JP3666635B2 - High-strength polyethylene fiber with excellent uniformity - Google Patents

High-strength polyethylene fiber with excellent uniformity Download PDF

Info

Publication number
JP3666635B2
JP3666635B2 JP24360999A JP24360999A JP3666635B2 JP 3666635 B2 JP3666635 B2 JP 3666635B2 JP 24360999 A JP24360999 A JP 24360999A JP 24360999 A JP24360999 A JP 24360999A JP 3666635 B2 JP3666635 B2 JP 3666635B2
Authority
JP
Japan
Prior art keywords
fiber
strength
polyethylene fiber
uniformity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24360999A
Other languages
Japanese (ja)
Other versions
JP2001073224A (en
Inventor
悟堂 阪本
康雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP24360999A priority Critical patent/JP3666635B2/en
Publication of JP2001073224A publication Critical patent/JP2001073224A/en
Application granted granted Critical
Publication of JP3666635B2 publication Critical patent/JP3666635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種スポーツ衣料や防弾・防護衣料などの高性能テキスタイル、さらに言えばロープ・釣り糸・ネットなど産業上広く応用可能な新規な均一性に優れた高強度ポリエチレン繊維に関する。
【0002】
【従来の技術】
高強度ポリエチレン繊維に関しては例えば、特公昭60―47922号公報に開示されるごとく、超高分子量のポリエチレン溶液を、いわゆる「ゲル紡糸法」により従来にない高強度・高弾性率繊維が得られることが知られており、既に産業上広く利用されている。
【0003】
【発明が解決しようとする課題】
上記で開示されている方法の欠点は、ノズル孔より紡出後の状態が、通常の乾式紡糸などによって得られる繊維に比べて不安定であることである。その為、紡糸工程でドローレゾナンスの発生による繊維むらの増大、繊維断面形態の扁平化などの問題が顕著であった。そして、繊維断面に太細むらが存在し平均的な単糸直径よりも細かい部分があると、この部分に応力集中が生じ破断が発生し易くなる。特に、釣り糸・ロープ・防弾・防護衣料などに本繊維を用いる場合、太細むらが存在すると細い部分で応力が集中し破断が生じる。また、製造工程に於いても単糸切れなどによる工程トラブルの原因となり生産性に悪い影響を与える。本発明はこれらの問題が改善された太細むらの少ない均一性に優れる高強度ポリエチレン繊維を提供するものである。
【0004】
本発明者らは鋭意検討し、従来のゲル紡糸法のような手法では得ることが困難であった太細むらの少ない均一性に優れる高強度ポリエチレン繊維を得ることに成功し本発明に到達した。
【0005】
【課題を解決するための手段】
即ち本発明は、極限粘度[η]が5以上、その繰り返し単位がエチレンを主体とした高分子量ポリエチレン繊維であり、前記繊維の平均強度が17.7cN/dtex以上で、その繊維の長さ方向の太細むらを示すウースタノーマルU%が3%以下であることを特徴とする均一性に優れた高強度ポリエチレン繊維である。
そして具体的には、U%が1.5%以下であることを特徴とする上記記載の均一性に優れた高強度ポリエチレン繊維、示差走査熱量計(DSC)で求めた融解時の吸熱ピークが140〜145度に1つ以上存在し、かつ145度以上に少なくとも1つ以上のピークを有することを特徴とする上記記載の均一性に優れた高強度ポリエチレン繊維、エチレン以外の共重合成分が0.2mol%以下であることを特徴とする上記記載の均一性に優れた高強度ポリエチレン繊維、及び極限粘度[η]が10以上であることを特徴とする上記記載の均一性に優れた高強度ポリエチレン繊維である。
【0006】
本発明における超高分子量ポリエチレンとは、その繰り返し単位が実質的にエチレンであることを特徴とし、少量の他のモノマー例えばα−オレフィン,アクリル酸及びその誘導体,メタクリル酸及びその誘導体,ビニルシラン及びその誘導体などとの共重合体であっても良いし、これら共重合物どうし、あるいはエチレン単独ポリマーとの共重合体、さらには他のα−オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン,ブテンー1などのαオレフィンと共重合体を用いることで短鎖あるいは長鎖の分岐をある程度含有させることは本繊維を製造する上で、特に紡糸・延伸においての製糸上の安定を与えることとなり、より好ましい。しかしながらエチレン以外の含有量が増えすぎると反って延伸の阻害要因となるため、高強度・高弾性率繊維を得るという観点からはモノマー単位で0.2mol%以下、好ましくは0.1mol%以下であることが望ましい。もちろんエチレン単独のホモポリマーであっても良い。
【0007】
本発明の骨子は、繊維の糸長方向の太細むらを示すウースタノーマルU%が3%以下好ましくは1.5%以下さらに好ましくは1%以下であることを特徴とする。かかる特徴を有する高強度ポリエチレン繊維は、長手方向に極めて均一であり製造・後加工工程での毛羽立ち・糸切れが少なく、加工工程でのトラブルが少ない。さらにロープ・釣り糸・ネット・織物とした場合に原糸の強力利用率が極めて高い。ウースタノーマル値U%が3%を越えると工程通過性が悪くなる。また、釣り糸やロープ・ネットや織物としたとき原糸の強力利用率が低下するなどの問題が発生する。
【0008】
本繊維が極めて均一であることは、イーブネステスタによるウースタノーマルU%の値で確実に定義できる。すなわちウースタノーマルU%の値が大きくなればなる程繊維が太細むらを有している事を示す。
【0009】
本繊維を得る手法に関しては、新規な手法が必要であり、例えば以下のような方法が推奨されるが、それに限定されるものでは無い。すなわち本発明に係る繊維の製造に当たっては、その原料となる高分子量のポリエチレンの極限粘度[η]は5以上であることが必要であり、好ましくは8以上、さらに好ましくは10以上であることが望ましい。極限粘度が5未満であると、本来所望とする例えば17.7cN/dtexを超えるような高強度繊維が得られない。
【0010】
さらにこの理由は定かではないが、極限粘度が5未満となると紡糸の段階での分子鎖どおしのすり抜けが起こり、紡糸時に張力をうまく分子鎖間に伝達できずに高強度繊維を得ることができないと推定している。又、本発明においてはポリマーの主成分は実質的にポリエチレンのホモポリマーであることが重要である。重合の副反応や重合速度を向上せしめる等の目的で少量添加されるあるいは形成される分岐や末端以外にはエチレンを100%の原料とすることが推奨される。αオレフィン等の共重合成分が増えるほど、原因は不明であるが紡糸での溶液の強度(破断に至る紡糸応力)が低下し同じ極限粘度でも低い応力で紡糸での破断が起こる。
【0011】
本発明の推奨する製造方法においては、このような高分子量のポリエチレンをデカリン・テトラリン等の揮発性の溶剤やパラフィン、固形パラフィン等の不揮発性の溶剤を用いて均一な溶解を行い紡糸用のドープを得ることができる。この際、濃度は50wt%以下、好ましくは30wt%以下が好ましい。さらに言及すれば溶液は揮発性の溶媒であることが好ましい、常温固体または非揮発性の溶剤では、紡糸での生産性が非常に悪くなる。この理由は、揮発溶媒を用いることで、紡糸の段階において吐出溶液の表面に存在する溶媒がより積極的に蒸発する。つまり急激な溶媒の蒸発に伴う蒸発潜熱による急冷効果によりドローレゾナンスと呼ばれる周期的変動を減少させる事ができ高いドラフト比での紡糸が可能となると推定しているが、定かではない。さらに紡糸の段階において紡糸口金温度をポリエチレンの溶解に用いた溶媒の沸点に近いにする事が好ましい。具体的には、沸点以下15度以内、好ましくは沸点以下13度以内、さらに好ましくは沸点以下9度以内が良い。
【0012】
本発明において、最も重要な因子はノズル下でオリフィスから吐出された吐出溶液に対して強制的に高温の不活性ガスを供給し、糸条の表面の溶剤を積極的に蒸発させることである。その後さらに糸状に乾燥の為の不活性ガスを供給し、延伸する前に糸状の溶媒濃度を40wt%以下に落とすことが重要である。この際含まれるポリマー以外の溶媒成分とはポリマーの溶解で用いた溶剤及び固形溶剤の場合は、それらを抽出するのに用いた、いわゆる第2溶剤を指す。延伸時の溶媒濃度が40wt%以上あると延伸工程時に単糸表面が溶融し糸状が融着を起こしてしまう。この際糸状に吹き付けるガスは、経済的な理由、取り扱いの簡便さなどから窒素ガスを使用する事が推奨されるが、限定されるものではない。これにより、表面に薄いスキン層を形成させるとともに、紡糸での抗張力に耐えるとともにドローレゾナンスと呼ばれる周期的な変動を減少させる事が可能となり、均一性に優れる中間糸を得ることが可能となる。
【0013】
この中間糸をさらに加熱し、残った溶媒を除去し数倍に延伸、場合によっては多断延伸することにより前述の均一性に優れた特性を有する高強度ポリエチレン繊維を製造することが可能となる。
【0014】
以下に本発明における特性値に関する測定法および測定条件を説明する。
【0015】
(強度・弾性率)
本発明における強度,弾性率は、オリエンティック社製「テンシロン」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪ー応力曲線を雰囲気温度20度、相対湿度65%条件下で測定し、曲線の破断点での応力を強度(cN/dtex)、曲線の原点付近の最大勾配を与える接線より弾性率(cN/dtex)を計算して求めた。なお、各値は10回の測定値の平均値を使用した。
【0016】
(極限粘度)
135度のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その粘度の濃度にたいするプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。測定に際し、サンプルを約5mm長の長さにサンプルを分割または切断し、ポリマーに対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135度で4時間攪拌溶解して測定溶液を調整した。
【0017】
(示差走査熱量計測定)
示差走査熱量計測定はパーキンエルマー社製「DSCII型」を用いた、予め5mm以下に裁断したサンプルをアルミパンに約5mg充填封入し、同様の空のアルミパンをリファレンスにして5度/分の昇温速度で室温から200度まで上昇させ、その吸熱ピークを求めた。得られた曲線より、融解ピークの数とその最も高温にあるピークの温度を求めた。
【0018】
(ウースタU%測定)
ウースタ測定は計測器工業株式会社製「Evenness Tester Model KET-80C」を用いた。サンプルの測定速度25m/min、ツイスタSより、ツイスタ回転数は55×試料速度として5分間測定を行った。その測定信号をインテグレイタ・ユニットに導きウースタノーマルU%を求めた。
【0019】
(原糸の強力利用率)
経糸打ち込み本数48本/インチ、緯糸打ち込み本数46本/インチとしてレピア織機にて平織物を織った。織られた布帛を傷つけずに慎重に15×3cmのサンプルを切り出し、引っ張り試験機でチャックで滑らないよう十分注意をして歪ー応力曲線をもとめ、布帛の破断点での応力から布帛の強力を求めた。布帛強力をサンプル中の原糸本数で割った値と原糸の強度との比を強力利用率として算出した。
【0020】
以下、実施例をもって本発明を説明する。
(実施例1)
極限粘度が19.6の超高分子量ポリマーの主成分ポリマー(C)を10wt%およびデカヒドロナフタレン90wt%のスラリー状の混合物を分散しながら230度の温度に設定したスクリュー型の混練り機で溶解し、177度に設定した直径0.6mmを400ホール有する口金に軽量ポンプにて単孔吐出量1.6g/分供給した。ノズル直下に設置したスリット状の気体供給オリフィスにて1.2m/分の高速度で100度に調整した窒素ガスを整流に気をつけ、できるだけ糸条に均等に当たるようにして繊維の表面のデカリンを積極的に蒸発させ、さらに115度に設定された窒素流にて繊維に残るデカリンを蒸発させ、ノズル下流に設置されたネルソン状のローラーにて80m/分の速度で引き取らせた。この際に糸状に含有される溶剤は元の重量の約35%まで低下していた。引き続き、得られた繊維を125度の加熱オーブン下で4.0倍に延伸した、引き続きこの繊維を149度に設置した加熱オーブン中にて4.1倍で延伸した。途中破断することなく均一な繊維が得る事ができた。得られた繊維の物性値を表1に示す。非常に均一性に優れ、高い強度を有していることが判明した。
尚、DSCの測定結果を図1に示す。また、本繊維を上記に示した平織物としたときの経糸、緯糸の原糸の強力利用率を表2に示した。
【0021】
(実施例2)
実施例1の実験において単孔吐出量を1.2g/minとして、ノズル下流に設置されたネルソン状のローラに65m/minの速度で引き取らせた。引き続き、得られた繊維を125度の加熱オーブン下で4.0倍に延伸した。さらにこの繊維を149度に設置した加熱オーブン中にて4.1倍に延伸した。途中破断することなく均一な繊維が得られた。
【0022】
(実施例3)
実施例1における主成分ポリマーとして極限粘度が14.2のポリマーを用い、溶液の粘度を28%にした他は、同様の操作で紡糸を実施した。1段延伸は2.2倍の延伸が可能であった、2段目の延伸では4.0倍が限度であった。表2にその結果を示す。延伸糸の単繊維度は6.3dtex、全体の繊維度は2544dtexであった。繊維度は多く、強度は若干低下した。
【0023】
(実施例4)
実施例1の実験において、吐出した吐出液をエアギャップ30mmとして精製水を満たした水浴に浸析した。さらに、エアギャップ内でノズル直下に設置したスリット状の気体供給オリフィスにて1.2m/分の高速度で100度に調整した窒素ガスを整流に気をつけ、できるだけ糸条に均等に当たるようにして繊維の表面のデカリンを積極的に蒸発させた。得られた繊維をネルソン状ローラーにて50m/分の速度で引き取り、加熱オーブン中で繊維中に含まれる溶媒を40%以下とした後、さらに溶媒を蒸発させながら加熱オーブン中で4.0倍に延伸した。引き続きこの繊維を3.5倍で延伸した。途中破断することなく均一な繊維を得ることができた。得られた繊維の物性値を表1に示す。
【0024】
(比較例1)
実施例1の実験において、ノズル直下での気体スリットでの熱風の付与を止め、直ちに90度の窒素ガスにて冷却を実施した。得られた繊維の物性値を表1に示す。尚、DSCの測定結果を図2に示す。また、本繊維を平織物としたときの経糸、緯糸の原糸の強力利用率を表2に示した。
【0025】
(比較例2)
実施例1のポリマーを極限粘度20.1でかつプロピレンモノマーを1mol%共重合させた超高分子量ポリエチレンを用いて同様の操作を実施した。同条件では紡糸での糸切れが多発し、満足ゆく紡出糸を得ることができなかた。
【0026】
(比較例3)
実施例1の実験において、溶媒をパラフィンワックスとしNz直下での熱風の付与を止め、エアギャップを30mmとしてn-ヘキサンを満たした紡糸浴に浸析した。浸析した繊維をネルソン状のローラーで50m/分の速度で引き取った。引き続き、得られた繊維を125度の加熱オーブン下で2.0倍に延伸した、さらにこの繊維を149度に設置した加熱オーブン中にて2.2倍で延伸した後、もう一度1.33倍で延伸した。途中破断することなく均一な繊維が得る事ができた。得られた繊維の物性値を表1に示す。尚、DSCの測定結果を図3に示す。
【0027】
【表1】

Figure 0003666635
【0028】
【表2】
Figure 0003666635
【0029】
【発明の効果】
本発明によると均一性に優れた各種スポーツ衣料や防弾・防護衣料などの高性能テキスタイル、さらに言えばロープ・釣り糸・ネット、等に有用な高強度ポリエチレン繊維を提供することを可能とした。
【図面の簡単な説明】
【図1】実施例1の繊維のDSCの測定結果。
【図2】比較例1の繊維のDSCの測定結果。
【図3】比較例3の繊維のDSCの測定結果。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-performance textiles such as various sports garments and bulletproof / protective garments, and more particularly to high-strength polyethylene fibers excellent in new uniformity that can be widely applied to industries such as ropes, fishing lines, and nets.
[0002]
[Prior art]
Regarding high-strength polyethylene fibers, as disclosed in, for example, Japanese Patent Publication No. 60-47922, an ultrahigh molecular weight polyethylene solution can be obtained by using a so-called “gel spinning method” to obtain unprecedented high-strength and high-modulus fibers. Is already known and widely used in industry.
[0003]
[Problems to be solved by the invention]
The drawback of the method disclosed above is that the state after spinning from the nozzle holes is unstable compared to fibers obtained by ordinary dry spinning or the like. For this reason, problems such as an increase in fiber unevenness due to the occurrence of draw resonance in the spinning process, and flattening of the fiber cross-sectional shape are remarkable. If the fiber cross section is thick and uneven and there is a portion finer than the average single yarn diameter, stress concentration occurs in this portion and breakage tends to occur. In particular, when this fiber is used for fishing lines, ropes, bulletproofs, protective clothing, etc., if thick unevenness exists, stress concentrates in the thin part and breaks. In addition, in the manufacturing process, it causes a process trouble due to single yarn breakage, and adversely affects productivity. The present invention provides a high-strength polyethylene fiber with improved uniformity and excellent uniformity with little unevenness.
[0004]
The present inventors diligently studied and succeeded in obtaining a high-strength polyethylene fiber excellent in uniformity with little unevenness in thickness, which was difficult to obtain by a technique such as the conventional gel spinning method, and reached the present invention. .
[0005]
[Means for Solving the Problems]
That is, the present invention is a high molecular weight polyethylene fiber having an intrinsic viscosity [η] of 5 or more and a repeating unit mainly composed of ethylene, the average strength of the fiber is 17.7 cN / dtex or more, and the length direction of the fiber This is a high-strength polyethylene fiber excellent in uniformity, characterized in that the Worster normal U% showing the thick unevenness is 3% or less.
Specifically, the high-strength polyethylene fiber having excellent uniformity as described above, wherein U% is 1.5% or less, and the endothermic peak at the time of melting determined by a differential scanning calorimeter (DSC) One or more at 140 to 145 degrees and at least one peak at 145 degrees or more, the high-strength polyethylene fiber having excellent uniformity as described above, and a copolymer component other than ethylene are 0 The high-strength polyethylene fiber excellent in uniformity described above, characterized by being 2 mol% or less, and the high-strength excellent in uniformity described above characterized in that the intrinsic viscosity [η] is 10 or more Polyethylene fiber.
[0006]
The ultra high molecular weight polyethylene in the present invention is characterized in that the repeating unit is substantially ethylene, and a small amount of other monomers such as α-olefin, acrylic acid and its derivatives, methacrylic acid and its derivatives, vinylsilane and its It may be a copolymer with a derivative or the like, or may be a copolymer with these copolymers, a copolymer with an ethylene homopolymer, or a homopolymer such as another α-olefin. . In particular, the use of an α-olefin such as propylene and butene-1 and a copolymer to include some degree of short-chain or long-chain branching provides stability in spinning, especially in spinning and drawing. This is more preferable. However, if the content other than ethylene is excessively increased, it becomes a hindrance to stretching, so from the viewpoint of obtaining high-strength and high-modulus fibers, the monomer unit is 0.2 mol% or less, preferably 0.1 mol% or less. It is desirable to be. Of course, it may be a homopolymer of ethylene alone.
[0007]
The gist of the present invention is characterized in that the Wooster normal U%, which indicates thick unevenness in the yarn length direction of the fiber, is 3% or less, preferably 1.5% or less, more preferably 1% or less. The high-strength polyethylene fiber having such characteristics is extremely uniform in the longitudinal direction, has less fuzz and yarn breakage in the manufacturing and post-processing steps, and has less trouble in the processing steps. Furthermore, the strong utilization rate of raw yarns is extremely high when used as ropes, fishing lines, nets, and fabrics. If the Wooster normal value U% exceeds 3%, the process passability deteriorates. In addition, when a fishing line, a rope net, or a woven fabric is used, problems such as a decrease in the strength utilization rate of the raw thread occur.
[0008]
The fact that the fiber is extremely uniform can be reliably defined by the value of Wooster normal U% by an evenness tester. That is, the larger the value of Wooster normal U%, the thicker the fibers are.
[0009]
As a method for obtaining the present fiber, a new method is required. For example, the following method is recommended, but is not limited thereto. That is, in the production of the fiber according to the present invention, the intrinsic viscosity [η] of the high molecular weight polyethylene used as the raw material needs to be 5 or more, preferably 8 or more, more preferably 10 or more. desirable. When the intrinsic viscosity is less than 5, a high-strength fiber exceeding the originally desired value, for example, 17.7 cN / dtex cannot be obtained.
[0010]
Furthermore, the reason for this is not clear, but if the intrinsic viscosity is less than 5, the molecular chains pass through at the spinning stage, and the tension cannot be transmitted between the molecular chains well during spinning to obtain high-strength fibers. Is estimated to be impossible. In the present invention, it is important that the main component of the polymer is substantially a polyethylene homopolymer. It is recommended to use ethylene as a 100% raw material in addition to branches and terminals which are added or formed in small amounts for the purpose of improving the polymerization side reaction or polymerization rate. As the copolymerization component such as α-olefin increases, the cause is unknown, but the strength of the solution in spinning (spinning stress leading to breakage) decreases, and even at the same intrinsic viscosity, breakage in spinning occurs at low stress.
[0011]
In the production method recommended by the present invention, such a high molecular weight polyethylene is uniformly dissolved in a volatile solvent such as decalin and tetralin, and a non-volatile solvent such as paraffin and solid paraffin, and the dope for spinning is used. Can be obtained. At this time, the concentration is 50 wt% or less, preferably 30 wt% or less. Furthermore, it is preferable that the solution is a volatile solvent. In the case of a room temperature solid or non-volatile solvent, the productivity in spinning becomes very poor. This is because by using a volatile solvent, the solvent present on the surface of the discharged solution is more actively evaporated at the spinning stage. In other words, it is estimated that the periodic cooling called draw resonance can be reduced by the rapid cooling effect due to the latent heat of evaporation accompanying rapid evaporation of the solvent, and spinning at a high draft ratio is possible. Further, it is preferable that the temperature of the spinneret is close to the boiling point of the solvent used for dissolving the polyethylene at the spinning stage. Specifically, the boiling point is 15 degrees or less, preferably the boiling point is 13 degrees or less, more preferably 9 degrees or less.
[0012]
In the present invention, the most important factor is to supply a hot inert gas to the discharge solution discharged from the orifice under the nozzle to positively evaporate the solvent on the surface of the yarn. After that, it is important to further supply an inert gas for drying in a filamentous form, and to reduce the filamentous solvent concentration to 40 wt% or less before stretching. In the case of the solvent component other than the polymer contained in this case, in the case of the solvent and solid solvent which were used for melt | dissolution of a polymer, it points out what is called a 2nd solvent used for extracting them. If the solvent concentration at the time of drawing is 40 wt% or more, the surface of the single yarn is melted during the drawing process and the yarn is fused. At this time, it is recommended to use nitrogen gas as the gas to be blown into the thread shape, but it is not limited for economic reasons and easy handling. This makes it possible to form a thin skin layer on the surface, to withstand the tensile strength in spinning, and to reduce periodic fluctuations called draw resonance, and to obtain an intermediate yarn excellent in uniformity.
[0013]
The intermediate yarn is further heated, the remaining solvent is removed and stretched several times, and in some cases, it is possible to produce a high-strength polyethylene fiber having the above-described properties with excellent uniformity. .
[0014]
Hereinafter, measurement methods and measurement conditions relating to characteristic values in the present invention will be described.
[0015]
(Strength / elastic modulus)
For the strength and elastic modulus of the present invention, “Tensilon” manufactured by Orientic Co., Ltd. was used, and the strain-stress curve was set at an ambient temperature of 20 ° C. and a relative humidity under the conditions of a sample length of 200 mm (length between chucks) and an elongation rate of 100% / min. Measured under the conditions of 65%, the stress at the breaking point of the curve was obtained by calculating the strength (cN / dtex) and the elastic modulus (cN / dtex) from the tangent line that gives the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 times of measured values.
[0016]
(Intrinsic viscosity)
The specific viscosity of various dilute solutions is measured with an Ubbelohde capillary viscosity tube at 135 degrees decalin, and the intrinsic viscosity is calculated from the extrapolation point to the origin of the straight line obtained by the least square approximation of the plot for the viscosity concentration. Decided. When measuring, divide or cut the sample into approximately 5 mm lengths, add 1 wt% antioxidant (trade name “Yoshinox BHT” manufactured by Yoshitomi Pharmaceutical) to the polymer, and stir at 135 ° C. for 4 hours. The measurement solution was prepared by dissolution.
[0017]
(Differential scanning calorimeter measurement)
The differential scanning calorimeter was measured using a DSCII model manufactured by PerkinElmer, Inc. and filled with about 5 mg of a sample cut in advance to 5 mm or less in an aluminum pan, and the same empty aluminum pan as a reference at 5 ° / min. The temperature was increased from room temperature to 200 degrees at a rate of temperature increase, and the endothermic peak was determined. From the obtained curve, the number of melting peaks and the temperature of the peak at the highest temperature were determined.
[0018]
(Uusa U% measurement)
For the Wooster measurement, “Evenness Tester Model KET-80C” manufactured by Keiki Kogyo Co., Ltd. was used. From the sample measurement speed of 25 m / min and the twister S, the twister rotation speed was 55 × sample speed, and measurement was performed for 5 minutes. The measurement signal was guided to the integrator unit to obtain the Wooster normal U%.
[0019]
(Strong utilization of raw yarn)
A plain fabric was woven by a rapier loom with a warp driving number of 48 / inch and a weft driving number of 46 / inch. Carefully cut out a 15 x 3 cm sample without damaging the woven fabric, determine the strain-stress curve with sufficient care not to slip with a chuck with a tensile tester, and determine the strength of the fabric from the stress at the breaking point. Asked. The ratio of the value obtained by dividing the fabric strength by the number of raw yarns in the sample and the strength of the raw yarn was calculated as the strength utilization rate.
[0020]
Hereinafter, the present invention will be described with reference to examples.
(Example 1)
A screw-type kneader set at a temperature of 230 ° C. while dispersing a slurry mixture of 10 wt% of the ultrahigh molecular weight polymer (C) having an intrinsic viscosity of 19.6 and 90 wt% of decahydronaphthalene. Dissolved, and a single-hole discharge rate of 1.6 g / min was supplied to a die having 400 holes with a diameter of 0.6 mm set at 177 degrees by a lightweight pump. Care is taken to rectify nitrogen gas adjusted to 100 degrees at a high speed of 1.2 m / min with a slit-like gas supply orifice installed directly under the nozzle, and decalin on the surface of the fiber so that it strikes the yarn as evenly as possible. The decalin remaining in the fiber was evaporated with a nitrogen flow set at 115 ° C., and was taken up at a speed of 80 m / min with a Nelson-shaped roller installed downstream of the nozzle. At this time, the solvent contained in the yarn was reduced to about 35% of the original weight. Subsequently, the obtained fiber was stretched 4.0 times in a heating oven at 125 degrees, and this fiber was subsequently stretched 4.1 times in a heating oven set at 149 degrees. Uniform fibers could be obtained without breaking during the process. Table 1 shows the physical property values of the obtained fibers. It was found to be very uniform and have high strength.
The DSC measurement results are shown in FIG. Table 2 shows the strength utilization ratio of the warp and weft raw yarns when the above-mentioned fibers are made into the above-described plain woven fabric.
[0021]
(Example 2)
In the experiment of Example 1, the single-hole discharge rate was 1.2 g / min, and the Nelson-shaped roller installed downstream of the nozzle was drawn at a speed of 65 m / min. Subsequently, the obtained fiber was stretched 4.0 times in a 125 degree heating oven. Further, this fiber was stretched 4.1 times in a heating oven set at 149 degrees. Uniform fibers were obtained without breaking during the process.
[0022]
(Example 3)
Spinning was carried out in the same manner except that a polymer having an intrinsic viscosity of 14.2 was used as the main component polymer in Example 1 and the viscosity of the solution was 28%. The first stage stretching was capable of stretching 2.2 times, and the second stage stretching was limited to 4.0 times. Table 2 shows the results. The single fiber degree of the drawn yarn was 6.3 dtex, and the whole fiber degree was 2544 dtex. The degree of fiber was large and the strength was slightly reduced.
[0023]
(Example 4)
In the experiment of Example 1, the discharged discharge liquid was immersed in a water bath filled with purified water with an air gap of 30 mm. Furthermore, nitrogen gas adjusted to 100 degrees at a high speed of 1.2 m / min is taken care of by a slit-shaped gas supply orifice installed directly under the nozzle in the air gap so that it strikes the yarn as evenly as possible. The decalin on the surface of the fiber was actively evaporated. The obtained fiber was taken up at a speed of 50 m / min with a Nelson roller, the solvent contained in the fiber was reduced to 40% or less in the heating oven, and then 4.0 times in the heating oven while further evaporating the solvent. Stretched. Subsequently, this fiber was stretched by 3.5 times. Uniform fibers could be obtained without breaking on the way. Table 1 shows the physical property values of the obtained fibers.
[0024]
(Comparative Example 1)
In the experiment of Example 1, the application of hot air at the gas slit immediately below the nozzle was stopped, and cooling was immediately performed with 90 ° nitrogen gas. Table 1 shows the physical property values of the obtained fibers. The DSC measurement results are shown in FIG. Table 2 shows the strength utilization rate of warp and weft raw yarns when this fiber is a plain woven fabric.
[0025]
(Comparative Example 2)
The same operation was performed using ultrahigh molecular weight polyethylene obtained by copolymerizing the polymer of Example 1 with an intrinsic viscosity of 20.1 and 1 mol% of propylene monomer. Under the same conditions, yarn breakage occurred frequently during spinning, and satisfactory spun yarn could not be obtained.
[0026]
(Comparative Example 3)
In the experiment of Example 1, the application of hot air just below Nz with paraffin wax as the solvent was stopped, and the air gap was set to 30 mm and the mixture was immersed in a spinning bath filled with n-hexane. The infiltrated fiber was taken up at a speed of 50 m / min with a Nelson-shaped roller. Subsequently, the obtained fiber was stretched 2.0 times in a heating oven at 125 degrees, and the fiber was further stretched 2.2 times in a heating oven installed at 149 degrees, and then 1.33 times again. And stretched. Uniform fibers could be obtained without breaking during the process. Table 1 shows the physical property values of the obtained fibers. The DSC measurement results are shown in FIG.
[0027]
[Table 1]
Figure 0003666635
[0028]
[Table 2]
Figure 0003666635
[0029]
【The invention's effect】
According to the present invention, it is possible to provide high-strength polyethylene fibers useful for high-performance textiles such as various sports garments excellent in uniformity and bulletproof / protective garments, and more specifically ropes, fishing lines, nets, and the like.
[Brief description of the drawings]
1 is a DSC measurement result of the fiber of Example 1. FIG.
2 is a DSC measurement result of the fiber of Comparative Example 1. FIG.
FIG. 3 shows DSC measurement results of the fiber of Comparative Example 3.

Claims (6)

極限粘度[η]が5以上、その繰り返し単位がエチレンを主体とし、単糸表面にスキン層を有することを特徴とする高分子量ポリエチレン繊維であり、前記繊維の平均強度が17.7cN/dtex以上で、その繊維の長さ方向の太細むらを示すウースタノーマルU%が3%以下であることを特徴とする均一性に優れた高強度ポリエチレン繊維。 A high molecular weight polyethylene fiber having an intrinsic viscosity [η] of 5 or more, a repeating unit mainly composed of ethylene, and a skin layer on the surface of a single yarn , wherein the average strength of the fiber is 17.7 cN / dtex or more A high-strength polyethylene fiber excellent in uniformity, characterized in that the Worster normal U%, which indicates thick unevenness in the length direction of the fiber, is 3% or less. 紡糸用のドープがデカリン又はテトラリン溶剤による10〜30%の高分子量ポリエチレン溶液であり、ノズル直下において、スリット状のオリフィスから供給された不活性ガスを吹きつけることを特徴とする、請求項1の範囲の均一性に優れた高強度ポリエチレン繊維。The dope for spinning is a 10-30% high molecular weight polyethylene solution in a decalin or tetralin solvent, and an inert gas supplied from a slit-like orifice is blown immediately below the nozzle. High-strength polyethylene fiber with excellent range uniformity. U%が1.5%以下であることを特徴とする請求項1記載の均一性に優れた高強度ポリエチレン繊維。The high-strength polyethylene fiber having excellent uniformity according to claim 1, wherein U% is 1.5% or less. エチレン以外の共重合成分が0.2mol%以下であることを特徴とする請求項1記載の均一性に優れた高強度ポリエチレン繊維。The high-strength polyethylene fiber having excellent uniformity according to claim 1, wherein a copolymer component other than ethylene is 0.2 mol% or less. 極限粘度[η]が10以上であることを特徴とする請求項1記載の均一性に優れた高強度ポリエチレン繊維。The high-strength polyethylene fiber excellent in uniformity according to claim 1, wherein the intrinsic viscosity [η] is 10 or more. 極限粘度Intrinsic viscosity [[ ηη ]] が5以上、その繰り返し単位がエチレンを主体とし、且つ平均強度が17.7cN/dtex以上で、単糸表面にスキン層を有することを特徴とし、その繊維の長さ方向の太細むらを示すウースタノーマルU%が3%以下であることを特徴とする高強度ポリエチレン繊維において、紡糸用のドープがデカリン又はテトラリン溶剤による10〜30%の高分子量ポリエチレン溶液であり、ノズル直下において、スリット状のオリフィスから供給された不活性ガスを吹きつけることを特徴とする、均一性に優れた高分子量ポリエチレン繊維の製造方法。Is 5 or more, the repeating unit is mainly composed of ethylene, the average strength is 17.7 cN / dtex or more, has a skin layer on the surface of the single yarn, and shows thick and uneven unevenness in the length direction of the fiber A high-strength polyethylene fiber characterized in that the Worster normal U% is 3% or less, and the dope for spinning is a 10-30% high molecular weight polyethylene solution with a decalin or tetralin solvent, and is slit-like just under the nozzle. A method for producing a high-molecular-weight polyethylene fiber excellent in uniformity, wherein an inert gas supplied from an orifice is sprayed.
JP24360999A 1999-08-30 1999-08-30 High-strength polyethylene fiber with excellent uniformity Expired - Fee Related JP3666635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24360999A JP3666635B2 (en) 1999-08-30 1999-08-30 High-strength polyethylene fiber with excellent uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24360999A JP3666635B2 (en) 1999-08-30 1999-08-30 High-strength polyethylene fiber with excellent uniformity

Publications (2)

Publication Number Publication Date
JP2001073224A JP2001073224A (en) 2001-03-21
JP3666635B2 true JP3666635B2 (en) 2005-06-29

Family

ID=17106371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24360999A Expired - Fee Related JP3666635B2 (en) 1999-08-30 1999-08-30 High-strength polyethylene fiber with excellent uniformity

Country Status (1)

Country Link
JP (1) JP3666635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293030A (en) * 1999-08-11 2004-10-21 Toyobo Co Ltd Net comprising high strength polyethylene fiber
WO2011102186A1 (en) 2010-02-19 2011-08-25 東洋紡績株式会社 Highly-moldable, highly-functional polyethylene fiber
US10041191B1 (en) 2017-05-10 2018-08-07 Asahi Kasei Kabushiki Kaisha Polyethylene powder, and molded article and fiber thereof
US11155936B2 (en) 2011-03-03 2021-10-26 Toyobo Co., Ltd. Highly functional polyethylene fiber, and dyed highly functional polyethylene fiber

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389142B2 (en) * 2001-08-08 2009-12-24 東洋紡績株式会社 Method for producing high-strength polyethylene fiber
US7811673B2 (en) 2003-12-12 2010-10-12 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber
US7147807B2 (en) * 2005-01-03 2006-12-12 Honeywell International Inc. Solution spinning of UHMW poly (alpha-olefin) with recovery and recycling of volatile spinning solvent
JP2006342442A (en) * 2005-06-07 2006-12-21 Toyobo Co Ltd Rope made of high-tenacity polyethylene fiber
WO2010021366A1 (en) * 2008-08-20 2010-02-25 東洋紡績株式会社 Highly functional polyethylene fiber, woven/knitted fabric comprising same, and glove thereof
JP6044309B2 (en) * 2012-12-07 2016-12-14 東洋紡株式会社 Polyethylene tape, polyethylene split yarn and method for producing them
EP2935666A1 (en) * 2012-12-20 2015-10-28 DSM IP Assets B.V. Polyolefin yarns and method for manufacturing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293030A (en) * 1999-08-11 2004-10-21 Toyobo Co Ltd Net comprising high strength polyethylene fiber
WO2011102186A1 (en) 2010-02-19 2011-08-25 東洋紡績株式会社 Highly-moldable, highly-functional polyethylene fiber
US11155936B2 (en) 2011-03-03 2021-10-26 Toyobo Co., Ltd. Highly functional polyethylene fiber, and dyed highly functional polyethylene fiber
US10041191B1 (en) 2017-05-10 2018-08-07 Asahi Kasei Kabushiki Kaisha Polyethylene powder, and molded article and fiber thereof

Also Published As

Publication number Publication date
JP2001073224A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4168981B2 (en) Protective gloves containing high-strength polyethylene fibers
JP4389142B2 (en) Method for producing high-strength polyethylene fiber
JP4962667B1 (en) Method for producing polyacrylonitrile fiber and method for producing carbon fiber
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
JP5597922B2 (en) braid
JP2003013326A (en) Polyketone fiber, method of producing the same and polyketone twisted yarn
JP4935690B2 (en) Method for producing carbon fiber precursor fiber
JPWO2016002598A1 (en) High performance multifilament
JPWO2009028590A1 (en) High-productivity high-strength polyethylene fiber, precursor thereof, and method for producing the precursor
JP2001303358A (en) High-performance fishline excellent in abrasion resistance
JP2011517736A (en) Para-aramid fiber and method for producing the same
JP6210209B2 (en) Monofilament-like high-strength polyethylene fiber
JP3734077B2 (en) High strength polyethylene fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
JP2004124277A (en) Highly strong polyethylene fiber
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2003027333A (en) Polyketone fiber
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2000226721A (en) High-strength polyethylene yarn
JP2555826B2 (en) Acrylic yarn manufacturing method for carbon fiber precursor
JP7371326B2 (en) Monofilament for fishing line and fishing line
JP7176517B2 (en) Multifilament and its constituent monofilaments
JP6953741B2 (en) Polyethylene fibers, textile products, and methods for manufacturing polyethylene fibers
JP2020114955A (en) Polyethylene filament excellent in knot strength retention

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R151 Written notification of patent or utility model registration

Ref document number: 3666635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees