JP3660727B2 - 一軸型コンバインドサイクルプラントの運転方法 - Google Patents

一軸型コンバインドサイクルプラントの運転方法 Download PDF

Info

Publication number
JP3660727B2
JP3660727B2 JP28400795A JP28400795A JP3660727B2 JP 3660727 B2 JP3660727 B2 JP 3660727B2 JP 28400795 A JP28400795 A JP 28400795A JP 28400795 A JP28400795 A JP 28400795A JP 3660727 B2 JP3660727 B2 JP 3660727B2
Authority
JP
Japan
Prior art keywords
steam
pressure
shaft
combined cycle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28400795A
Other languages
English (en)
Other versions
JPH09125912A (ja
Inventor
武史 河野
尚毅 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28400795A priority Critical patent/JP3660727B2/ja
Publication of JPH09125912A publication Critical patent/JPH09125912A/ja
Application granted granted Critical
Publication of JP3660727B2 publication Critical patent/JP3660727B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は火力発電プラントなどに適用され、軸または発電所単独運転へ移行時の一軸型コンバインドサイクルプラントの運転方法に関する。
【0002】
【従来の技術】
一軸型コンバインドサイクル発電設備において、発電所外の電力系統事故などに起因して負荷遮断などの発生によって軸または発電所単独運転へ移行時には、蒸気タービンの最終段翼部での発熱や温度上昇を防止したり、蒸気タービンのグランドシールなどのために蒸気を必要とする。この蒸気は、起動中や通常の運転中に、系列補助蒸気母管から軸補助蒸気母管へ補助蒸気を供給するのが一般的であり、運転中の他の軸から補助蒸気を供給するようにしている。
【0003】
ここで、一軸型コンバインドサイクル発電設備では、ガスタービン、蒸気タービンおよび発電機の回転軸を複数設置することにより1つの系列が構成され、この系列を複数設置することにより発電所が構成されている。
【0004】
軸または発電所単独運転に移行したプラントの運転状態では、上記補助蒸気を供給可能な出力を維持できるような運転状態にはない。つまり、軸または発電所単独運転状態であることから、軸または発電所全体(運転全軸)の必要出力は、所内動力のみとなるのが一般的であり、発電所出力の1〜1.5%程度である。この運転状態では、高圧タービンから蒸気タービンに通気した通常の運転状態を維持することができない。このため、他軸への補助蒸気の供給は不可能である。したがって、蒸気タービンの最終段翼部での発熱・温度上昇を防止するための冷却蒸気と、蒸気タービンのグランドシール蒸気は、自軸の排熱回収ボイラの発生蒸気を使用しなければならない。
【0005】
ところで、最近のガスタービンは、入口ガス温度の高温化を含む大容量化の傾向にあり、これに伴い排熱回収ボイラおよび蒸気タービンも大容量化し、この結果、一軸型コンバインドサイクル発電設備の軸出力も大容量化している。そして、蒸気タービンの大容量化に伴って軸径が増大するとともに、最終段翼長が長大化するため、冷却蒸気量やグランドシール蒸気量も増加する傾向にある。
【0006】
しかし、軸または発電所の単独運転状態では、前述した通り無負荷定格回転数(FSNL)または初負荷を出力とする程度である。この運転状態における各ドラムでの蒸発量は、軸または発電所の単独運転に移行する直前の運転状態における各ドラム圧力の設定値(各圧力のバイパス弁の制御設定圧力)に応じて定まる値になるのが一般的である。
【0007】
この運転状態では、高圧蒸気タービンに蒸気が通気されておらず、発生蒸気が高圧バイパス弁を介して復水器に排出されている。中圧ドラムの発生蒸気についても、蒸気タービンのグランドシール蒸気として使用するだけの運転状態を考慮すると、高圧蒸気と同様に中圧バイパス弁を介して復水器に排出する運転状態が継続される。この運転状態では、低圧ドラムの蒸気発生量のみであり、蒸気タービン冷却蒸気量が確保できなくなる可能性がある。特に、最終段翼が長大化して冷却蒸気量が増加した場合、冷却蒸気の不足を招く可能性が生じる。
【0008】
一般的な排熱回収ボイラの特性からすると、高圧バイパス弁の設定圧力が低い場合には、高圧蒸発器の出口ガス温度が低くなり、中圧・低圧ドラムの発生蒸気量が少なくなる傾向にあり、逆に高圧バイパス弁の設定圧力を高くすると、中圧・低圧ドラムの発生蒸気量が多くなる傾向にある。
【0009】
つまり、高負荷で運転中に軸または発電所の単独運転に移行した場合と、負荷の低い状態から同様の運転状態に移行した場合とでは、自軸からの補助蒸気量を確保する方法、または蒸気タービンの運転を維持するために確保すべき冷却蒸気の確保方法が互いに異なる。
【0010】
図8は従来の一軸型コンバインドサイクル発電設備を示す系統図である。図8に示すように、一軸型コンバインドサイクル発電設備は、ガスタービン1、蒸気タービン2および発電機3の軸が一軸に結合されている。なお、この軸に起動装置(図示せず)が結合されている場合もある。
【0011】
大気を図示しない吸気フィルターを介し、ガスタービン1を構成する空気圧縮機の入口に設置された入口案内翼で空気吸込流量を調節して吸入し圧縮した後、ガスタービン1を構成する燃焼器で燃料と混合燃焼して高温・高圧ガスとし、同様にガスタービン1を構成するタービンで動力を発生させた後、ガスタービン1の排気ガスが排熱回収ボイラ4に導入されて熱回収を行った後、図示しない煙突を経て大気に放出される。
【0012】
一方、排熱回収ボイラ4内において、高圧節炭器(図示せず)で予熱された後、高圧ドラム5に供給され、高圧蒸発器(図示せず)でガスタービン1の排気ガスと熱交換し、高圧ドラム5で気水分離された蒸気は、高圧過熱器6で過熱されて過熱蒸気となって高圧主蒸気管7および高圧蒸気加減弁8を経て蒸気タービン2の高圧部に導入されて動力を発生させる。
【0013】
蒸気タービン2の高圧部排気は、低温再熱蒸気管9を介して排熱回収ボイラ4の再熱器10でガスタービン排気と熱交換して再熱され、高温再熱蒸気管11および中圧蒸気加減弁12を経て蒸気タービン2の中圧部に導入して動力を発生させる。
【0014】
そして、中圧節炭器(図示せず)で予熱された後、中圧ドラム13に供給され、中圧蒸発器(図示せず)で高圧蒸発器(図示せず)で熱交換したガスタービン1の排気ガスとさらに熱交換され、中圧ドラム13で気水分離された発生蒸気は、中圧過熱器14で過熱され、過熱蒸気となって中圧主蒸気管15および中圧蒸気流量調節弁16を経て高圧タービン排気と混合して再熱器10に導入する場合もある。
【0015】
蒸気タービン2の中圧部の排気は、蒸気タービン2の低圧部に導入されて動力を発生させるものの、さらに低圧節炭器(図示せず)で予熱され、低圧ドラム16に供給され、低圧蒸発器(図示せず)で高圧過熱器6,中圧過熱器14,再熱器10,蒸発器および節炭器で熱交換したガスタービン1の排気ガスと熱交換し、蒸気タービン2の中圧部出口出力より高い圧力の蒸気を低圧ドラム17で発生させる。
【0016】
この低圧ドラム17で気水分離された蒸気は、低圧過熱器18で過熱され過熱蒸気となり、低圧主蒸気管19および低圧蒸気加減弁20を経て蒸気タービン2の低圧部に導入され、蒸気タービン2の中圧部排気と混合して低圧部で動力を発生させる。そして、ガスタービン1および蒸気タービン2で発生した動力は、発電機3で電気エネルギーに変換される。
【0017】
現状のコンバインドサイクルにおいては、高圧主蒸気および再熱蒸気が一定の温度以上に蒸気温度が上昇しないように、高圧過熱器6と再熱器10とを分割し、蒸気減温器(図示せず)を設置し、水をスプレーすることによって蒸気温度制御を行うように構成されている。
【0018】
また、現状のコンバインドサイクルにおいては、起動時に必要な蒸気タービン2の冷却蒸気やグランドシール蒸気の供給源として、軸補助蒸気母管21およびこの軸補助蒸気母管21に圧力調整弁を介して補助蒸気を供給するには、系列補助蒸気母管22および各軸の蒸気タービン2の高圧排気管から分岐して系列補助蒸気母管22に補助蒸気を供給する補助蒸気供給管からなる補助蒸気系統を設けているのが一般的である。
【0019】
起動時に蒸気タービン2へ冷却蒸気を供給するには、軸補助蒸気母管21に接続した起動時クーリング蒸気供給管23および起動時クーリング蒸気流量調節弁24を経て蒸気タービン2の中圧排気部に供給するように構成されている。
【0020】
図8に示す設備では、発電所外の電力系統事故などに起因して負荷遮断などの発生によって軸または発電所単独運転に移行した場合、蒸気タービン2の高圧部への蒸気供給が停止するため、系列補助蒸気母管22への補助蒸気の供給が不可能となる。当然、多軸からの系列補助蒸気母管22への補助蒸気の供給も停止される。
【0021】
したがって、軸補助蒸気母管21への補助蒸気供給も不可能であるとともに、起動時クーリング蒸気供給管23を通しての冷却蒸気の確保は不可能であり、低圧主蒸気による冷却蒸気の供給以外に蒸気タービン2を保護した運転は不可能である。そのため、軸または発電所単独運転移行時の運転状態によっては、冷却蒸気の確保が困難になる状態も発生する。
【0022】
なお、軸または発電所が系統との接続を遮断され、単独運転に移行すると、通常運転中に発生し蒸気タービン2に流入していた高圧,中圧,低圧の各蒸気は、蒸気タービン2の各圧力の蒸気入口に設けられた蒸気加減弁8,12により、高圧,中圧は遮断される一方、低圧は圧力制御などの手段により制限される。
【0023】
そのため、発生した各圧力の蒸気は、それぞれのドラムまたは主蒸気管路の蒸気圧力の制御設定圧力に応じて高圧バイパス弁25、中圧バイパス弁26および低圧バイパス弁27を経て余剰蒸気として復水器へ排出される。この各バイパス弁25,26,27の制御設定圧力は、通常運転時の各系統の圧力に応じて設定されている。
【0024】
【発明が解決しようとする課題】
上述した一軸型コンバインドサイクル発電設備では、軸の回転数や出力制御の基本がガスタービン1の燃料流量制御が主体であり、蒸気タービン2に通気できない運転状態であっても、軸の回転数は定格回転数を維持している場合がある。これは、例えば第1に起動時の排熱回収ボイラ4の暖気運転中、第2に併入・初負荷運転で蒸気タービン2の通気条件成立までの運転中、および第3に負荷遮断などによる軸または発電所単独運転移行後、再併入負荷上昇までの運転中である。
【0025】
また、一軸型コンバインドサイクル発電設備は、蒸気タービン2と発電機3を単に結合した従来の発電設備と異なり、ガスタービン1の排熱が得られない限り、自軸の排熱回収ボイラ4からの発生蒸気が得られないので、起動時には運転中の他軸または補助ボイラからの補助蒸気が必要である。
【0026】
しかし、軸または発電所単独運転時には、他軸も同様の運転状態にあり、補助蒸気の供給能力はない。補助ボイラを備えた発電所では、補助ボイラを常時運転して蒸気のバックアップに備えたり、軸または発電所単独運転移行信号を送出することにより補助ボイラの起動を行うなどの方法が考えられるが、発生時期の予測が不可能な軸または発電所単独運転に対応して補助ボイラを常時運転していたのでは不経済であり、また単独運転移行信号の発生と同時に補助ボイラを起動したのでは、蒸気タービンの保護および安定した運転を維持ができない問題点がある。
【0027】
本発明は上述した事情を考慮してなされたもので、負荷遮断などによる軸または発電所単独運転移行後、再併入負荷上昇までの運転中において、蒸気タービンの冷却蒸気およびグランドシール蒸気を確保し、蒸気タービンの保護および安定運転を維持した一軸型コンバインドサイクルプラントの運転方法を提供することを目的とする。
【0028】
【課題を解決するための手段】
上述した課題を解決するために、本発明の請求項1は、ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,中圧ドラムおよび中圧過熱器,低圧ドラムおよび低圧過熱器を備えた3圧式排熱回収ボイラに構成し、前記中圧過熱器の出口を分岐し、この分岐した部分に軸補助蒸気母管へ補助蒸気を供給する補助蒸気供給管を接続してグランドシール蒸気および蒸気タービン冷却蒸気の一部を確保する系統を構成し、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする。
【0029】
請求項2は、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、前記補助蒸気供給管に補助蒸気圧力調節弁を介し、軸または発電所単独運転への移行信号に基づいて前記補助蒸気圧力調節弁の圧力設定値を切り替えたり、前記補助蒸気供給管に設けた止め弁を開操作して軸補助蒸気母管へ蒸気を供給することを特徴とする。
【0030】
請求項3は、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、独立した2系統を使用して蒸気タービン冷却蒸気を供給する場合、低圧主蒸気系統からの冷却蒸気の供給は、通常運転中と同様に主蒸気圧力制御を用い、予め設定された冷却蒸気量との不足分を軸補助蒸気系から供給するように補助蒸気系からの供給蒸気流量を制御することを特徴とする。
【0031】
請求項4は、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて低圧ドラムの発生蒸気量を増加させるように蒸気圧力を制御することを特徴とする。
【0032】
請求項5は、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、低圧主蒸気流量と軸補助蒸気系からの供給蒸気流量の和に基づいて前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることを特徴とする。
【0033】
請求項6は、ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,中圧ドラムおよび中圧過熱器,低圧ドラムおよび低圧過熱器を備えた3圧式排熱回収ボイラに構成し、前記中圧過熱器出口で分岐してグランド蒸気供給管に蒸気タービンのグランド蒸気として蒸気を供給する蒸気管を設け、この蒸気管を軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとし、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給することを特徴とする。
【0034】
請求項7は、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする。
【0035】
請求項8は、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を予め定めた設定値に所定の上昇率で上昇させ、低圧ドラムの発生蒸気量を増加させることを特徴とする。
【0036】
請求項9は、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を低圧蒸気流量と蒸気タービン冷却蒸気流量の設定値との偏差に応じて高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることを特徴とする。
【0037】
請求項10は、ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,低圧ドラムおよび低圧過熱器を備えた2圧式排熱回収ボイラに構成し、前記低圧過熱器出口で分岐し、蒸気タービンのグランド蒸気としてグランド蒸気供給管に蒸気を供給する蒸気管を、軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとするとともに、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給すること特徴とする。
【0038】
請求項11は、請求項10記載の一軸型コンバインドサイクルプラントの運転方法において、前記高圧ドラム圧力、前記高圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする。
【0039】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0040】
図1は本発明の第1実施形態を適用したコンバインドサイクル発電設備を示す系統図である。なお、従来の構成と同一または対応する部分には図8と同一の符号を用いて説明する。また、この第1実施形態では全体構成が図8と同様であるのでその説明を省略する。
【0041】
図1に示すコンバインドサイクル発電設備は、ガスタービン1,蒸気タービン2および発電機3の回転軸が一体に結合され、ガスタービン1の排気エネルギーを3圧式の排熱回収ボイラ4で蒸気に変換し、この蒸気を蒸気タービン2に導入して電力として回収している。そして、3圧式の排熱回収ボイラ4には、それぞれ高圧ドラム5,中圧ドラム13および低圧ドラム17の発生蒸気を過熱蒸気にする高圧過熱器6,中圧過熱器14および低圧過熱器18が設置されている。
【0042】
また、本実施形態では、発電所外の電力事故などに起因して軸または発電所単独運転に移行する場合を考慮して中圧過熱器14の出口に接続された中圧主蒸気管15を中圧蒸気流量調節弁16の上流側で分岐し、この分岐した部分と軸補助蒸気母管21を自軸の中圧蒸気を供給するための中圧補助蒸気供給管31で接続するとともに、この中圧補助蒸気供給管31には中圧補助蒸気圧力調節弁32が介装されている。
【0043】
これにより、蒸気タービン2のグランドシール蒸気、起動時クーリング蒸気供給管23および起動時クーリング蒸気流量調節弁24を使用して蒸気タービン2の冷却蒸気必要量と、低圧ドラム17からの低圧主蒸気から供給される冷却蒸気量との差、すなわち冷却蒸気量の不足分を供給できるようにしている。ここで、低圧ドラム17からの低圧主蒸気から供給される冷却蒸気量は、低圧蒸気流量計35により計測されるとともに、その圧力が図3に示す低圧主蒸気圧力計30により計測される。
【0044】
したがって、本実施形態において軸または発電所単独運転時には、自軸の蒸気を中圧補助蒸気供給管31および中圧補助蒸気圧力調節弁32を経て軸補助蒸気母管21に供給し、起動時に使用するために設けられた起動時クーリング蒸気供給管23と起動時クーリング蒸気圧力調節弁24を通して冷却蒸気を蒸気タービン2に供給している。
【0045】
これと同時に、本実施形態では、高圧ドラム5の圧力および中圧ドラム13の圧力、高圧過熱器6および中圧過熱器18出口蒸気圧力の制御設定圧力をそれぞれ所定の圧力に上昇させ、蒸気タービン2の冷却蒸気を確保している。
【0046】
次に、本実施形態の作用を説明する。
【0047】
一軸型コンバインドサイクルプラントの起動時には、蒸気タービン2の排気圧力を低くしておく必要がある。すなわち、この排気圧力を大気圧力以下の値として蒸気タービン2のグランドを蒸気でシールすることにより、蒸気タービン2内への空気の漏入を防ぐようにしている。
【0048】
また、グランドシール用蒸気は、従来のプラントと全く同様に、負荷上昇し自軸からの漏洩蒸気で各グランドを確実にシールできる状態に到達するまで、補助蒸気を供給することにより得ている。
【0049】
一方、一軸型コンバインドサイクルプラントは、軸回転数を定格回転数まで上昇させた後、排熱回収ボイラ4の暖機運転を行う場合が多いため、蒸気タービン2の最終段翼を冷却する必要がある。この冷却蒸気についても補助蒸気を使用することになる。このように補助蒸気を使用することは、従来から用いられている技術である。
【0050】
ここで、一軸型コンバインドサイクルの軸または発電所単独運転時には、自軸の発生蒸気を活用しなければ通気ができないので、定格回転数で連続運転を維持することができない。これは、蒸気タービン2の最終段翼のウィンデージ損失による温度上昇があるためである。このウィンデージ損失は最終段翼長が長くなるほど大きくなる。したがって、長翼を使用すればするほど冷却蒸気量の必要量は多くなる。現在では一軸型コンバインドサイクルプラントの大容量化および軸の全長を短くする傾向にあるため、蒸気タービン2の最終段翼は長翼化の傾向にある。
【0051】
上記のような起動時と同様の処置は、軸または発電所単独運転に移行して再併入・負荷上昇を開始するまでの間は必要であるが、この場合は蒸気タービン2への蒸気の供給が遮断されているため、系列補助蒸気母管22への補助蒸気の供給は不可能である。この運転状態では他軸も同様の状態にあるため、他軸への補助蒸気の供給も不可能である。そのため、蒸気タービン2の安全運転および保護に必要な蒸気は、自軸で賄わなければならないことになる。
【0052】
軸または発電所単独運転に移行して再併入・負荷上昇を開始するまでの間は、軸の回転数が定格回転数で無負荷または定格出力の1〜1.5%程度であり、ガスタービン1の排気ガスの有するエネルギー量も少ない。
【0053】
しかし、本実施形態では、図1に示すように中圧過熱器14出口であって中圧蒸気流量調節弁16の上流側の中圧主蒸気管15を分岐して、この分岐した部分に中圧補助蒸気供給管31を接続し、この中圧補助蒸気供給管31を中圧補助蒸気圧力調節弁32を介して軸補助蒸気母管21と接続し、中圧ドラム13の発生蒸気を自軸補助蒸気として軸補助蒸気母管21に供給するため、軸補助蒸気母管21への補助蒸気の供給が可能になる。
【0054】
これにより、グランドシール蒸気が確保されるとともに、クーリング(冷却)蒸気を起動時クーリング蒸気供給管23および起動時クーリング蒸気圧力調節弁24を通して蒸気タービン2へ供給することが可能になる。また、低圧主蒸気を使用したクーリング(冷却)蒸気のみでは必要量が賄えないような運転状態になった場合でも、上記の補助蒸気を併用することにより、蒸気タービン2を保護した安全運転を維持することができる。
【0055】
なお、図1に示す実施形態では、中圧補助蒸気供給管31を新たに設け、これに中圧補助蒸気圧力調節弁32を介装したが、この他に止め弁や逆止弁を配置している場合もある。
【0056】
一般的には、中圧補助蒸気圧力調節弁32の制御圧力設定値を、系列補助蒸気母管22から軸補助蒸気母管21への補助蒸気供給管に設置された補助蒸気圧力調節弁34の制御圧力設定値より低い圧力に設定し、軸補助蒸気母管21の蒸気圧力が中圧補助蒸気圧力調節弁32の制御圧力設定値を下回ることにより、自軸の中圧主蒸気を軸補助蒸気母管21へ蒸気を供給する。
【0057】
さらに、この蒸気を蒸気タービン2のグランドシール蒸気や、起動時クーリング蒸気供給管23、起動時クーリング蒸気流量調節弁24を経て蒸気タービン2の冷却蒸気を補助的に供給することができる。通常は、低圧主蒸気で冷却蒸気を供給する方式を採用しており、不足蒸気を自軸の他の蒸気源を活用して冷却蒸気などの保護・運転に必要な蒸気を確保するようしている。
【0058】
すなわち、図1に示す系統で中圧補助蒸気供給管31をグランドシール蒸気と冷却蒸気の低圧主蒸気管19からの冷却蒸気供給量の不足分の蒸気供給を目的とした容量とすることにより、軸補助蒸気母管21を経てグランドシール蒸気を供給するとともに、起動時クーリング蒸気供給管23および起動時クーリング蒸気流量調節弁24を経て冷却蒸気を蒸気タービン2の低圧部に供給できる。
【0059】
一方、軸または発電所単独運転時、ガスタービン1は無負荷定格速度または初負荷程度での運転であり、排熱回収ボイラ4ヘ流入するガスタービン1の排気ガスエネルギーは、定格出力運転時に比較すると非常に少なくなっている。このエネルギーを有効に利用するため、比較的低圧の蒸気の発生量を増加させるための方策も必要である。
【0060】
この方法として、軸または発電所単独運転時、高圧バイパス弁25の制御設定圧力を予め定めた設定圧力または冷却蒸気流量を確保するように高圧蒸気圧力の制御設定値を定めて高圧蒸気圧力を制御することにより、ガスタービン1の排気ガスエネルギーを消費量の多い低圧蒸気に変換し、エネルギーの有効活用ができる。
【0061】
ガスタービン1の排ガスエネルギーは、排熱回収ボイラ4の特性で定まるが、一般的に高圧側でのエネルギー回収が多く、低圧側での回収は比較的少ない。排気ガスエネルギーの流入が同じ場合、高圧側の蒸気圧力を高くすると、蒸発器内の圧力も上昇し、蒸発器内の循環水の飽和温度が上昇する。
【0062】
このため、蒸発器出口の排気ガス温度が上昇し、高圧部での熱回収比率が低下して低圧部の熱回収比率が上昇する。高圧のみではなく中圧蒸気圧力も上昇させると、より低圧蒸気の発生量を増加させることが可能である。
【0063】
蒸気タービン2の最終段翼長が長く冷却蒸気量が多い場合などは、この蒸気圧力の制御方法を系統構成と組み合わせた運転方法を採用することによって、蒸気タービン2の保護・安全運転が確実に実現できる。
【0064】
このように本実施形態によれば、軸または発電所単独運転時の蒸気タービン2の保護・安全運転の確保が確実に簡単な方法で実現できる。また、系統構成についても軸または発電所単独運転に移行した後に止め弁を開操作するか調節弁を自動に切り替えたり、止め弁を常時開とし、調節弁も圧力制御を常時自動として運用するなど種々の運転方法が簡単に選択できるなど、運転方法を限定することもなく活用できる。
【0065】
図2は本発明の第2実施形態を適用したコンバインドサイクル発電設備を示す系統図である。なお、前記第1実施形態と同一の部分には同一の符号を付して説明する。
【0066】
本実施形態では、図2に示すように中圧過熱器14出口の中圧主蒸気管15を分岐して、この分岐した部分に中圧側グランド蒸気供給管37を接続し、この中圧側グランド蒸気供給管37を中圧側グランド蒸気圧力調節弁38を介してグランド蒸気供給管39と接続している。すなわち、本実施形態では、軸補助蒸気母管21への自軸蒸気の供給を行うのではなく、中圧側グランド蒸気供給管37および中圧側グランド蒸気圧力調節弁38を経て自軸グランド蒸気系としてグランド蒸気供給管39に自軸蒸気を供給するようにしている。
【0067】
したがって、本実施形態では、蒸気タービン2のグランド蒸気としてグランド蒸気供給管39に供給する中圧側グランド蒸気供給管37を軸補助蒸気母管21からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとしている。
【0068】
この場合は、グランド蒸気の供給であるため、図1に示す系統構成と比較すると、追加した系統設備の容量が小さくて済み、また蒸気タービン2の冷却蒸気は低圧ドラム17の発生蒸気を低圧主蒸気管19,低圧主蒸気流量計35および低圧蒸気加減弁20を経て供給しており、冷却蒸気の必要量は高圧、中圧蒸気の圧力を上昇させて確保している。
【0069】
図2に示した系統を採用する場合も図1に示した場合と同様の運転方法を採用する。ただし、中圧蒸気は蒸気タービン2のグランドに直接供給する方法を採用しており、中圧側グランド蒸気圧力調節弁38は、蒸気タービン2のグランドシールヘッダーの圧力を一定に調節する方法を採用している。この場合、冷却蒸気量は低圧主蒸気系からの単独供給であり、低圧蒸気加減弁20の開度設定により制御している。
【0070】
軸または発電所単独運転状態での高圧・中圧蒸気の圧力の制御設定値を上昇させることは、各ドラムの圧力が上昇し、ひいては蒸発器出口のガス温度が上昇することで、中圧ドラム13、低圧ドラム17での蒸発量の増加が可能である。
【0071】
次に、本実施形態の作用を説明する。
【0072】
図2に示す系統を採用する場合も作用は、図1に示した系統を採用する場合と類似しているが、冷却蒸気は低圧主蒸気管19,低圧主蒸気流量計35および低圧蒸気加減弁20を経て全必要量が供給されることになる。
【0073】
一方、グランドシール蒸気の供給方法については、中圧側グランド蒸気圧力調節弁38のグランドシール蒸気圧力制御設定値を軸補助蒸気母管21からのグランドシール蒸気圧力の制御設定値より低い圧力に設定し、グランドシール蒸気圧力が低下した場合に自動的に不足蒸気を中圧主蒸気から供給するようにしている。
【0074】
また、本実施形態では、通常運転中に中圧蒸気が蒸気タービン2のグランドシール蒸気として供給されるのを防止するため、中圧側グランド蒸気供給管37に中圧側グランド蒸気止め弁41を設け、この止め弁41を全閉して運転し、軸または発電所単独運転移行信号を入力することで止め弁を開操作するような運転方法も採用できる。
【0075】
一軸型コンバインドサイクルの軸出力がある程度の範囲内であったり、排気数との関係で最終段翼長がさほど長くない場合には、図8に示す系統にグランドシール蒸気の供給を可能にする図2に示す系統を採用し、冷却蒸気は低圧ドラム17で発生した蒸気を低圧主蒸気管19を経て蒸気タービン2の低圧部に供給するようにしても同様の効果が得られる。これは低圧ドラム17での発生蒸気量を増加させるために高圧蒸気圧力の制御設定値を上昇させるなどの対応を必要としない領域である。
【0076】
ここでは、図2の系統で説明したが、図1に示す系統で中圧補助蒸気供給管31をグランドシール蒸気のみを供給できる容量に修正することにより所期の目的を達成できる。
【0077】
このように本実施形態によれば、蒸気タービン2の冷却蒸気は低圧主蒸気管19を経て供給されることから、冷却蒸気の流量制御装置を別に設ける必要がなく、また、新たに設けた中圧側グランド蒸気供給管37のサイズをグランド蒸気の必要量に応じて定めれば、図1に示す実施形態に比較し経済的な蒸気タービン2の保護・安全運転を確保できる系統と運転方法が得られる。
【0078】
図1と図2に示す系統での効果の差は図2では、蒸気タービン2の冷却蒸気の必要量全てを低圧主蒸気で確保することにより、中圧蒸気で確保すべき蒸気タービン2の必要蒸気がグランドシール蒸気であり、中圧側グランド蒸気供給管37と中圧側グランド蒸気圧力調節弁38を設け、グランド蒸気ヘッダーに直接供給する方式を用いている。ただし、この蒸気供給管37は軸補助蒸気母管21に接続し、軸補助蒸気母管21からグランド蒸気ヘッダーに供給する方法を採用しても効果は同じである。
【0079】
ここで、図2に示すように中圧側グランド蒸気供給管37と中圧側グランド蒸気圧力調節弁38を設け、グランド蒸気ヘッダーに直接供給する方式を採用する場合は、蒸気の取り出し元を低圧過熱器18の出口の低圧主蒸気管19とすることも可能である。中圧ドラム13を含む中圧系を設けない二圧式(混圧式)の場合には図2に示した系統を、上記のようにグランド蒸気取出口を低圧過熱器18出口の低圧主蒸気管19に変更して利用する。この場合もー般的には、高圧・中圧蒸気圧力の制御設定値を上昇させる運転方法と組み合わせて使用すると、同様の効果が得られる。
【0080】
図3は、図1に示す第1実施形態および図2に示す第2実施形態の排熱回収ボイラ廻りと蒸気タービン廻りの主要蒸気系統を示す詳細図である。
【0081】
図3に示すように、蒸気流量の確保は、低圧主蒸気管19からの供給蒸気量(低圧主蒸気流量計35の測定値)と冷却蒸気必要量の偏差を制御設定値として起動時クーリング蒸気流量計36の測定値との偏差に応じて起動時クーリング蒸気流量調節弁24の開度を制御して起動時クーリング蒸気供給管23を経て行う。
【0082】
すなわち、冷却蒸気流量は、低圧主蒸気の低圧主蒸気流量計35の測定値と必要量の偏差を設定値として起動時クーリング蒸気流量計36の起動時クーリング蒸気供給管23の蒸気流量との偏差に応じて起動時クーリング蒸気流量調節弁24の開度を制御して冷却蒸気の必要量を確保した運転が可能であり、蒸気タービン2の保護と安定運転を確保できる。
【0083】
さらに、軸または発電所単独運転に移行して再併入・負荷上昇を開始するまでの間、高圧ドラム5で発生した高圧主蒸気は、高圧過熱器6で過熱された後、高圧バイパス弁25を経て復水器に排出されている。したがって、この排出エネルギーを最小限にするとともに、低圧側のドラムで蒸気発生量を増加させる手段を設ければ、一段と安定した運転状態を確保することが可能となる。
【0084】
これを実現する方法として、軸または発電所単独運転への移行信号に基づいて高圧蒸気圧力の制御設定値を予め定めた値に所定の上昇率で上昇させて排出エネルギーを低減させるとともに、高圧ドラム5の圧力を上昇させて高圧蒸発器出口ガスの温度を上昇させ、下流側の蒸発器への流入ガスエネルギーを増加させる運転方法がある。
【0085】
ここでは、予め定めた圧力に設定値を上昇させる方法を説明したが、蒸気タービン2の冷却蒸気流量と必要値との偏差に応じて高圧蒸気の設定圧力を上昇させるような方法を採用することも可能である。これらの方法や軸補助蒸気の供給については、図4,図5および図6に示す。
【0086】
図4は、図1および図2に示す中圧補助蒸気供給管31または中圧側グランド蒸気供給管37を設け、軸または発電所単独運転に移行して再併入・負荷上昇を開始するまでの間、蒸気タービン2の保護運転に必要な蒸気を供給するケースで、通常運転中は蒸気の供給を完全に遮断すべく管路に設けた止め弁を全閉として運転し、軸または発電所単独運転への移行信号により前記止め弁を開方向へ操作するための止め弁または中圧補助蒸気調節弁32または中圧側グランド蒸気圧力調節弁38の信号空気ライン(図示せず)に設けた電磁弁の切替信号として使用するものであり、このような弁操作を行う必要がない場合もある。
【0087】
すなわち、図4は、図1において中圧補助蒸気圧力調節弁32に隣接して設けた中圧補助蒸気止め弁40と、図2において中圧側グランド蒸気圧力調節弁38に隣接して設けた中圧側グランド蒸気止め弁41の開閉操作を行うブロック図である。図4に示すように、発電機の遮断器解列信号もしくは系統遮断器(86G)の解列信号などの負荷遮断もしくは発電所単独運転信号と、パワー・ロードアンバランスリレー信号の論理積をAND回路50でとり、中圧補助蒸気止め弁40または中圧側グランド蒸気止め弁41に開指令を出力し、全開に達すると開信号を消滅させ、弁の開操作を終了する。
【0088】
一方、軸出力がグランド蒸気などの補助蒸気を必要としないα%以上に到達すると、中圧補助蒸気止め弁40または中圧側グランド蒸気止め弁41に閉指令を出力し、全閉に達すると閉信号を消滅させ、弁の閉動作を終了するように動作する。
【0089】
上記パワー・ロードアンバランスリレー信号は、軸の発電機出力とガスタービン1または蒸気タービン2の圧力などの状態値から出力と負荷の不平衡を検出する装置の不平衡発生の信号である。なお、図4において、符号48,49はNOT回路、51,52はAND回路、53,54はOR回路である。
【0090】
また、軸または発電所単独運転に移行する直前のプラント運転状態または大気温度の相違により、蒸気タービン2の冷却蒸気に不足が生じる懸念がある場合は、図5および図6に示す高圧蒸気または高圧・中圧蒸気圧力の設定値を上昇させて中圧ドラム13、低圧ドラム17または低圧ドラム17の蒸気発生量を増加させる運転方法を組み合わせることにより、一段と確実に蒸気タービンを保護した安全運転が確保できる。この各蒸気圧力の設定値は予め設定しておくか、図7に示すような方法で決定した値を使用してもよい。
【0091】
図5および図6は、高圧・中圧蒸気圧力の設定値を軸または発電所単独運転条件により変更して運転する運転方法であり、図1および図2に示す系統構成を採用した場合で、蒸気タービン2の冷却蒸気量を確保し、蒸気タービン2を保護し安全運転を維持するために中圧ドラム13および低圧ドラム17での蒸発量を増加させる目的で、予め決められた高圧および中圧蒸気圧力の設定値に軸または発電所単独運転への移行信号により切り替える方法の一例を示したものである。
【0092】
すなわち、図5は高圧ドラム5の圧力を上昇させるために高圧バイパス弁25の制御圧力の設定値を上昇させるための運転方法である。図5において、通常運転中は、切替器55に切替信号が入力されていないため、切替器55の出力はbが選択される。
【0093】
これは、発電機の遮断器解列信号もしくは系統遮断器(86G)の解列信号などの負荷遮断もしくは発電所単独運転信号と、パワー・ロードアンバランスリレー信号とをAND回路56にて論理積をとり、それが出力されるか、通気開始(高圧蒸気加減弁開)の信号と切替信号とをAND回路57にて論理積をとってそれが出力される場合である。この出力cを変化率制限器58により所定の変化率で高圧バイパス圧力制御装置59の設定圧力を変更し、高圧主蒸気圧力と比較し高圧バイパス弁25の開度を制御する。
【0094】
一方、上記切替信号が切替器55に入力されると、切替器55の出力がaに切り替えられ、上記と同様の動作により負荷遮断時のバイパス弁制御圧力設定値が高圧バイパス圧力制御装置59に設定される。
【0095】
通気開始(高圧蒸気加減弁開)の信号と、切替信号とをAND回路57にて論理積で得られる出力は、発電機の遮断器解列信号もしくは系統遮断器(86G)の解列信号などの負荷遮断もしくは発電所単独運転信号と、パワー・ロードアンバランスリレー信号とが消滅しても、負荷遮断が発生したことを保持している。なお、図5において、60はNOT回路、61はOR回路である。
【0096】
図6に示す圧力制御の方法は、図2に示す系統を採用した場合で、中圧の発生蒸気量は蒸気タービン2のグランドシール蒸気の補給にのみ使用しているため、高圧と同様に中圧バイパス弁26から復水器へのエネルギー排出量を低減し、低圧ドラム17での発生蒸気量を増加させるための方法を示した一例である。
【0097】
この場合も図5と同様に、予め定めた各々の蒸気圧力の設定値に定められた上昇率または設定値と、軸または発電所単独運転への移行直前の各蒸気圧力との偏差などに基づいて算出した上昇率で上昇させる方法である。そして、中圧ドラム13の圧力を上昇させるための回路が付加されている。なお、図6において、62は中圧バイパス圧力制御装置である。
【0098】
図7(A),(B)は、蒸気タービン2の冷却蒸気量と必要量の偏差に応じて高圧および高圧・中圧蒸気圧力の設定値を設定するための設定値の制御回路の一例である。この方法を採用すれば、大気温度などの運転条件の変化による冷却蒸気不足を回避することも可能である。
【0099】
軸または発電所単独運転時の高圧・中圧蒸気圧力の設定値は、設計時に予め一定値としても十分所期の目的を達成できるが、図7に示すように冷却蒸気必要量と冷却蒸気供給量の偏差に応じて蒸気圧力の設定値を定める方法を採用することも可能である。
【0100】
図7(A)は、負荷遮断時の高圧バイパス圧力制御装置の圧力設定値を算出する単独運転時蒸気圧力設定値制御器63の演算回路を示しており、低圧主蒸気流量(低圧主蒸気流量計35の測定値)および起動時クーリング蒸気流量調節弁24の通過流量の和と、必要クーリング蒸気量との差に基づいて、冷却蒸気制御器64で圧力設定値を演算した後、最高設定圧力との低値を低値優先回路65で選択し、圧力設定値として出力するようにしている。
【0101】
図7(B)は、負荷遮断時の高圧・中圧バイパス圧力制御装置の圧力設定値を算出する高圧・中圧の単独運転時蒸気圧力設定値制御器66の演算回路を示しており、クーリング蒸気の不足分を中圧蒸気と低圧蒸気の双方で確保するために、高圧側信号分配器67および中圧側信号分配器68により、高圧ドラム5および中圧ドラム13の圧力上昇に配分分担し、それぞれ高圧側流量制御器69および中圧側流量制御器70と、高圧側低値優先回路71および中圧側低値優先回路72を通して高圧圧力設定値および中圧圧力設定値を算出している。
【0102】
なお、本発明では上記実施形態に限定されることなく、種々の変更が可能である。例えば、上記実施形態では、三圧式の排熱回収ボイラ4を対象に説明したが、二圧式(混圧式)排熱回収ボイラを採用した場合については、図2に示す系統に準じ、蒸気タービン2のグランドシール蒸気の供給源を低圧主蒸気に変更し、排熱回収ボイラの中圧蒸気に関連する系統および制御装置を削除することにより、そのまま適用できる。
【0103】
また、図2に示す実施形態では、中圧側グランド蒸気供給管37が第2のグランド蒸気供給管としてグランド蒸気圧力を制御しているが、この接続先を軸補助蒸気母管21とし、グランドシール蒸気の供給を一系統にまとめるような系統構成としても、同様の効果が得られる。
【0104】
さらに、上記実施形態では、高圧または中圧蒸気圧力の制御圧力の設定値に関して図5および図6に示したが、軸または発電所単独運転移行時に通常運転中の圧力設定値にバイアスを加えて蒸気圧力の制御設定値を設定する方法を採用しても、上記と同様の効果を得ることができる。
【0105】
そして、上記実施形態では、ガスタービン排ガスエネルギーの低圧蒸気での回収効果を上げるため、高圧・中圧蒸気圧力を上昇させるための制御設定値を予め設定しておくか、冷却蒸気の必要量と供給量との偏差に応じて算出する方法で説明したが、図2に示す系統を採用した場合などは、流量ではなく蒸気流量が低圧蒸気加減弁20の開度および低圧主蒸気圧力から算出できることから、低圧加減弁の開度および低圧主蒸気圧力から設定することもできる。
【0106】
【発明の効果】
以上説明したように、本発明の請求項1によれば、排熱回収ボイラを3圧式排熱回収ボイラに構成し、中圧過熱器の出口を分岐し、この分岐した部分に軸補助蒸気母管へ補助蒸気を供給する補助蒸気供給管を接続してグランドシール蒸気および蒸気タービン冷却蒸気の一部を確保する系統を構成し、高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて蒸気タービンの冷却蒸気を確保することにより、軸または発電所単独運転時のように他軸からの補助蒸気の供給が期待できない状態で定格回転数で運転を継続しなければならないケースでも、自軸の発生蒸気を使用して運転を続行できるとともに、蒸気タービンの必要蒸気量を確保することができる。
【0107】
また、請求項1によれば、蒸気タービンの大容量化および軸長の短縮化など最終段翼長の長翼化が進んで、特殊な運転状態での必要蒸気量が増加する傾向に対しても、蒸気タービンを保護した安全運転を維持することができる。
【0108】
請求項2によれば、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、補助蒸気供給管に補助蒸気圧力調節弁を介し、軸または発電所単独運転への移行信号に基づいて補助蒸気圧力調節弁の圧力設定値を切り替えたり、補助蒸気供給管に設けた止め弁を開操作して軸補助蒸気母管へ蒸気を供給することにより、一段と安定した運転状態を確保することが可能となる。
【0109】
請求項3によれば、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、独立した2系統を使用して蒸気タービン冷却蒸気を供給する場合、低圧主蒸気系統からの冷却蒸気の供給は、通常運転中と同様に主蒸気圧力制御を用い、予め設定された冷却蒸気量との不足分を軸補助蒸気系から供給するように補助蒸気系からの供給蒸気流量を制御することにより、請求項2と同様に、一段と安定した運転状態を確保することが可能となる。
【0110】
請求項4によれば、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて低圧ドラムの発生蒸気量を増加させるように蒸気圧力を制御することにより、請求項2と同様に、一段と安定した運転状態を確保することが可能となる。
【0111】
請求項5によれば、請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、低圧主蒸気流量と軸補助蒸気系からの供給蒸気流量の和に基づいて高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることにより、請求項2と同様に、一段と安定した運転状態を確保することが可能となる。
【0112】
請求項6によれば、排熱回収ボイラを3圧式排熱回収ボイラに構成し、中圧過熱器出口で分岐してグランド蒸気供給管に蒸気タービンのグランド蒸気として蒸気を供給する蒸気管を設け、この蒸気管を軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとし、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給することにより、軸または発電所単独運転時のように他軸からの補助蒸気の供給が期待できない状態で定格回転数で運転を継続しなければならないケースでも、自軸の発生蒸気を使用して運転を続行できるとともに、蒸気タービンの必要蒸気量を確保することができる。そして、グランド蒸気の供給であるため、請求項1と比較して系統設備の容量が小さく済む。
【0113】
請求項7によれば、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて蒸気タービンの冷却蒸気を確保することにより、蒸気発生量を増加させ、確実に蒸気タービンを保護した安全運転を維持することができる。
【0114】
請求項8によれば、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を予め定めた設定値に所定の上昇率で上昇させ、低圧ドラムの発生蒸気量を増加させることにより、請求項7と同様に、確実に蒸気タービンを保護した安全運転を維持することができる。
【0115】
請求項9によれば、請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を低圧蒸気流量と蒸気タービン冷却蒸気流量の設定値との偏差に応じて高圧・中圧ドラム圧力、高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることにより、請求項7と同様に、確実に蒸気タービンを保護した安全運転を維持することができる。
【0116】
請求項10によれば、排熱回収ボイラを2圧式排熱回収ボイラに構成し、低圧過熱器出口で分岐し、蒸気タービンのグランド蒸気としてグランド蒸気供給管に蒸気を供給する蒸気管を、軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとするとともに、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給することにより、2圧式排熱回収ボイラでも、請求項6と同様の効果が得られる。
【0117】
請求項11によれば、請求項10記載の一軸型コンバインドサイクルプラントの運転方法において、高圧ドラム圧力、高圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することにより、請求項10の効果に加えて、確実に蒸気タービンを保護した安全運転を維持することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を適用したコンバインドサイクル発電設備を示す系統図。
【図2】本発明の第2実施形態を適用したコンバインドサイクル発電設備を示す系統図。
【図3】図1および図2に示す排熱回収ボイラ廻りと蒸気タービン廻りの主要蒸気系統を示す詳細図。
【図4】図1の中圧補助蒸気止め弁と図2の中圧側グランド蒸気止め弁の開閉操作を行う制御系を示すブロック図。
【図5】図1および図2に示す高圧ドラムの圧力を上昇させるために高圧バイパス弁の制御圧力の設定値を上昇させる制御系を示すブロック図。
【図6】図5の制御系に中圧ドラムの圧力を上昇させるための回路を付加した制御系を示すブロック図。
【図7】(A),(B)は高圧および高圧・中圧蒸気圧力の設定値を設定するための設定値の制御回路の一例を示すブロック図。
【図8】従来のコンバインドサイクル発電設備を示す系統図。
【符号の説明】
1 ガスタービン
2 蒸気タービン
3 発電機
4 排熱回収ボイラ
5 高圧ドラム
6 高圧過熱器
7 高圧主蒸気管
8 高圧蒸気加減弁
9 低温再熱蒸気管
10 再熱器
11 高温再熱蒸気管
12 中圧蒸気加減弁
13 中圧ドラム
14 中圧過熱器
15 中圧主蒸気管
16 中圧蒸気流量調節弁
17 低圧ドラム
18 低圧過熱器
19 低圧主蒸気管
20 低圧蒸気加減弁
21 軸補助蒸気母管
22 系列補助蒸気母管
23 起動時クーリング蒸気供給管
24 起動時クーリング蒸気流量調節弁
25 高圧バイパス弁
26 中圧バイパス弁
27 低圧バイパス弁
31 中圧補助蒸気供給管
32 中圧補助蒸気圧力調節弁
34 補助蒸気圧力調節弁
35 低圧主蒸気流量計
36 起動時クーリング蒸気流量計
37 中圧側グランド蒸気供給管
38 中圧側グランド蒸気圧力調節弁
39 グランド蒸気供給管
40 中圧補助蒸気止め弁
41 中圧側グランド蒸気止め弁
55 切替器
58 変化率制限器
59 高圧バイパス圧力制御装置
62 中圧バイパス圧力制御装置
63 単独運転時蒸気圧力設定値制御器
64 冷却蒸気制御器
65 低値優先回路
66 単独運転時蒸気圧力設定値制御器
67 高圧側信号分配器
68 中圧側信号分配器
69 高圧側流量制御器
70 中圧側流量制御器
71 高圧側低値優先回路
72 中圧側低値優先回路

Claims (11)

  1. ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,中圧ドラムおよび中圧過熱器,低圧ドラムおよび低圧過熱器を備えた3圧式排熱回収ボイラに構成し、前記中圧過熱器の出口を分岐し、この分岐した部分に軸補助蒸気母管へ補助蒸気を供給する補助蒸気供給管を接続してグランドシール蒸気および蒸気タービン冷却蒸気の一部を確保する系統を構成し、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  2. 請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、前記補助蒸気供給管に補助蒸気圧力調節弁を介し、軸または発電所単独運転への移行信号に基づいて前記補助蒸気圧力調節弁の圧力設定値を切り替えたり、前記補助蒸気供給管に設けた止め弁を開操作して軸補助蒸気母管へ蒸気を供給することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  3. 請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、独立した2系統を使用して蒸気タービン冷却蒸気を供給する場合、低圧主蒸気系統からの冷却蒸気の供給は、通常運転中と同様に主蒸気圧力制御を用い、予め設定された冷却蒸気量との不足分を軸補助蒸気系から供給するように補助蒸気系からの供給蒸気流量を制御することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  4. 請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて低圧ドラムの発生蒸気量を増加させるように蒸気圧力を制御することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  5. 請求項1記載の一軸型コンバインドサイクルプラントの運転方法において、蒸気タービン冷却蒸気を低圧主蒸気管と起動時クーリング蒸気供給管を介して供給する場合、軸または発電所が単独運転に移行した条件により、低圧主蒸気流量と軸補助蒸気系からの供給蒸気流量の和に基づいて前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  6. ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,中圧ドラムおよび中圧過熱器,低圧ドラムおよび低圧過熱器を備えた3圧式排熱回収ボイラに構成し、前記中圧過熱器出口で分岐してグランド蒸気供給管に蒸気タービンのグランド蒸気として蒸気を供給する蒸気管を設け、この蒸気管を軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとし、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  7. 請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  8. 請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を予め定めた設定値に所定の上昇率で上昇させ、低圧ドラムの発生蒸気量を増加させることを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  9. 請求項6記載の一軸型コンバインドサイクルプラントの運転方法において、軸または発電所が単独運転に移行した条件により、前記高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を低圧蒸気流量と蒸気タービン冷却蒸気流量の設定値との偏差に応じて高圧・中圧ドラム圧力、前記高圧・中圧過熱器出口蒸気圧力の少なくとも一方の制御設定値を上昇させ、低圧ドラム発生蒸気量を増加させることを特徴とする一軸型コンバインドサイクルプラントの運転方法。
  10. ガスタービン、蒸気タービンおよび発電機の回転軸を一体に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、この蒸気を蒸気タービンに導入して電力として回収する一軸型コンバインドサイクルプラントが、発電所外の電力系統事故などに起因する負荷遮断により軸単独または発電所単独運転に移行する一軸型コンバインドサイクルプラントの運転方法であって、前記排熱回収ボイラは、高圧ドラムおよび高圧過熱器,低圧ドラムおよび低圧過熱器を備えた2圧式排熱回収ボイラに構成し、前記低圧過熱器出口で分岐し、蒸気タービンのグランド蒸気としてグランド蒸気供給管に蒸気を供給する蒸気管を、軸補助蒸気母管からのグランド蒸気供給管と独立して設け、両者をグランド蒸気の二重バックアップラインとするとともに、蒸気タービンの冷却蒸気を低圧主蒸気管のみから供給すること特徴とする一軸型コンバインドサイクルプラントの運転方法。
  11. 請求項10記載の一軸型コンバインドサイクルプラントの運転方法において、前記高圧ドラム圧力、前記高圧過熱器出口蒸気圧力の少なくとも一方の制御設定圧力を所定圧力に上昇させて前記蒸気タービンの冷却蒸気を確保することを特徴とする一軸型コンバインドサイクルプラントの運転方法。
JP28400795A 1995-10-31 1995-10-31 一軸型コンバインドサイクルプラントの運転方法 Expired - Lifetime JP3660727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28400795A JP3660727B2 (ja) 1995-10-31 1995-10-31 一軸型コンバインドサイクルプラントの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28400795A JP3660727B2 (ja) 1995-10-31 1995-10-31 一軸型コンバインドサイクルプラントの運転方法

Publications (2)

Publication Number Publication Date
JPH09125912A JPH09125912A (ja) 1997-05-13
JP3660727B2 true JP3660727B2 (ja) 2005-06-15

Family

ID=17673095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28400795A Expired - Lifetime JP3660727B2 (ja) 1995-10-31 1995-10-31 一軸型コンバインドサイクルプラントの運転方法

Country Status (1)

Country Link
JP (1) JP3660727B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044131A (ja) * 2015-08-26 2017-03-02 株式会社東芝 蒸気タービン設備

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090158738A1 (en) * 2007-12-20 2009-06-25 Tailai Hu Methods and apparatus for starting up combined cycle power system
US8943836B2 (en) 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant
CN103582743B (zh) * 2011-03-01 2015-10-21 阿尔斯通技术有限公司 联合循环发电设备
JP2017040201A (ja) 2015-08-19 2017-02-23 株式会社東芝 発電システムおよびその運転方法
JP2021055867A (ja) * 2019-09-27 2021-04-08 三菱パワー株式会社 排熱回収ボイラ、蒸気タービン設備及びガス化設備
CN114592936B (zh) * 2022-03-18 2024-06-18 中国能源建设集团广东省电力设计研究院有限公司 基于燃气-蒸汽联合循环机组的冷却蒸汽供汽方法及装置
CN114922708B (zh) * 2022-05-13 2023-08-22 华电电力科学研究院有限公司 基于超临界再热型双抽供热背压机组***的停止运行方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044131A (ja) * 2015-08-26 2017-03-02 株式会社東芝 蒸気タービン設備

Also Published As

Publication number Publication date
JPH09125912A (ja) 1997-05-13

Similar Documents

Publication Publication Date Title
US6339926B1 (en) Steam-cooled gas turbine combined power plant
EP0908603B1 (en) Single shaft combined cycle plant
US11326465B2 (en) Combined cycle plant and method for operating same
JPH0353443B2 (ja)
JPH09112215A (ja) ガスタービンプラントおよびその運転方法
JPH05163960A (ja) コンバインドサイクル発電プラント
CA2843446A1 (en) Method for operating a combined-cycle power plant
JP2012167571A (ja) 一軸型複合サイクル発電プラントおよびその運転方法
JP3660727B2 (ja) 一軸型コンバインドサイクルプラントの運転方法
JP5694112B2 (ja) 一軸型複合サイクル発電プラント及びその運転方法
US6405537B1 (en) Single shaft combined cycle plant and operating thereof
JP4764255B2 (ja) 小型貫流ボイラ発電システムおよびその運転制御方法
US6220014B1 (en) Single shaft combined cycle plant and operating method thereof
JPH02230905A (ja) ガスタービン・蒸気タービン組合せサイクルの超過速度防護装置
JP3559574B2 (ja) 一軸型コンバインドサイクル発電設備の起動方法
JP3774487B2 (ja) コンバインドサイクル発電プラント
JP3919966B2 (ja) コンバインドサイクル発電プラントの運転方法
JP2004245184A (ja) 再熱蒸気タービンプラントとその起動方法
JP3766142B2 (ja) コンバインドサイクル発電プラント
JP3559573B2 (ja) 一軸型コンバインドサイクル発電設備の起動方法
JP4162371B2 (ja) 一軸型複合発電プラントの起動制御方法
JP4434513B2 (ja) コンバインドサイクル発電プラント
JP3144440B2 (ja) 多軸複合サイクル発電プラント
JP2003254011A (ja) 多軸型コンバインドサイクル発電プラントの運転方法
JPH10331608A (ja) クローズド蒸気冷却ガスタービンコンバインドプラント

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term