JP3666545B2 - Method for manufacturing conductive circuit board - Google Patents

Method for manufacturing conductive circuit board Download PDF

Info

Publication number
JP3666545B2
JP3666545B2 JP32701097A JP32701097A JP3666545B2 JP 3666545 B2 JP3666545 B2 JP 3666545B2 JP 32701097 A JP32701097 A JP 32701097A JP 32701097 A JP32701097 A JP 32701097A JP 3666545 B2 JP3666545 B2 JP 3666545B2
Authority
JP
Japan
Prior art keywords
organopolysilane
film
light
substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32701097A
Other languages
Japanese (ja)
Other versions
JPH10209586A (en
Inventor
基夫 福島
栄一 田部井
幹夫 荒又
滋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32701097A priority Critical patent/JP3666545B2/en
Publication of JPH10209586A publication Critical patent/JPH10209586A/en
Application granted granted Critical
Publication of JP3666545B2 publication Critical patent/JP3666545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、優れた精細度の高導電回路をオルガノポリシラン膜を利用して製造する導電回路基板の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
オルガノポリシランは、炭素に比べてそのケイ素の持つ金属性と電子非局在性、高い耐熱性と柔軟性、良好な薄膜形成特性から非常に興味深いポリマーであり、アミノ基を側鎖に持つオルガノポリシランをヨウ素で酸化する方法や、塩化第二鉄蒸気で酸化する方法により、高導電性の材料が得られている。また、様々な極微細なパターンを高精度で形成するフォトレジストの開発を目的として、オルガノポリシランを用いた研究も活発に行われており(例えば、特開平6−291273号、同7−114188号公報)、中でも、特開平5−72694号公報においては、半導体集積回路の製造方法として、導電層にオルガノポリシランやヨウ素等でドーピングしたオルガノポリシランを用い、絶縁層に光照射によりオルガノポリシランから変換したシロキサン層を用いる提案がなされている。
【0003】
しかし、腐食性のあるヨウ素等を用いることは、電子材料へ応用するときの大きな障害になっていた。しかも、大気中の酸素等により容易にシロキサンに変化しうるオルガノポリシランそのものを導電材料として用いることは、特に信頼性を必要とする電子材料に応用することに非常な困難が伴っていた。
【0004】
また、特開昭57−11339号公報においては、Si−Si結合を有する化合物を露光後、金属塩溶液と接触させることによる金属画像の形成方法を報告している。この方法は、Si−Si結合を有する化合物と金属塩溶液を接触させる時、無条件で金属塩が金属まで還元される必要があるが、オルガノポリシランと銀塩で同様な画像の形成を行おうとしても、ポリマーであるが故に非常に良好な微細回路が紫外線の光により形成できるのにも拘らず、共有結合からなる非極性なオルガノポリシランによるイオン結合からなる銀塩の還元が速やかには進まず、精密な微細回路形成はできなかった。
【0005】
本発明は上記事情に鑑みなされたもので、安価で簡便な工程により、優れた精細度の高導電回路を形成することができる導電回路基板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、オルガノポリシラン膜を酸素の存在下に光照射した場合、十分に光照射することにより、その光照射部分はSiO結合を形成し、これが有機溶剤に容易に溶解すること、一方、極く弱い光を照射することによってオルガノポリシラン膜の表面にSiO結合を形成させた場合、その表面が非極性から極性に変化し、これに接触させた銀塩、特に1価の銀塩は非常に容易に還元して銀粒子が生成し、これにより安定な電気的導電性が保たれることを見出し、この知見に基づいて本発明をなすに至った。
【0007】
即ち、本発明は、基板上に形成されたオルガノポリシラン膜に、酸素の存在下に選択的に光照射を行い、光照射部にSiO結合を持つパターンを形成し、次いで光未照射部のオルガノポリシラン膜を溶解させず、SiO結合を持つパターン部のみを溶解させる溶剤を用いて、上記パターン部を溶解し、上記光未照射部のオルガノポリシラン膜のみを基板に残した後、このオルガノポリシラン膜に酸素の存在下に光照射を行って、オルガノポリシラン膜の表面にSiO結合を形成し、これに銀塩を接触、還元させて、銀導電層を形成させることを特徴とする導電回路基板の製造方法を提供する。
【0008】
以下、本発明につき更に詳しく説明すると、本発明の導電回路基板の製造方法は、まず、基板上にオルガノポリシラン膜を形成する。
【0009】
ここで、基板としては、ガラス、セラミック、プラスチック等の絶縁体、シリコン等の半導体、アルミニウム等の導体が挙げられ、導電回路の使用目的などに応じて適宜選定される。
【0010】
また、上記基板上に形成されるオルガノポリシラン膜としては、H−Si結合無含有のオルガノポリシランであって、有機溶剤に可溶なものを使用することができるが、より好ましくは下記式(1)
(R1 m2 npSi)q (1)
で示されるオルガノポリシランが用いられる。
【0011】
上記式(1)において、R1及びR2はそれぞれ置換もしくは非置換の脂肪族、脂環式又は芳香族1価炭化水素基であり、脂肪族又は脂環式炭化水素基は、好ましくは炭素数1〜12、より好ましくは1〜8のものが好適であり、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等のアルキル基やシクロアルキル基などが挙げられる。また、芳香族炭化水素基としては、好ましくは炭素数6〜14、より好ましくは6〜10のものが好適であり、例えばフェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、フェネチル基等のアリール基やアラルキル基などが挙げられる。なお、置換炭化水素基としては、上記に例示した非置換の炭化水素基の水素原子の一部又は全部をハロゲン原子、アルコキシ基、アミノ基、アミノアルキル基などで置換したもの、例えばp−ジメチルアミノフェニル基、m−ジメチルアミノフェニル基等が挙げられる。
【0012】
XはR1と同様の基、アルコキシ基又はハロゲン原子であり、アルコキシ基としてはメトキシ基、エトキシ基等の炭素数1〜4のもの、ハロゲン原子としては、塩素原子、臭素原子等が挙げられ、通常塩素原子、メトキシ基、エトキシ基が用いられる。このXは、オルガノポリシラン膜の基板に対する剥離を防止し、密着性を改善するためのものである。
【0013】
mは0.1≦m≦1、特に0.5≦m≦1、nは0.1≦n≦2、特に0.5≦n≦1.5、pは0≦p≦0.5、特に0≦p≦0.2であり、かつ1≦m+n+p≦2.2、特に1.5≦m+n+p≦2.2を満足する数であり、qは10≦q≦100,000、特に10≦q≦10,000の範囲の整数である。
【0014】
本発明の導電回路基板を得る場合は、上述したように、まず基板上に上記オルガノポリシラン膜を形成するが、この場合、オルガノポリシラン膜の膜厚は0.01〜100μm、特に0.1〜20μmとすることが好ましい。
【0015】
オルガノポリシラン膜の形成方法としては、特に限定されず、スピンコート法、ディッピング法、キャスト法、真空蒸着法、LB法(ラングミュアー・ブロジット法)などの通常のオルガノポリシラン薄膜形成法が採用できる。特に、オルガノポリシランの溶液を高速で回転させながら成形するスピンコート法が好適に用いられる。オルガノポリシランを溶解させる溶媒の例としては、ベンゼン、トルエン、キシレンなどの芳香族系炭化水素、テトラヒドロフラン、ジブチルエーテルなどのエーテル系溶剤が好適に用いられる。この後、しばらく乾燥雰囲気下で静置したり、或いは減圧下で40〜60℃程度の温度に放置し乾燥することが効果的である。オルガノポリシラン溶液の濃度は、1〜20重量%が好適に用いられ、これにより0.01〜100μmの範囲の膜厚のオルガノポリシラン薄膜を形成することができる。
【0016】
なお、オルガノポリシラン膜は、光によるシロキサンの生成効率を高めるため、オルガノポリシランに少量の光増感性色素やトリアジン類を配合したものにて形成することができる。
【0017】
本発明においては、上記オルガノポリシラン膜を形成した基板を用いてパターン形成を行う場合、次の工程を採用する。
(1)基板上に形成されたオルガノポリシラン膜に、酸素の存在下に選択的光照射を行い、光照射部にSiO結合を持つパターンを形成させる工程。
(2)オルガノポリシラン部を溶解させず、SiO結合を持つパターン部のみを溶解させる溶剤を用いて、オルガノポリシラン部のみを基板に残す工程。
(3)工程(2)の基板に、酸素の存在下に非選択的光照射を行い、オルガノポリシラン部の表面に不完全にSiO結合を形成させる工程。
(4)工程(3)の基板に、銀塩を接触させ、上記SiO結合を有するオルガノポリシラン部のみに銀の導電層を形成させる工程。
【0018】
これを更に詳述すると、上記オルガノポリシラン膜を形成させた基板の上から、酸素の存在下、パターンが形成されたマスクを通して光を照射する。この場合、500nm以下の波長を有する光を用いることが好ましい。これにより、光が当たった部分のみは、Si−Si結合がSi−O−Si結合やSi−OH結合に変換せしめられる。光源としては、水素放電管、希ガス放電管、タングステンランプ、ハロゲンランプのような連続スペクトル光源でも、各種レーザー、水銀灯のような不連続スペクトル光源でもよいが、安価で取り扱いが容易な水銀灯が好適に用いられ、オルガノポリシランの厚さ1μm当たり0.01〜100J/cm2の光量が好適に用いられる。これにより、パターンに応じてSiO結合が形成された潜像を持つ基板が作成される。
【0019】
次に、未露光のオルガノポリシラン膜を溶解させず、SiO結合を持つパターン部のみを溶解させる溶剤を用いて、該オルガノポリシラン膜のみを基板に残す工程を行う。こうした溶剤は、メタノール、エタノールのようなアルコール類、アセトン、メチルエチルケトンのようなアセトン類、酢酸エチル、乳酸のようなエステル類が好適に用いられる。こうした溶媒に露光後のオルガノポリシラン膜基板を1秒〜10分程度浸漬して、シロキサンとなった露光部を完全に溶解除去する。
【0020】
次に、酸素の存在下に非選択的光照射を行い、上記未露光のオルガノポリシラン部の表面に不完全にSiO結合を形成させる工程を行う。この工程は、(1)の工程と同じ装置を用いてもよいが、意図するところは、全く異なっており、Si−Si結合を残す必要がある。そのためには、光の照射時間を短時間にする、或いはエネルギーの高い300nm以下の光をガラス等のマスクにより遮蔽するのも効果的である。オルガノポリシランの厚さ1μm当たり0.001〜0.1J/cm2の光量が好適に用いられる。これにより、オルガノポリシランの表面にSiO結合が形成され、銀塩と速やかに反応し得るようになった基板が作成される。
【0021】
次いで、これに銀塩を接触させ、銀イオンを還元して銀導電層を形成する。銀塩としては、1価の銀イオンAg+を含むものが好ましく、通常Ag−Zの形で表し得る。Zとしては、パークロレート、テトラメチルボレート、ペンタフルオロホスフェート、トリフルオロメタンスルフォネート、テトラフルオロボレート、テトラフェニルボレート、硝酸基等が用いられる。銀塩の例としては、AgBF4,AgClO4,AgPF6,AgBPh4,Ag(CF3SO3),AgNO3等が好適に用いられる。
【0022】
接触方法として、銀塩の蒸気雰囲気下にこのオルガノポリシラン膜表面のSiO結合部をさらす所謂気相法及び銀塩を溶解させた溶液をこのSiO結合部に接触させる溶液法が用いられる。
【0023】
気相法では、一般に温度は50〜300℃の範囲で行われる。50℃未満では接触速度が遅く、また300℃を超えると接触時にポリマーの劣化を招くおそれがある。圧力は、通常0.001mmHg〜1気圧の範囲で行われる。0.001mmHgより低くすることは、その圧力に達するまでに長時間かかり経済的ではなく、また1気圧を超えると接触速度は非常に遅い。
【0024】
溶液法では、銀塩をよく溶解させ、潜像を形成させたオルガノポリシランのパターンを壊さない溶媒が用いられる。このようなものとしては、オルガノポリシランの側鎖基の種類により溶解性が異なるため一概には言えないが、水、或いはアセトン、メチルエチルケトンのようなケトン類、酢酸エチルのようなエステル類、メタノール、エタノールのようなアルコール類、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミドのような非プロトン性極性溶媒、その他、ニトロメタン、アセトニトリル等が挙げられる。特に、フェニルメチルポリシランの場合、アルコール類が好適に用いられる。
【0025】
この銀塩を含む溶液をオルガノポリシラン膜上に展開、或いはこの溶液にオルガノポリシラン膜を浸漬し、その後乾燥することで、オルガノポリシラン部表面のSiO結合部により銀塩が銀粒子に還元され、パターニングされた導電体を得ることができる。
【0026】
次いで、乾燥を行うことが好ましいが、乾燥温度は、通常0〜150℃、常圧又は減圧で行うのが好ましい。また必要に応じて50〜600℃の温度で窒素、アルゴン等の非酸化性雰囲気下で熱処理することにより、銀塩から銀への還元が促進され、導電性のより向上が見られる。
【0027】
【発明の効果】
本発明により、安価で簡便な工程により、高い導電率の導電層を持ち、導電性の経時変化が少なく、優れたパターン精細度の高導電回路を得ることができる。これにより、各種フレキシブルスイッチ、バッテリー電極、太陽電池、センサー、帯電防止用保護膜、電磁シールド用筐体、集積回路、モーター用筐体等に応用可能な有用な導電回路の形成方法として、電気、電子、通信分野に広く用いることができる。
【0028】
【実施例】
以下、合成例と実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0029】
〔合成例〕
窒素気流下に、金属ナトリウム5.06g(220mmol)をトルエン60ml中に添加し、高速で撹拌しながら110℃に加熱し分散させた。これにフェニルメチルジクロルシラン19.1g(100mmol)を撹拌下にゆっくり滴下した。原料が消失するまで4時間撹拌し、反応を完結させた。次いで、放冷後、塩を濾過し濃縮して、ポリシラン粗生成物10.0g(粗収率83%)を得た。このポリマーは再度30mlのトルエンに溶解させ、その溶液にヘキサン120mlを添加し析出分離して、重量平均分子量45000のフェニルメチルポリシラン6.6g(収率55%)を得た。
【0030】
〔実施例〕
上で製造したフェニルメチルポリシランをトルエンに溶解して10重量%のポリシラン溶液を調製した。ガラス板上にこのポリシラン溶液を3000rpm,10秒でスピンコートし、2mmHg/50℃で乾燥させて、厚さ0.5μmの薄膜を形成し、これをパターン形成用基板とした。
【0031】
この基板上に所用のパターンが形成されたフォトマスクを重ね、空気中で20Wの低圧水銀灯を用いて254nmの紫外線を5J/cm2の光量で照射し、ポリシランの未露光層とポリシロキサンの露光層というパターン形成された膜を持つガラス基板を作成した。
【0032】
次に、銀テトラフルオロボレートの10重量%エタノール溶液を作成し、以下(1)〜(4)の方法で、ポリシラン膜基板と接触させ、銀の導電回路層の形成を行った。この導電率のデータを下記に示す。
(1):潜像が形成されたポリシラン膜を持つガラス基板に、エタノール溶液を3000rpm,2秒でスピンコートし、2mmHg/50℃で乾燥させた。これによりシロキサン層が除去された。
(2):(1)のガラス基板に対し、空気中で20Wの低圧水銀灯を用いて254nmの紫外線を0.1J/cm2の光量で照射し、ポリシランの全面露光を行い、表面改質した膜を持つガラス基板を作成した。
(3):(2)のガラス基板を銀テトラフルオロボレートの10重量%エタノール溶液に10秒浸漬後、溶液から取り出し、2mmHg/50℃で乾燥させた。これにより、銀塩は還元され、銀の回路が形成された。
(4):(3)をエタノールに2秒浸漬後、溶液から取り出し、2mmHg/50℃で乾燥させた。これにより、露光部に付着していた銀塩が完全に除去された。
(5):(4)を200℃で30分加熱し、放冷により室温まで温度を下げた後、未露光部と露光部の電気特性を測定したところ、以下の通り1か月後でも変化しない電気特性であった。
導電回路作成直後の電気特性
未露光部の導電率:1×103S/cm
露光部の導電率 :1×10-15S/cm
導電部と絶縁部の導電率の比:1018
導電回路作成1か月後の電気特性
未露光部の導電率:1×103S/cm
露光部の導電率 :1×10-15S/cm
導電部と絶縁部の導電率の比:1018
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a conductive circuit board, in which a highly conductive circuit with excellent definition is manufactured using an organopolysilane film.
[0002]
[Prior art and problems to be solved by the invention]
Organopolysilane is a very interesting polymer due to its metallicity and electron delocalization, high heat resistance and flexibility, and good thin film formation characteristics compared to carbon. Organopolysilane has an amino group in the side chain. Highly conductive materials have been obtained by a method of oxidizing with iodine or a method of oxidizing with ferric chloride vapor. In addition, for the purpose of developing photoresists for forming various ultrafine patterns with high accuracy, research using organopolysilane has been actively conducted (for example, JP-A-6-291273 and JP-A-7-114188). In particular, in Japanese Patent Laid-Open No. 5-72694, as a method for manufacturing a semiconductor integrated circuit, an organopolysilane doped with organopolysilane or iodine is used as a conductive layer, and the insulating layer is converted from organopolysilane by light irradiation. Proposals have been made to use siloxane layers.
[0003]
However, the use of corrosive iodine or the like has been a major obstacle when applied to electronic materials. Moreover, the use of organopolysilane itself, which can be easily converted into siloxane by oxygen in the atmosphere, as a conductive material has been accompanied by great difficulty especially in application to electronic materials that require reliability.
[0004]
Japanese Patent Application Laid-Open No. 57-11339 reports a method of forming a metal image by contacting a compound having a Si—Si bond with a metal salt solution after exposure. In this method, when a compound having a Si—Si bond and a metal salt solution are brought into contact with each other, it is necessary that the metal salt is unconditionally reduced to the metal, but the same image is formed with the organopolysilane and the silver salt. However, despite the fact that a very good fine circuit can be formed by ultraviolet light because it is a polymer, the reduction of silver salts composed of ionic bonds by nonpolar organopolysilanes composed of covalent bonds proceeds rapidly. First, precise microcircuit formation was not possible.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a conductive circuit board capable of forming a high-conductivity circuit with excellent definition by an inexpensive and simple process.
[0006]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor, when the organopolysilane film is irradiated with light in the presence of oxygen, by sufficiently irradiating with light, the irradiated portion forms a SiO bond. This is easily dissolved in an organic solvent. On the other hand, when an SiO bond is formed on the surface of the organopolysilane film by irradiating extremely weak light, the surface changes from nonpolar to polar and comes into contact with it. It has been found that a silver salt, particularly a monovalent silver salt, is reduced very easily to form silver particles, thereby maintaining stable electrical conductivity, and the present invention is based on this finding. It came to.
[0007]
That is, the present invention selectively irradiates an organopolysilane film formed on a substrate in the presence of oxygen to form a pattern having a SiO bond in the light irradiated portion, and then forms an organopolysilane in the light unirradiated portion. The organopolysilane film is dissolved after dissolving the pattern portion using a solvent that dissolves only the pattern portion having SiO bonds without dissolving the polysilane film, and leaving only the organopolysilane film of the light non-irradiated portion on the substrate. The conductive circuit substrate is characterized in that light irradiation is performed in the presence of oxygen to form an SiO bond on the surface of the organopolysilane film, and a silver salt is contacted and reduced to form a silver conductive layer. A manufacturing method is provided.
[0008]
Hereinafter, the present invention will be described in more detail. In the method for producing a conductive circuit board of the present invention, an organopolysilane film is first formed on a substrate.
[0009]
Here, examples of the substrate include insulators such as glass, ceramic, and plastic, semiconductors such as silicon, and conductors such as aluminum, and are appropriately selected according to the purpose of use of the conductive circuit.
[0010]
Further, as the organopolysilane film formed on the substrate, an organopolysilane containing no H—Si bond and soluble in an organic solvent can be used, but more preferably, the following formula (1) )
(R 1 m R 2 n X p Si) q (1)
The organopolysilane shown by these is used.
[0011]
In the above formula (1), R 1 and R 2 are each a substituted or unsubstituted aliphatic, alicyclic or aromatic monovalent hydrocarbon group, and the aliphatic or alicyclic hydrocarbon group is preferably carbon. Suitable are those having a number of 1 to 12, more preferably 1 to 8, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, a cyclohexyl group, or an alkyl group or a cycloalkyl group Etc. The aromatic hydrocarbon group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, phenethyl group, and the like. And aryl groups and aralkyl groups. Examples of the substituted hydrocarbon group include those obtained by substituting some or all of the hydrogen atoms of the unsubstituted hydrocarbon group exemplified above with halogen atoms, alkoxy groups, amino groups, aminoalkyl groups, etc., for example, p-dimethyl An aminophenyl group, m-dimethylaminophenyl group, etc. are mentioned.
[0012]
X is the same group as R 1 , an alkoxy group or a halogen atom. Examples of the alkoxy group include those having 1 to 4 carbon atoms such as a methoxy group and an ethoxy group. Examples of the halogen atom include a chlorine atom and a bromine atom. Usually, a chlorine atom, a methoxy group or an ethoxy group is used. This X is for preventing peeling of the organopolysilane film from the substrate and improving adhesion.
[0013]
m is 0.1 ≦ m ≦ 1, particularly 0.5 ≦ m ≦ 1, n is 0.1 ≦ n ≦ 2, particularly 0.5 ≦ n ≦ 1.5, p is 0 ≦ p ≦ 0.5, In particular, 0 ≦ p ≦ 0.2 and 1 ≦ m + n + p ≦ 2.2, particularly 1.5 ≦ m + n + p ≦ 2.2, and q is 10 ≦ q ≦ 100,000, in particular 10 ≦ It is an integer in the range of q ≦ 10,000.
[0014]
When obtaining the conductive circuit board of the present invention, as described above, the organopolysilane film is first formed on the substrate. In this case, the thickness of the organopolysilane film is 0.01 to 100 μm, particularly 0.1 to 0.1 μm. The thickness is preferably 20 μm.
[0015]
The method for forming the organopolysilane film is not particularly limited, and usual organopolysilane thin film forming methods such as spin coating, dipping, casting, vacuum deposition, and LB (Langmuir Brogitt) can be employed. In particular, a spin coating method in which a solution of an organopolysilane is formed while rotating at a high speed is preferably used. As examples of the solvent for dissolving the organopolysilane, aromatic solvents such as benzene, toluene and xylene, and ether solvents such as tetrahydrofuran and dibutyl ether are preferably used. After this, it is effective to leave it in a dry atmosphere for a while or leave it at a temperature of about 40 to 60 ° C. under reduced pressure to dry it. The concentration of the organopolysilane solution is preferably 1 to 20% by weight, whereby an organopolysilane thin film having a thickness in the range of 0.01 to 100 μm can be formed.
[0016]
The organopolysilane film can be formed by blending a small amount of a photosensitizing dye or triazine with organopolysilane in order to increase the generation efficiency of siloxane by light.
[0017]
In the present invention, when pattern formation is performed using a substrate on which the organopolysilane film is formed, the following steps are employed.
(1) A step of selectively irradiating an organopolysilane film formed on a substrate in the presence of oxygen to form a pattern having a SiO bond in a light irradiation portion.
(2) A step of leaving only the organopolysilane part on the substrate using a solvent that does not dissolve the organopolysilane part and dissolves only the pattern part having SiO bonds.
(3) A step of performing non-selective light irradiation on the substrate in step (2) in the presence of oxygen to form SiO bonds incompletely on the surface of the organopolysilane part.
(4) A step of bringing a silver salt into contact with the substrate of step (3) and forming a silver conductive layer only on the organopolysilane part having the SiO bond.
[0018]
More specifically, light is irradiated from above the substrate on which the organopolysilane film is formed through a mask in which a pattern is formed in the presence of oxygen. In this case, it is preferable to use light having a wavelength of 500 nm or less. As a result, the Si—Si bond is converted into the Si—O—Si bond or the Si—OH bond only in the portion exposed to light. The light source may be a continuous spectrum light source such as a hydrogen discharge tube, a rare gas discharge tube, a tungsten lamp, or a halogen lamp, or a discontinuous spectrum light source such as various lasers or a mercury lamp, but a mercury lamp that is inexpensive and easy to handle is suitable. A light amount of 0.01 to 100 J / cm 2 per 1 μm thickness of the organopolysilane is preferably used. Thus, a substrate having a latent image in which SiO bonds are formed according to the pattern is created.
[0019]
Next, a process of leaving only the organopolysilane film on the substrate is performed using a solvent that does not dissolve the unexposed organopolysilane film but dissolves only the pattern portion having the SiO bond. As these solvents, alcohols such as methanol and ethanol, acetones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate and lactic acid are preferably used. The exposed organopolysilane film substrate is immersed in such a solvent for about 1 second to 10 minutes to completely dissolve and remove the exposed portion that has become siloxane.
[0020]
Next, non-selective light irradiation is performed in the presence of oxygen to perform an incomplete SiO bond formation on the surface of the unexposed organopolysilane portion. In this step, the same apparatus as in step (1) may be used, but the intention is completely different and it is necessary to leave a Si—Si bond. For this purpose, it is also effective to shorten the light irradiation time or to shield light having a high energy of 300 nm or less with a mask such as glass. A light amount of 0.001 to 0.1 J / cm 2 per 1 μm thickness of the organopolysilane is preferably used. Thereby, a SiO bond is formed on the surface of the organopolysilane, and a substrate that can react rapidly with the silver salt is produced.
[0021]
Next, a silver salt is brought into contact therewith, and silver ions are reduced to form a silver conductive layer. As the silver salt, those containing a monovalent silver ion Ag + are preferable, and can usually be expressed in the form of Ag-Z. As Z, perchlorate, tetramethylborate, pentafluorophosphate, trifluoromethanesulfonate, tetrafluoroborate, tetraphenylborate, nitric acid group and the like are used. As examples of silver salts, AgBF 4 , AgClO 4 , AgPF 6 , AgBPh 4 , Ag (CF 3 SO 3 ), AgNO 3 and the like are preferably used.
[0022]
As a contact method, a so-called gas phase method in which the SiO bond portion on the surface of the organopolysilane film is exposed to a silver salt vapor atmosphere and a solution method in which a solution in which a silver salt is dissolved is brought into contact with the SiO bond portion are used.
[0023]
In the gas phase method, the temperature is generally in the range of 50 to 300 ° C. If it is less than 50 degreeC, a contact speed is slow, and when it exceeds 300 degreeC, there exists a possibility of causing deterioration of a polymer at the time of contact. The pressure is usually in the range of 0.001 mmHg to 1 atmosphere. When the pressure is lower than 0.001 mmHg, it takes a long time to reach the pressure, which is not economical. When the pressure exceeds 1 atm, the contact speed is very slow.
[0024]
In the solution method, a solvent that does not break the pattern of the organopolysilane in which the silver salt is well dissolved to form a latent image is used. As such, the solubility differs depending on the type of side chain group of the organopolysilane, so it cannot be said unconditionally, but water or ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, methanol, Examples include alcohols such as ethanol, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, and hexamethylphosphoric triamide, nitromethane, and acetonitrile. In particular, in the case of phenylmethylpolysilane, alcohols are preferably used.
[0025]
The solution containing the silver salt is spread on the organopolysilane film, or the organopolysilane film is immersed in this solution and then dried, so that the silver salt is reduced to silver particles by the SiO bond part on the surface of the organopolysilane part and patterned. An electrically conductive material can be obtained.
[0026]
Next, drying is preferably performed, but the drying temperature is preferably 0 to 150 ° C., normal pressure or reduced pressure. Moreover, reduction | restoration from silver salt to silver is accelerated | stimulated by heat-processing in non-oxidizing atmosphere, such as nitrogen and argon, at the temperature of 50-600 degreeC as needed, and the electroconductivity is improved more.
[0027]
【The invention's effect】
According to the present invention, it is possible to obtain a high-conductivity circuit having an excellent pattern definition with a conductive layer having a high conductivity and little change with time in conductivity by an inexpensive and simple process. Thereby, as a method for forming useful conductive circuits applicable to various flexible switches, battery electrodes, solar cells, sensors, protective films for antistatics, electromagnetic shielding housings, integrated circuits, motor housings, etc. It can be widely used in the electronic and communication fields.
[0028]
【Example】
EXAMPLES Hereinafter, although a synthesis example and an Example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0029]
(Synthesis example)
Under a nitrogen stream, 5.06 g (220 mmol) of metallic sodium was added to 60 ml of toluene, and the mixture was heated and dispersed at 110 ° C. while stirring at high speed. To this, 19.1 g (100 mmol) of phenylmethyldichlorosilane was slowly added dropwise with stirring. The reaction was completed by stirring for 4 hours until the raw materials disappeared. Then, after allowing to cool, the salt was filtered and concentrated to obtain 10.0 g of a polysilane crude product (crude yield 83%). This polymer was dissolved again in 30 ml of toluene, and 120 ml of hexane was added to the solution, followed by precipitation to obtain 6.6 g of phenylmethylpolysilane having a weight average molecular weight of 45,000 (yield 55%).
[0030]
〔Example〕
The phenylmethylpolysilane produced above was dissolved in toluene to prepare a 10 wt% polysilane solution. This polysilane solution was spin-coated on a glass plate at 3000 rpm for 10 seconds and dried at 2 mmHg / 50 ° C. to form a thin film having a thickness of 0.5 μm, which was used as a pattern forming substrate.
[0031]
A photomask on which a desired pattern is formed is overlaid on this substrate, and an ultraviolet ray of 254 nm is irradiated with a light amount of 5 J / cm 2 using a 20 W low-pressure mercury lamp in the air to expose the polysilane unexposed layer and the polysiloxane. A glass substrate having a patterned film called a layer was prepared.
[0032]
Next, a 10 wt% ethanol solution of silver tetrafluoroborate was prepared, and contacted with the polysilane film substrate by the following methods (1) to (4) to form a silver conductive circuit layer. The conductivity data is shown below.
(1): A glass substrate having a polysilane film on which a latent image was formed was spin-coated with an ethanol solution at 3000 rpm for 2 seconds and dried at 2 mmHg / 50 ° C. This removed the siloxane layer.
(2): The glass substrate of (1) was irradiated with 254 nm ultraviolet light at a light amount of 0.1 J / cm 2 using a 20 W low-pressure mercury lamp in the air, and the entire surface of polysilane was exposed to modify the surface. A glass substrate with a film was prepared.
(3): The glass substrate of (2) was immersed in a 10 wt% ethanol solution of silver tetrafluoroborate for 10 seconds, then taken out from the solution and dried at 2 mmHg / 50 ° C. Thereby, the silver salt was reduced and a silver circuit was formed.
(4): (3) was immersed in ethanol for 2 seconds, then removed from the solution and dried at 2 mmHg / 50 ° C. As a result, the silver salt adhering to the exposed portion was completely removed.
(5): (4) was heated at 200 ° C. for 30 minutes, cooled down to room temperature, and then the electrical characteristics of the unexposed and exposed areas were measured. Not electrical characteristics.
Electrical characteristics immediately after creation of conductive circuit Conductivity of unexposed area: 1 × 10 3 S / cm
Conductivity of exposed area: 1 × 10 −15 S / cm
Ratio of electrical conductivity between conductive part and insulating part: 10 18
Electrical characteristics after 1 month of creation of conductive circuit Conductivity of unexposed area: 1 × 10 3 S / cm
Conductivity of exposed area: 1 × 10 −15 S / cm
Ratio of electrical conductivity between conductive part and insulating part: 10 18

Claims (2)

基板上に形成されたオルガノポリシラン膜に、酸素の存在下に選択的に光照射を行い、光照射部にSiO結合を持つパターンを形成し、次いで光未照射部のオルガノポリシラン膜を溶解させず、SiO結合を持つパターン部のみを溶解させる溶剤を用いて、上記パターン部を溶解し、上記光未照射部のオルガノポリシラン膜のみを基板に残した後、このオルガノポリシラン膜に酸素の存在下に光照射を行って、オルガノポリシラン膜の表面にSiO結合を形成し、これに銀塩を接触、還元させて、銀導電層を形成させることを特徴とする導電回路基板の製造方法。  The organopolysilane film formed on the substrate is selectively irradiated with light in the presence of oxygen to form a pattern having SiO bonds in the light irradiated area, and then the organopolysilane film in the unirradiated area is not dissolved. Then, using a solvent that dissolves only the pattern portion having the SiO bond, the pattern portion is dissolved, and only the organopolysilane film of the non-light-irradiated portion is left on the substrate. A method for producing a conductive circuit board, wherein light irradiation is performed to form a SiO bond on the surface of an organopolysilane film, and a silver salt is contacted and reduced to form a silver conductive layer. オルガノポリシランが、下記式(1)
(R1 m2 npSi)q (1)
(式中、R1及びR2はそれぞれ炭素数1〜12の脂肪族もしくは脂環式炭化水素基又は炭素数6〜14の芳香族炭化水素基、XはR1又はアルコキシ基もしくはハロゲン原子を示し、mは0.1≦m≦1、nは0.1≦n≦2、pは0≦p≦0.5であり、かつ1≦m+n+p≦2.2を満足する数、qは10≦q≦100,000の整数である。)
で示されるものである請求項1記載の導電回路基板の製造方法。
Organopolysilane is represented by the following formula (1)
(R 1 m R 2 n X p Si) q (1)
Wherein R 1 and R 2 are each an aliphatic or alicyclic hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms , X is R 1, an alkoxy group or a halogen atom. M is 0.1 ≦ m ≦ 1, n is 0.1 ≦ n ≦ 2, p is 0 ≦ p ≦ 0.5, and 1 ≦ m + n + p ≦ 2.2, and q is 10 ≦ q ≦ 100,000 integers.)
The method for producing a conductive circuit board according to claim 1, wherein
JP32701097A 1996-11-20 1997-11-12 Method for manufacturing conductive circuit board Expired - Fee Related JP3666545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32701097A JP3666545B2 (en) 1996-11-20 1997-11-12 Method for manufacturing conductive circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-324529 1996-11-20
JP32452996 1996-11-20
JP32701097A JP3666545B2 (en) 1996-11-20 1997-11-12 Method for manufacturing conductive circuit board

Publications (2)

Publication Number Publication Date
JPH10209586A JPH10209586A (en) 1998-08-07
JP3666545B2 true JP3666545B2 (en) 2005-06-29

Family

ID=26571510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32701097A Expired - Fee Related JP3666545B2 (en) 1996-11-20 1997-11-12 Method for manufacturing conductive circuit board

Country Status (1)

Country Link
JP (1) JP3666545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539234B2 (en) * 1998-10-22 2004-07-07 信越化学工業株式会社 Polysilane composition for forming metal pattern coating and metal pattern forming method

Also Published As

Publication number Publication date
JPH10209586A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US6344309B2 (en) Polysilane composition for forming a coating suitable for bearing a metal pattern, metal pattern forming method, wiring board preparing method
JP3503546B2 (en) Method of forming metal pattern
JP2007502885A (en) Carbazolyl-functional linear polysiloxane, silicone composition and organic light emitting diode
JP3533935B2 (en) Circuit board manufacturing method
EP1375699A1 (en) Method for forming metal pattern
JP3379420B2 (en) Pattern formation method
JP3666545B2 (en) Method for manufacturing conductive circuit board
JPH11271981A (en) Substrate with noble metallic colloid dispersed layer and pattern forming method
US5955192A (en) Conductive circuit board and method for making
JP3666544B2 (en) Conductive circuit board and manufacturing method thereof
JP2661336B2 (en) Method for producing derivatives of compounds having imide groups conjugated to aromatic moieties by nucleophilic reaction
US20040086806A1 (en) Method for forming metal pattern
JP3301370B2 (en) Method for manufacturing polysilane pattern-formed substrate
US6015596A (en) Fluorine-containing silicon network polymer, insulating coating thereof, and electronic devices therewith
EP0781079B1 (en) Method of fabricating electronic circuit
JP3731632B2 (en) Wiring board manufacturing method
JP3539234B2 (en) Polysilane composition for forming metal pattern coating and metal pattern forming method
JP4500995B2 (en) Conductive material, electronic circuit board, and method of manufacturing electronic circuit board
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JP3176550B2 (en) Method of forming electronic circuit
JPH0817726A (en) Formation method of thin film and electronic device using it
JP2552705B2 (en) Monomolecular film or monomolecular cumulative film and method for producing the same
JP3275736B2 (en) Highly conductive polymer composition and method for producing the same
JP3249718B2 (en) Fluorine-containing silicon network polymer, its insulating film and its manufacturing method
JP2856916B2 (en) Method of forming electronic circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees