理されたシートの切断長さ指令信号と、モータ2の実角速度信号から成る速度フィードバック信号と、シートの実位置信号から成る位置フィードバック信号とを入力して演算処理し、アンプ16を経由してモータ2の速度並びに位置を制御するようになっている。
【0005】
制御装置38について、図6〜図8にもとづいてさらに説明する。
【0006】
図6は、従来の制御装置38の構成を示す図である。図7は、制御装置38を伝達関数で表わしたブロック線図である。図6、図7を説明する前に、図6の制御系が成立すべく背景を説明する。図8は、一般的なフィードバックループ制御系を有する制御装置39の構成を示す図である。図9(A)は、図8の制御装置39を伝達関数で表わしたブロック線図である。図9(B)は、制御装置39を伝達関数で表わしたブロック線図を等価変換したブロック線図である。なお、図9(A),図9(B)のブロック線図において物理量をそのまま使用せずに正規化表現とした。なお、正規化とは、ある特性値をその特性の定格値で割り算して無次元化する手法である。なお、図7、図9(A)において、sはラプラス演算子である。
【0007】
従来のフィードバックループ制御系を有するモータ2を制御する制御装置39の構成について、図8にもとづいて説明する。
【0008】
モータ2を制御する制御装置39は、位置制御器101、速度制御器102、減算器105,106,107から構成される。位置制御器101は、位置フィードバックループ内でレゾルバやエンコーダ等の位置検出器104で検出された制御対象22(モータとその負荷)の実位置信号xと、位置指令設定器100からの位置指令信号x* との位置偏差εP が零になるように角速度指令信号ω* を決定し、位置フィードバックループにより制御対象22の位置を制御する。
【0009】
速度制御器102は、速度フィードバックループ内でエンコーダ等の速度検出器103で検出したモータの回転数から演算された実角速度ωと角速度指令信号ω* との角速度偏差εV が零になるように電流指令値I* を決定する。モータは電流フィードバックループ内で図示しない電流検出器が検出したモータ電流と速度制御器102からの電流指令値I* との電流偏差εI が零になるように電流制御される。
【0010】
モータの実角速度信号ωが角速度指令信号ω* に一致すると、モータに印加する電流値が零となりモータの発生トルクが零となり加速しなくなる。すなわち、モータ2の角速度がある目標値に定速制御される。
【0011】
ここでフィードバックループ制御系のみを有する制御装置39にフィードフォワード補償を加えることによって、位置指令信号x* に対する制御対象の追従性を高めるために、目標値フィードフォワードを実施することが提案されている(非特許文献1参照)。
【0012】
すなわち、まずフィードフォワード補償がない場合の制御対象22の現在位置を指す出力信号の入力信号(いわゆる位置指令信号を指す)に対する伝達関数を求め、その伝達関数の逆数を前置補償とし伝達関数の前に追加し、最終的に全体の伝達関数を求める。ここで全体の伝達関数が1となれば、制御対象22の現在置を指す出力信号が、入力信号に対し時間遅れなく入力信号と全く同一の信号となり得る。たとえば、入力信号としてステップ信号が入力されたとき、その出力信号はステップ信号に対し全く遅延することなく応答できることになる。すなわち、原理的に出力信号はステップ信号を完全に復元できるはずである。
【0013】
しかし実際上、制御装置39に入力する入力信号はノイズ成分を含むこと、制御対象22が機械的な時定数を持つことなどの理由により、全体の伝達関数が1となり得ない。すなわち、出力信号は入力信号と同一の動作特性となり得ず、入力信号を完全に復元することができない。
【0014】
そこで実際上、制御装置39に入力信号が印加されたとき、制御対象22の過渡特性を安定に維持し整定時間が短縮できるような方法の一つとして、全体の伝達関数が1でなく1次遅れ系の伝達関数となるような制御が考えられる。
【0015】
ところで、図9(B)は、図9(A)における位置指令信号x* の代りに速度指令v* となるように等価変換したブロック線図である。なお、図9(A)において、110は位置ループゲイン、111は速度ゲイン、112は積分器を示す。図9(B)の等価変換されたブロック線図は、フィードバックループ制御系を有する制御装置39の伝達関数を、速度指令信号v* を入力信号とし、モータの実角速度ωを出力信号とする伝達関数に変換したものに相当する。
【0016】
図6に戻り、全体の伝達関数が1次遅れ系となる制御系の構成について説明する。
【0017】
制御装置38は、加速度フィードフォワード補償器23、速度フィードフォワード補償器24、位置ループゲイン制御器20、速度制御器21、第1の減算器27、第2の減算器28、第1の加算器29、第2の加算器30から構成される。
【0018】
加速度フィードフォワード補償器23は、速度指令信号v* を入力信号とし、速度指令信号を微分しさらに制御対象の同定慣性モーメントを乗じ演算された加速度フィードフォワード信号affを出力する。速度フィードフォワード補償器24は、速度指令信号v* を入力信号とし、速度指令信号に速度フィードフォワード係数を乗じ演算された速度フィードフォワード信号vffを出力する。減算器27は、速度指令信号v* から、モータ2の実角速度信号に相当する速度フィードバック信号vfbを減算し、第1の速度偏差信号ε1を、位置ループゲイン制御器20に入力する。制御器20は、第1の速度偏差信号を積分し得られた信号に第1のループゲイン定数を乗じ演算された角速度信号ω1を出力する。加算器29は、速度フィードフォワード信号Vffと角速度信号ω1とを加算して、角速度指令信号ω1* を、減算器28に入力する。減算器28は、角速度指令信号ω1* から速度フィードバック信号Vfbを減算し、第2の速度偏差信号ε2を、速度制御器21に入力する。速度制御器21は、第2の速度偏差信号に速度ゲインを乗じ演算された第1のトルク信号t1を、加算器30に入力する。加算器30は、加速度フィードフォワード信号affとトルク信号t1とを加算し、トルク信号t4を出力する。このトルク信号t4により、モータ2を駆動し、モータ2の速度および位置を制御する。
【0019】
次に、制御装置38の伝達関数について、図7にもとづいて説明する。
【0020】
なお、図7において、τ1 は目標値応答遅れ時定数、Jm は制御対象の同定慣性モーメント、Jは制御対象の慣性モーメント、αは速度フィードフォワード係数、βは加速度フィードフォワード係数、Kpp は第1の位置ループゲイン定数(偏差値大の時の位置ループゲイン定数)、Kv は速度ゲインである。
【0021】
まず速度指令信号v* は、シート切断長設定器12により設定されたシート切断長にもとづく演算処理によって求める。この速度指令信号v* は、通常ノイズ成分を含む。このノイズ成分が速度指令信号v* に存在すると、速度指令信号v* を入力し演算処理した場合、モータ2の実角速度信号が安定かつ精度のよい信号とならないため、モータ2の実角速度に速度誤差を生じる。
【0022】
そこで、加速度フィードフォワード系の伝達関数43によって、速度指令信号v* を低域通過型濾波器に通し信号処理を行ないノイズ成分が低減された信号を得る。その後、ノイズ成分が低減された速度指令信号v* に制御対象22の同定慣性モーメントを乗算処理し得られた信号を微分演算処理し、この演算処理の結果に加速度フィードフォワード係数βを乗じ演算された加速度フィードフォワード信号affを出力する。また速度フィードフォワード補償系の伝達関数44によって速度指令信号v* を低域通過型濾波器に通す信号処理を行ない、ノイズ成分が低減された信号に速度フィードフォワード係数αを乗算処理された速度フィードフォワード信号vffを出力する。そして位置ループゲイン制御系の伝達関数40によって、第1の速度偏差ε1に位置ループゲイン定数Kppを乗算処理して得られた第1の角速度信号ω1を出力し、速度制御系の伝達関数によって第2の速度偏差ε2に速度ゲイン定数Kv を乗算処理して得られたトルク信号t1を出力し、加速度フィードフォワード信号affとトルク信号t1とを加算処理して得られたトルク信号t4によって、モータ2を駆動し、モータ2の速度および位置を制御する。
【0023】
次に、制御装置38への入力信号を速度指令信号v* とし、この信号に対するモータ2の実角速度信号ωの伝達関数を求めると、次式のようになる。
【0024】
【数1】
ω/v* =A×C/B(ただしβ=1とする)
ここで、A:1+(τ1+α0 /KPP)s+Tm ×s2 /KPP
B:1+s/KPP+T×s2 /KPP
C:1/(1+τ1 s)
m は同定慣性モーメントから求めた機械時定数、Tは機械時定数である。
ここでTm =T、α0 =1−KPPτ1 として上式を整理すると
【0025】
【数2】
ω/v* =1/(1+τ1 s)
となる。
【0026】
すなわち、一般的にモータ2の速度および位置のフィードバックループを有する位置決め制御系に、加速度フイードフォワード要素および速度フィードフォワード要素を付加し、かつ位置ループゲイン定数KPP、目標値応答遅れ時定数τ1 、機械時定数T、同定慣性モーメントから求めた機械時定数Tm 、加速度フイードフォワード係数βおよび速度フィードフォワード係数αを前記条件下におくと、位置決め制御系全体の伝達関数を1次遅れ系の伝達関数にすることができる。
【0027】
したがって、一般的にモータ2の実角速度信号の過渡特性は、例えば入力信号としてステップ信号を印加したとき、その出力信号は振動することなく追従性が高められることになる。
【0028】
【非特許文献1】
藤田純、“フィードフォワード補償による高速高精度加工”、東芝機械技報No.17、April 1997
【0029】
【発明が解決しようとする課題】
しかしながら、制御装置38において、入力信号に対し低域通過型濾波器によりノイズ対策が施されたとしても、従来システム全体の伝達関数の分母式中にラプラス演算子の高次項を含むため、速度指令信号v* を演算処理して得られる出力信号、すなわち、モータ2の実角速度信号ωに速度誤差を生じる。結局、モータ2の実角速度信号ωが充分補償できなくなる。さらにモータ2の実角速度信号ωが、位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差に等しいかまたはより大きいところでは、演算による速度誤差を許容できる場合があるが、しかし、モータ2の実角速度信号ωが位置決め完了近傍に予め設定されたモータの定格角速度に対する偏差より小さいところでは、演算による速度誤差がさらに大きくなり許容できない。ここまで速度制御について触れてきたが、位置制御についても同様である。
【0030】
このようなことから、モータ2の実角速度信号ωが位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差に等しいかまたはより大きいところに比べ、モータ2の定格角速度に対する偏差より小さい方がラプラス演算子の高次項を含む全体の伝達関数にもとづく演算処理されたモータ2の速度および位置の誤差の比率が相対的に大きくなる。
【0031】
結局、位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差が小さいところでは、モータ2の実角速度を正確に補償することが困難である。言い換えれば、モータ2の位置を正確に補償することが困難となる。すなわち、従来システムの場合、位置決め完了近傍では位置偏差が小さくなり、この近傍での位置補償が充分達し得ず、モータ2の整定時間の短縮化をはかることが困難となる。
【0032】
したがって、本発明の目的は、モータの速度および位置の制御の安定化を維持しつつ、整定時間の短縮が行える位置決め制御装置を提供することにある。
【0033】
【課題を解決するための手段】
本発明は、位置および速度のフィードバックループを有し、物体を移動させるモータの位置決め制御装置において、
速度指令信号を微分しさらに制御対象の同定慣性量を乗じ演算された加速度フィードフォワード信号を出力する加速度フィードフォワード補償器と、
前記速度指令信号に速度フィードフォワード係数を乗じ演算された速度フィードフォワード信号を出力する速度フィードフォワード補償器と、
前記速度指令信号からモータの実速度にもとづく速度フィードバック信号を減算し第1の速度偏差信号を出力する第1の減算器と、
前記第1の速度偏差信号を積分し得られた信号に第1の位置ループゲイン定数を乗じ演算された第1の速度信号を出力する第1の位置ループゲイン制御器と、
前記第1の速度偏差信号を積分し得られた信号に第2の位置ループゲイン定数を乗じ演算された第2の速度信号を出力する第2の位置ループゲイン制御器と、
前記第1の速度信号と前記速度フィードフォワード信号とを加算し、第1の速度指令信号を出力し、または前記第2の速度信号を第2の速度指令信号として出力する第1の加算器と、
前記第1または第2の速度指令信号から前記速度フィードバック信号を減算し第2の速度偏差信号を出力する第2の減算器と、
前記第2の速度偏差信号にそれぞれ速度ゲインを乗じ演算された第1のトルク信号または第2のトルク信号を出力する速度制御器と、
前記第1の速度偏差信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性量を乗じ演算された第3のトルク信号を出力する位相補償器とを備え、
前記第1のトルク信号と前記加速度フイ―ドフォワード信号を、または前記第2のトルク信号と前記第3のトルク信号をそれぞれ加算し演算されたそれぞれの出力信号により、前記モータを駆動し、
前記モータの実速度が、位置決め完了近傍に予め設定された前記モータの定格速度に対する偏差に等しいまたはより大きいとき、前記第1の位置ループゲイン制御器と前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器で前記モータの速度、位置を制御し、前記モータの実速度が前記偏差より小さいとき前記第2の位置ループゲイン制御器と前記位相補償器で前記モータの速度、位置を制御することを特徴とする。
【0034】
これにより、位置決め完了近傍で位相補償を加えて位置ループゲインを高くすることにより前記モータの安定動作を得ながら整定時間を短縮できる。
【0035】
さらに、好適には前記位相補償器が、前記速度偏差信号を濾波する一次遅れ系の低域通過型濾過器と、前記低域通過型濾過器の出力信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性量を乗じる演算器とからなる。
【0036】
さらに、好適には前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器とは、それぞれ一次遅れ系の低域通過型濾過器を有する。
【0037】
【発明の実施の形態】
以下に図面を使って、本発明の実施の形態を説明する。
【0038】
図1は、本発明に係る位置決め制御装置5の一実施の形態を示す構成図である。位置決め制御装置5は、加速度フィードフォワード補償器23、速度フィードフォワード補償器24、第1の位置ループゲイン制御器20、速度制御器21、第2の位置ループゲイン制御器25、位相補償器26、第1の減算器27、第2の減算器28、第1の加算器29、第2の加算器30、スイッチ31,32,33,34,35から構成される。
【0039】
図4は、位相補償器26の構成を示す。位相補償器26は、低域通過型濾波器(LPF)37と、同定慣性モーメントJm を乗算する乗算器と、第2の位置ループゲイン定数KP を乗算する乗算器とから構成されている。
【0040】
回転系のモータ2の実角速度が位置決め完了近傍に予め設定されたモータの定格角速度に対する偏差に等しいかまたはより大きい(図11において大なる領域を指す。例えばモータ2の定格角速度が105ラジアン/秒であり、かつ予め決められた偏差が2%とするとモータ2の実角速度が2.1ラジアン/秒以上から105ラジアン/秒以下の範囲である)とき、図示しない切替え器によりスイッチ31,32,33のみがオンになり、以下の制御要素、すなわち、加速度フィードフォワード補償器23、速度フィードフォワード補償器24、第1の位置ループゲイン制御器20が選択され接続される(モードの切替え)。この場合の各制御要素の動作について従来技術の項で説明した内容と同様であるので省略する。
【0041】
一方、モータ2の実角速度が位置決め完了近傍に予め設定されたモータの定格角速度に対する偏差より小さい(図11において小なる領域を指す。例えばモータ2の定格角速度が105ラジアン/秒であり、かつ予め決められた偏差が2%とするとモータ2の実角速度がゼロラジアン/秒以上から2.1ラジアン/秒未満の範囲である)とき、図示しない切換え器によりスイッチ34,35がオンになり、以下の制御要素、すなわち、第2の位置ループゲイン制御器25、位相補償器26が選択され、接続される(モードの切替え)。
【0042】
次に、第2の位置ループゲイン制御器25および位相補償器26の各制御要素の動作について、図1にもとづいて説明する。第2の位置ループゲイン制御器25は、第1の減算器27において得られた速度指令信号v* とモータ2の実角速度信号ωにもとづく速度フィードバック信号vfbとの第1の速度偏差信号ε1を入力信号とし、第1の速度偏差信号ε1を積分し得られた信号に第2の位置ループゲイン定数を乗じて得られた第2の角速度信号ω2を出力する。加算器29は、第2の角速度信号ω2を第2の角速度指令信号ω2* とし、これを減算器28に入力する。減算器28では、この第2の角速度指令信号ω2* とモータ2の実角速度信号にもとづく速度フィードバック信号vfbとを減算し得られた第2の速度偏差信号ε2を速度制御器21に入力する。速度制御器21は、入力された第2の速度偏差信号ε2に速度ゲインKvを乗じて第2のトルク信号t2を出力する。位相補償器26は、第1の速度偏差信号ε1を入力信号とし、この速度偏差信号ε1に第2の位置ループゲイン定数Kpと制御対象22の同定慣性モーメントJm を乗じ演算して得られた第3のトルク信号t3を出力する。第2のトルク信号t2と第3のトルク信号t3を第2の加算器30に入力し、加算により得られたトルク信号t4によってモータ2を駆動し、モータ2の速度および位置を制御する。
【0043】
次に、制御装置5のブロック線図について図3にもとづいて説明する。モータ2の実角速度が位置決め完了近傍に予め設定されたモータの定格角速度に対する偏差に等しいかまたはより大きいときについては従来技術の項で述べたので省略する。
【0044】
モータ2の実角速度が位置決め完了近傍に予め設定されたモータの定格角速度に対する偏差より小さいときについてのみ説明する。
【0045】
なお図3において、Kp は第2の位置ループゲイン定数(偏差値小の時の位置ループゲイン定数)、τmax はフィルター時定数である。
【0046】
図3において第2の位置ループゲイン制御系の伝達関数45は第1の速度偏差信号ε1を入力信号として積分し、さらに第2の位置ループゲイン定数KP を乗じて得られる第2の角速度信号ω2を出力する。位相補償系の伝達関数46は、第1の速度偏差信号ε1を入力信号とし、この入力信号に含む高周波数成分を低減するように1次の低域通過型濾波器37により信号処理し、さらに第2の位置ループゲイン定数KP と同定慣性モーメントJm を乗じ演算して得られる第3のトルク信号t3を出力する(図4参照)。第2のトルク信号t2と第3のトルク信号t3とを第2の加算器30に入力し加算して得られたトルク信号t4によってモータ2を駆動し、モータの位置および速度を制御する。
【0047】
この制御装置では、モータ2の実角速度が位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差に等しいかまたは大きいとき、この例では偏差が2%に等しいかまたはより大きいときに、第1の位置ループゲイン制御器20と加速度フィードフォワード補償器23と速度フィードフォワード補償器24とを用いて、モータ2を駆動しモータ2の速度および位置を制御する。
【0048】
一方、モータ2の実角速度が位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差より小さいとき、この例では偏差が2%より小さいとき、第2の位置ループゲイン制御器25と位相補償器26とを用いて、モータ2を駆動しモータ2の速度および位置を制御する。
【0049】
この場合、制御装置5の制御によるモータ2の出力信号(実角速度信号ω)の入力信号(速度指令信号v* )に対する伝達関数ω/v* を求めると以下のようになる。
【0050】
【数3】
Figure 0003670641
【0051】
ここで Tm =Jm /Kv 、T=J/Kv であるから前記D,Eはそれぞれ
【0052】
【数4】
Figure 0003670641
【0053】
となる。
【0054】
また先に記述した位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差によって規定されるモード切替え点の速度δは、
【0055】
【数5】
|v* |/(1+τ1 s)=δ
である。
【0056】
そのモード切替え点におけるモータ2の実角速度ωは
【0057】
【数6】
ω=v* /(1+τ1 s)=δ
となる。
【0058】
そのモード切替え点における速度フィードフォワード量ωF* に対し
【0059】
【数7】
ωF* =v* /(1+τ1 s)×α0 =α0 δ
が成立する。ただし、α0 は速度フィードフォワード有りの時のゲインである。
【0060】
その切替え点における偏差をε0 とするとフィードフォワード制御の考え方から
【0061】
【数8】
ε0 PP=ω−ωF*
が成立する。
【0062】
したがって、上式数5,数6,数7と、|v* |/(1+τ1 s)=δにおける境界条件により
【0063】
【数9】
ε0 PP=(1-α0 )δ
が成立する。
【0064】
同様に
【0065】
【数10】
ε0 P =(1-α1 )δ
となる。ただし、α1 は速度フィードフォワードなしの時のゲインである。
【0066】
したがって、数9,数10より、モード切替え時にはα1 =0であるから次式が得られる。すなわち、
【0067】
【数11】
P =KPP/(1−α0
また、前述したようにα0 =1−KPPτ1 であるから
【0068】
【数12】
P=1/τ1
が得られる。
さらにTm =T、τmax ≪Tm 、τmax ≪τ1 とすると、
【0069】
【数13】
ω/v* ≒1/(1+τ1 s)
となる。
【0070】
ここで仮に数13にもとづく伝達関数を有する制御系に単位ステップ入力が印加されると、いわゆる1次遅れ系のステップ応答、すなわち制御量の応答は入力ステップ印加時よりτ1 秒後において、最終値の63.2%に達する。したがって、単位ステップ入力が印加されると、この1次遅れ系伝達関数のため振動が発生しない、かつ安定した制御が補償される。すなわち、シートの走行動作が安定し、かつ整定時間が短縮されることになる。
【0071】
また第1および第2の位置ループゲイン定数KPP、KP の関係は、減衰係数をζとすると
【0072】
【数14】
Figure 0003670641
【0073】
したがって、
【0074】
【数15】
PP=1/4Tm
とおくと、数15と数12とにより
【0075】
【数16】
P /KPP=4Tm /τ1 (Tm ≫τ1
となる。
【0076】
したがって、位相補償器26による位相補償を行なうことにより、第2の位置ループゲイン定数KP を第1の位置ループゲイン定数KPPに比べてより大きくすることができると同時に、モードの切替えを滑らかに動作させることができる。すなわち、位置決め完了近傍で位相補償を加えて位置ループゲインを高くすることにより、安定動作を得ながら整定時間の短縮を実現することができる。
【0077】
なお、本発明はシート1のシステムへの適用に限らず例えば、走行するシート1に同期して、シート1を切断するいわゆるロータリーカッタを制御するモータの位置決め制御装置にも適用が可能である。すなわち、モータ2により駆動されるロータリカッターにおけるモータ2の実角速度が位置決め近傍に予め設定された定格角速度(例えば52.5ラジアン/秒)に対する偏差、例えば2%(すなわち、1.05ラジアン/秒)に等しいかまたはより大きい(図12において大なる領域を指す)とき、第1の位置ループゲイン制御器20と加速度フィードフォワード補償器23と速度フィードフォワード補償器24とで、モータ2を駆動しモータ2の速度を制御し、一方、モータ2の実角速度の値が予め設定されたモータの定格角速度に対する偏差より小さい(図12において小なる領域を指す)とき、第2の位置ループゲイン制御器25と位相補償器26とでモータ2を駆動しモータ2の速度、位置を制御する。
【0078】
次に本実施の形態の位置決め制御装置5のシミュレーションによる動作特性について、図5にもとづいて説明する。
【0079】
図5において、横軸を時間、縦軸を電圧とし、CH1、CH2、CH3は、それぞれ速度指令、トルク指令、位置偏差を示す。この例では、シートの送り速度は160メートル/分、位置偏差を示すグラフは0.977mV/パルスに相当する。本実施の形態では図5に示すように位置偏差は零となる。
【0080】
一方、図10は従来技術を使用したシミュレーションによる動作特性を示す図である。図10の座標軸は図5と同一である。図10に示すように位置決めが収束する際アンダーシュートした後、位置偏差が零に収束する。
【0081】
また両者の整定時間について仮にモード切替え時を基準(モータの定格角速度に対する偏差を基準)にモータによるシートの位置偏差が零に到達するまでの時間と定義すると、いまモード切替え時をモータ2の定格角速度に対する偏差を10%としたとき、本発明、すなわち、モータ2の実角速度が位置決め制御装置における位置決め完了近傍に予め設定されたモータ2の定格角速度に対する偏差より小さいとき、第2の位置ループゲイン制御器25と位相補償器26とを用いてモータ2の速度、位置を制御することにより、図5に示すように0.06秒となる。一方、従来技術では、加速度フィードフォワード補償器23、速度フィードフォワード補償器24、第1の位置ループゲイン制御器20を用いて、モータ2の速度、位置を制御することにより、整定時間が図10に示すようにおよそ0.6秒となる。よって、本発明によれば従来技術に比べて位置決め動作が滑らかで安定かつ整定時間が大幅に短縮できる。
【0082】
以上の実施の形態は、制御対象が回転系のモータの場合について説明した。本発明は、回転系のモータに制限されるものではなく、直線系のリニアモータについても適用できる。
【0083】
図13は、シート1を移動させるリニアモータの位置決め制御装置を用いたシートフィードストップ型シートカッティングシステムを示す。このシステムは、図2に示したシステムにおいて、モータMO の代わりにリニアモータLMO を、ピンチロールおよび主軸の代わりにリニアモータLMO の可動部であるシート固着手段13を用いている。他の構造は、図2に同じであり、同一の構成要素には、同一の参照番号を付して示してある。
【0084】
このシステムでは、シート1をシート固着手段13にて把持または吸着し、リニアモータLM0 がある速度レートで位置および速度制御され位置決めされる。その結果、シート1が予め設定された一定長さだけ送られ停止して、シャー9によりシート1を切断する。シート固着手段13は、シート1の把持または吸着が解除された後、リニアモータLMO がシート送りの原点位置に戻るように位置および速度制御される。
【0085】
一方、位置速度制御系において回転系のモータMO の角速度ω、駆動トルク(電流偏差信号εI に比例する)t、回転系のモータおよびその負荷の慣性量である慣性モーメントJは、それぞれ直線系のリニアモータLM0 の速度v、駆動力(電流偏差信号εI に比例する)f、直線運動のリニアモータ可動部およびその負荷の質量Mに相当することが知られている。
【0086】
図14は、リニアモータLM0 に適用した位置決め制御装置の構成であり、図15はその制御装置を伝達関数で表したブロック図である。図14,図15は基本的に図8,図9(A)の角速度ω、慣性モーメントJの代わりにそれぞれ速度V、質量Mに置換した形となっている。
【0087】
図16は、本実施の形態の位置決め制御装置を伝達関数で表したブロック線図である。このブロック線図は、図15のブロック線図を図9のように等価変換した上で、図3のような加速度フィードフォワード補償、速度フィードフォワード補償、第1の位置ループゲイン制御、第2の位置ループゲイン制御、位相補償なる機能を追加し、図3のブロック線図に示す機能と同一の構成とすることができる。ここで、Mm は制御対象の同定質量である。
【0088】
ここで、リニアモータLM0 の実速度が、位置決め制御装置による位置決め完了近傍に予め設定されたリニアモータLM0 の定格速度に対する偏差に等しいまたはより大きいとき、第1のループゲイン制御器40と加速度フィードフォワード補償器43と速度フィードフォワード補償器44でリニアモータLM0 の速度、位置を制御し、リニアモータLM0 の実速度が上記偏差より小さいとき、第2の位置ループゲイン制御器45と位相補償器46でリニアモータLM0 の速度、位置を制御する。
【0089】
さらに好適には、位相補償器46が速度偏差信号を濾波する一次遅れ系の低域通過型濾波器と、低域通過型濾波器の出力信号に第2の位置ループゲイン定数と制御対象の同定質量を乗じる演算器とからなる。
【0090】
さらに好適には、加速度フィードフォワード補償器43と速度フィードフォワード補償器24とは、それぞれ一次遅れ系の低域通過型濾波器を有する。
【0091】
以上述べたことから、本発明の基本的な考え方がリニアモータLM0 にも適用できることがわかるであろう。
【0092】
【発明の効果】
以上説明したように、本発明によれば、モータの速度が位置決め制御装置における位置決め完了近傍に予め設定された定格速度に対する偏差に等しいかまたはより大きいとき、第1の位置ループゲイン制御器と加速度フィードフォワード補償器と速度フィードフォワード補償器とでモータを駆動し、モータの速度、位置を制御し、モータの速度の値が予め設定された定格速度に対する偏差より小さいとき第2の位置ループゲイン制御器と位相補償器とでモータを駆動しモータの速度、位置を制御することにより、位置決め精度と動作の安定性を維持しながら、位置決め時間の短縮化を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る制御装置の一実施の形態を示す構成図である。
【図2】フィードストップ型カッテイングシステムの構成図である。
【図3】図1の制御装置を伝達関数で表したブロック線図である。
【図4】本発明の構成の一つである位相補償器の構成図である。
【図5】本発明の位置決め制御装置におけるシミュレーションによる動作特性を示す図である。
【図6】従来の位置決め制御装置(フィードバック制御系とフィードフォワード制御系を含む)の構成を示す図である。
【図7】従来の位置決め制御装置を伝達関数で表したブロック線図である。
【図8】図7の構成の背景を説明するためのフィードバック制御系を有する位置決め制御装置の構成を示す図である。
【図9】(A)は図8の制御装置を伝達関数で表したブロック線図であり、(B)は(A)の回路を等価変換したブロック線図である。
【図10】図6の位置決め制御装置におけるシミュレーションによる動作特性を示す図である。
【図11】モータの角速度を示す図である。
【図12】モータの角速度を示す図である。
【図13】リニアモータの位置決め制御装置を用いたシートフィードストップ型シートカッティングシステムの構成図である。
【図14】リニアモータに適用した位置決め制御装置の構成図である。
【図15】図14の制御装置を伝達関数で表したブロック図である。
【図16】位置決め制御装置を伝達関数で表したブロック線図である。
【符号の説明】
1 シート
2 モータ
3 パルスジェネレータ
4 パルスジェネレータ
5 位置決め制御装置
6 主軸
7 ピンチロール
8 巻出しロール
9 シャー
10 測長ロール
11 押えロール
12 長さ設定器
15 位置決め制御装置
20 第1の位置ループゲイン制御器
21 速度制御器
22 制御対象
23 加速度フィードフォワード補償器
24 速度フィードフォワード補償器
25 第2の位置ループゲイン制御器
26 位相補償器
27 第1の減算器
28 第2の減算器
29 第1の加算器
30 第2の加算器
31、32,33,34,35 スイッチ
36 係数器
37 低域濾波器
38 従来の制御装置(フィードバック制御系とフィードフォワード制御系)
39 従来の制御装置(フィードバック制御系のみ)
40 第1の位置ループゲイン系の伝達関数
41 速度制御系の伝達関数
42 制御対象系の伝達関数
43 加速度フィードフォワード系の伝達関数
44 速度フィードフォワード系の伝達関数
45 第2の位置ループゲイン系の伝達関数
46 位相補償系の伝達関数
100 位置指令設定器
101 位置制御器
102 速度制御器
103 速度検出器
104 位置検出器
105 減算器
106 減算器
107 減算器
110 位置ループゲイン
111 速度ゲイン
112 積分器
120 位置ループゲイン制御器部の伝達関数
* 速度指令信号
aff 加速度フィードフォワード信号
vff 速度フィードフォワード信号
ω 実角速度信号
ω1 第1の角速度信号
ω2 第2の角速度信号
ω1* 第1の角速度指令信号
ω2* 第2の角速度指令信号
ε1 第1の速度偏差信号
ε2 第2の速度偏差信号
t1 第1のトルク信号
t2 第2のトルク信号
t3 第3のトルク信号
τ1 目標値応答遅れ時定数
τmax フイルター時定数
m 制御対象の同定慣性モーメント
J 制御対象の慣性モーメント
α 速度フィードフォワード係数
β 加速度フィードフォワード係数
PP 第1の位置ループゲイン定数(偏差値大の時の位置ループゲイン定数)
P 第2の位置ループゲイン定数(偏差値小の時の位置ループゲイン定数)
T 機械時定数
m 同定慣性モーメントから求めた機械時定数
α0 速度フィードフォワード有りの時のゲイン
α1 速度フィードフォワードなしの時のゲイン
s ラプラス演算子
0 回転系モータ
LM0 リニアモータ
M 制御対象の質量
m 制御対象の同定質量

Claims (6)

  1. 位置および速度のフィードバックループを有し、物体を移動させるモータの位置決め制御装置において、
    速度指令信号を微分しさらに制御対象の同定慣性量を乗じ演算された加速度フィードフォワード信号を出力する加速度フィードフォワード補償器と、
    前記速度指令信号に速度フィードフォワード係数を乗じ演算された速度フィードフォワード信号を出力する速度フィードフォワード補償器と、
    前記速度指令信号からモータの実速度にもとづく速度フィードバック信号を減算し第1の速度偏差信号を出力する第1の減算器と、
    前記第1の速度偏差信号を積分し得られた信号に第1の位置ループゲイン定数を乗じ演算された第1の速度信号を出力する第1の位置ループゲイン制御器と、
    前記第1の速度偏差信号を積分し得られた信号に第2の位置ループゲイン定数を乗じ演算された第2の速度信号を出力する第2の位置ループゲイン制御器と、
    前記第1の速度信号と前記速度フィードフォワード信号とを加算し、第1の速度指令信号を出力し、または前記第2の速度信号を第2の速度指令信号として出力する第1の加算器と、
    前記第1または第2の速度指令信号から前記速度フィードバック信号を減算し第2の速度偏差信号を出力する第2の減算器と、
    前記第2の速度偏差信号にそれぞれ速度ゲインを乗じ演算された第1のトルク信号または第2のトルク信号を出力する速度制御器と、
    前記第1の速度偏差信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性量を乗じ演算された第3のトルク信号を出力する位相補償器とを備え、
    前記第1のトルク信号と前記加速度フイ―ドフォワード信号を、または前記第2のトルク信号と前記第3のトルク信号をそれぞれ加算し演算されたそれぞれの出力信号により、前記モータを駆動し、
    前記モータの実速度が、位置決め完了近傍に予め設定された前記モータの定格速度に対する偏差に等しいまたはより大きいとき、前記第1の位置ループゲイン制御器と前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器で前記モータの速度、位置を制御し、前記モータの実速度が前記偏差より小さいとき前記第2の位置ループゲイン制御器と前記位相補償器で前記モータの速度、位置を制御することを特徴とする位置決め制御装置。
  2. 前記位相補償器が、前記速度偏差信号を濾波する一次遅れ系の低域通過型濾過器と、前記低域通過型濾過器の出力信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性量を乗じる演算器とからなる請求項1記載の位置決め制御装置。
  3. 前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器とは、それぞれ一次遅れ系の低域通過型濾過器を有することを特徴とする請求項2記載の位置決め制御装置。
  4. 位置および速度のフィードバックループを有し、物体を移動させる回転系のモータの位置決め制御装置において、
    速度指令信号を微分しさらに制御対象の同定慣性モーメントを乗じ演算された加速度フィードフォワード信号を出力する加速度フィードフォワード補償器と、
    前記速度指令信号に速度フィードフォワード係数を乗じ演算された速度フィードフォワード信号を出力する速度フィードフォワード補償器と、
    前記速度指令信号からモータの実角速度にもとづく速度フィードバック信号を減算し第1の速度偏差信号を出力する第1の減算器と、
    前記第1の速度偏差信号を積分し得られた信号に第1の位置ループゲイン定数を乗じ演算された第1の角速度信号を出力する第1の位置ループゲイン制御器と、
    前記第1の速度偏差信号を積分し得られた信号に第2の位置ループゲイン定数を乗じ演算された第2の角速度信号を出力する第2の位置ループゲイン制御器と、
    前記第1の角速度信号と前記速度フィードフォワード信号とを加算し、第1の角速度指令信号を出力し、または前記第2の角速度信号を第2の角速度指令信号として出力する第1の加算器と、
    前記第1または第2の角速度指令信号から前記速度フィードバック信号を減算し第2の速度偏差信号を出力する第2の減算器と、
    前記第2の速度偏差信号にそれぞれ速度ゲインを乗じ演算された第1のトルク信号または第2のトルク信号を出力する速度制御器と、
    前記第1の速度偏差信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性モーメントを乗じ演算された第3のトルク信号を出力する位相補償器とを備え、
    前記第1のトルク信号と前記加速度フイ―ドフォワード信号を、または前記第2のトルク信号と前記第3のトルク信号をそれぞれ加算し演算されたそれぞれの出力信号により、前記モータを駆動し、
    前記モータの実角速度が、位置決め完了近傍に予め設定された前記モータの定格角速度に対する偏差に等しいまたはより大きいとき、前記第1の位置ループゲイン制御器と前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器で前記モータの速度、位置を制御し、前記モータの実角速度が前記偏差より小さいとき前記第2の位置ループゲイン制御器と前記位相補償器で前記モータの速度、位置を制御することを特徴とする位置決め制御装置。
  5. 前記位相補償器が、前記速度偏差信号を濾波する一次遅れ系の低域通過型濾過器と、前記低域通過型濾過器の出力信号に前記第2の位置ループゲイン定数と前記制御対象の同定慣性モーメントを乗じる演算器とからなる請求項4記載の位置決め制御装置。
  6. 前記加速度フィードフォワード補償器と前記速度フィードフォワード補償器とは、それぞれ一次遅れ系の低域通過型濾過器を有することを特徴とする請求項5記載の位置決め制御装置。
JP2002347351A 2002-11-29 2002-11-29 位置決め制御装置 Expired - Lifetime JP3670641B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347351A JP3670641B2 (ja) 2002-11-29 2002-11-29 位置決め制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347351A JP3670641B2 (ja) 2002-11-29 2002-11-29 位置決め制御装置

Publications (2)

Publication Number Publication Date
JP2004178520A JP2004178520A (ja) 2004-06-24
JP3670641B2 true JP3670641B2 (ja) 2005-07-13

Family

ID=32707978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347351A Expired - Lifetime JP3670641B2 (ja) 2002-11-29 2002-11-29 位置決め制御装置

Country Status (1)

Country Link
JP (1) JP3670641B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072943A (ja) * 2005-09-09 2007-03-22 Tokyo Univ Of Agriculture & Technology 位置制御装置
CN114019874B (zh) * 2021-11-05 2022-10-11 哈尔滨明快机电科技有限公司 一种基于dsp的液压马达控制装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100114A (ja) * 1988-10-06 1990-04-12 Mitsubishi Electric Corp サーボモータの制御方式
JP2709773B2 (ja) * 1992-02-05 1998-02-04 ファナック株式会社 サーボモータの制御方式
JPH0888990A (ja) * 1994-09-14 1996-04-02 Nec Corp モータの位置制御装置
JPH09167023A (ja) * 1995-12-15 1997-06-24 Yaskawa Electric Corp サーボ制御方法
JPH11231941A (ja) * 1998-02-10 1999-08-27 Matsushita Electric Ind Co Ltd 位置決め制御方法とその装置

Also Published As

Publication number Publication date
JP2004178520A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3739749B2 (ja) 制御装置
EP1120698B1 (en) Position controller
EP1667001B1 (en) Controller
JP5169836B2 (ja) 位置制御装置
JP4944806B2 (ja) 位置制御装置
JP3850363B2 (ja) モータの位置制御装置
WO2000075739A1 (fr) Unite de commande de position pour moteur
WO1998040801A1 (fr) Dispositif de commande de position
JP5098863B2 (ja) 同期制御装置
JP5389251B2 (ja) 並列駆動システム
JP4226420B2 (ja) 位置制御装置
JP2008299573A (ja) ディジタル制御装置
US10606234B2 (en) Controller for a plurality of motors based on provided torque
JP3670641B2 (ja) 位置決め制御装置
JPH09282008A (ja) サーボ制御装置
JP5515644B2 (ja) 位置制御装置
JPH0888990A (ja) モータの位置制御装置
JP4171192B2 (ja) サーボ制御装置
JP4925056B2 (ja) モータ位置制御装置
JP2017207935A (ja) モータ制御装置
JP6662834B2 (ja) 制御装置
JP4491904B2 (ja) 電動機の位置制御装置
JP4367041B2 (ja) 機械制御装置
JP2004288012A (ja) モータの位置制御装置
JP2003084839A (ja) オーバーシュート抑制機能を備えたモータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Ref document number: 3670641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term