JP3659059B2 - Nitride semiconductor device - Google Patents

Nitride semiconductor device Download PDF

Info

Publication number
JP3659059B2
JP3659059B2 JP11420599A JP11420599A JP3659059B2 JP 3659059 B2 JP3659059 B2 JP 3659059B2 JP 11420599 A JP11420599 A JP 11420599A JP 11420599 A JP11420599 A JP 11420599A JP 3659059 B2 JP3659059 B2 JP 3659059B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
semiconductor layer
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11420599A
Other languages
Japanese (ja)
Other versions
JP2000012903A (en
Inventor
雅俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP11420599A priority Critical patent/JP3659059B2/en
Publication of JP2000012903A publication Critical patent/JP2000012903A/en
Application granted granted Critical
Publication of JP3659059B2 publication Critical patent/JP3659059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化物半導体(InxAlyGa1-x-yN、0≦x、0≦y、x+y≦1)を用いた発光ダイオード(LED)やレーザーダイオード(LD)などに利用可能な窒化物半導体素子に係わり、特に形成された半導体素子間における半導体特性のバラツキが少ない窒化物半導体素子に関する。
【0002】
【従来技術】
窒化物半導体は高輝度、純緑色発光LED、青色LEDとして既にフルカラーLEDディスプレイの光源などとして実用化されている。また、窒化物半導体は物理的強度が高く、高温においても駆動可能な半導体素子とすることができるためLEDやLDなどの発光素子だけでなく受光素子や種々の半導体素子としても種々研究されている。このような窒化物半導体素子を利用した半導体素子の一つとして発光素子では、発光輝度や発光効率を向上させる目的で低濃度に不純物を添加した窒化物半導体層上にMOCVD法などを利用して機能素子を形成させることが行われている。発光素子としては、特開平10−4210号などに記載の窒化物半導体素子が挙げられる。
【0003】
具体的には、基板上に形成された3族窒化物半導体からなるn層、発光層、p層とを有する発光素子において、n層、p層のうち、基板に近い方に形成される層を、基板に近い方から、不純物無添加を含む低濃度に不純物を添加した第1低不純物層と、その第1低不純物濃度層の上に形成され、高濃度に不純物を添加した高不純物濃度層に対してコンタクト電極を形成した発光素子及び高不純物濃度層と発光層との間に低濃度に不純物を添加した第2低不純物濃度層が形成された発光素子が開示されている。
【0004】
即ち、より上に形成される半導体層の結晶性低下を防止すべく結晶性の比較的優れた第1低不純物濃度層及び第2低不純物濃度層を設けてある。このような素子構造とすることにより、ある程度、半導体発光層などの結晶性を向上させ発光輝度及び発光効率を向上させ得ことができる。
【0005】
しかしながら、より発光効率などの向上などが求められる現在においては、上記構成の半導体素子の構成においては十分ではなく更なる発光効率向上などが求められている。また、半導体素子の層構成によっては形成された窒化物半導体ウエハから取り出される半導体素子の特性にバラツキがあり歩留まりが低下する傾向にある。
【0006】
そこで、本発明者らは種々実験の結果、特定の不純物をドープした特定構造の窒化物半導体構成とすることにより、半導体特性の向上及び半導体ウエハから得られた個々の半導体素子が持っている特性のバラツキが低減できることを見出し本発明をなしたものである。
【0007】
即ち、Snはn型不純物として低温で高濃度に窒化物半導体層中にドープすることができること及びSnの低温高不純物ドープにより、特定層構造の半導体ウエハの反りなどにもとづく歩留まり低下を防止したものである。より詳しく述べると、電極が形成される高不純物濃度の窒化物半導体層を低不純物濃度層で挟み込むことにより、低不純物濃度層上の結晶性を向上させることができる。特に、基板から数えて第1の窒化物半導体層を不純物無添加とすることのみならず第3の窒化物半導体層をも、結晶性のよいノンドープ(実質的に不純物無添加)の窒化物半導体層で構成することが考えられる。この場合、第3の窒化物半導体層上には活性層など半導体の機能部が好適に設けられるものである。そのため、機能部に電流を均質に効率よく流す必要があり、不純物が添加される第2の窒化物半導体層をより高濃度に不純物添加させざるを得ない。
【0008】
しかしながら、高濃度に厚膜で不純物添加層を形成させるためには、半導体ウエハを反応容器内で長時間高温に晒さなければならず、積層膜の熱膨張率の違いなどにより半導体ウエハに反りが生ずる。この反りは反応容器内における半導体ウエハに供給される熱分布や原料ガスの不均衡を生ずることとなる。そのため、同じ半導体ウエハから取り出された半導体素子であっても不純物の濃度分布や膜応力などに大きな違いが生じ実質的に同じ半導体特性を示さない場合があると考えられる。このような半導体素子のバラツキは歩留まりの低下の原因ともなる。特に、半導体ウエハが大きくなるにつれ一枚のウエハから取り出すことが大きくなるため大口径化することが望まれている現在においては大きな問題となる。
【0009】
【発明が解決しようとする課題】
したがって、本願発明は、より発光出力の向上や半導体特性を向上させた窒化物半導体発光素子を歩留まりよく提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、基板と活性層との間に基板側から順にn型の第1の窒化物半導体層と、n型不純物を有しn型電極が形成される第2の窒化物半導体層と、n型の第3の窒化物半導体層とを有する窒化物半導体素子であって、第2の窒化物半導体層のn型不純物がSnであると共に第3の窒化物半導体層はn型不純物無添加層、若しくは第2の窒化物半導体層よりもSn含有量が少なく、第2の窒化物半導体層は第3の窒化物半導体層より低温で、n型不純物がドープされている、窒化物半導体素子である。これにより、半導体特性を向上させながら歩留まりの高い半導体装置とすることができる。特に、Snがドープされた第2の窒化物半導体層は低温で高濃度にSnがドープされても比較的ピッチなどが少なく窒化物半導体層を形成し易い。そのため、層内に均一に電流が流れやすい傾向にある。
【0011】
本発明の請求項2に記載の窒化物半導体素子は、第1の窒化物半導体層の膜厚が1μm以上10μm以下である。これにより、第1の窒化物半導体層上に形成される窒化物半導体の結晶性を良好に保つことができる。
【0012】
本発明の請求項3に記載の窒化物半導体素子は、第2の窒化物半導体層の膜厚が3μm以上10μm以下である。この膜厚において、その上に形成される半導体機能部に均等性よく電流を流すこともできる。
【0013】
本発明の請求項4に記載の窒化物半導体素子は、第3の窒化物半導体層の膜厚が0.1μm以上1μm以下である。これによって、第3の窒化物半導体層上に形成される窒化物半導体の結晶性を良好に保つことができると共に短絡を防止することができる。
【0014】
【発明の実施の形態】
以下、本発明を具体的例に基づいて説明する。なお、本発明は下記具体例のみに限定されるものでないことはいうまでもない。図1は本発明の窒化物半導体素子をLEDとして形成された層構成を示す模式的断面図である。
【0015】
(基板101)
サファイア基板を反応容器内の加熱ヒーターにセットし、容器内を水素で十分置換した後、水素を流しながら、加熱ヒーターで基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。基板にはサファイアC面の他、R面、A面を主面とするサファイア、その他、スピネル(MgA12O4)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、GaN等の半導体基板を用いることができる。
【0016】
(バッファ層102)
続いて、基板温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、基板上にGaNよりなるバッファ層を約200オングストロームの膜厚で成長させる。
【0017】
(第1の窒化物半導体層103)
バッファ層成長後、TMGのみ止めて、温度を1050℃まで上昇させる。1050℃になったら、同じく原料ガスにTMG、アンモニアガスを用い、アンドープ(不純物無添加)GaNよりなる第1の窒化物半導体層を1.5μmの膜厚で成長させる。第1の窒化物半導体層は基板に直接成長させるバッファ層よりも高温、例えば900℃〜1100℃で成長させ、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成でき、その組成は特に問うものではないが、好ましくはGaN、X値が0.2以下のAlXGa1-XNとすると結晶欠陥の少ない窒化物半導体層が得られやすい。
【0018】
第1の窒化物半導体層は第2及び第3の窒化物半導体層とは異なり、半導体素子の駆動に関して比較的電気的影響が少ない。また、その上に積層される窒化物半導体層は電気的特性のみならず種々の特性において結晶性が半導体素子の特性に大きく影響する。そのため、ノンドープであると共に厚膜とすることが好ましい。膜厚は厚くなれば結晶性が向上するため所望の厚みとすることができるものの、余り厚く積みすぎると量産性が低下するだけでなく内部に歪みができる場合もある。
【0019】
したがって、第1の窒化物半導体層の膜厚はバッファ層よりも厚膜で成長させ、0.8μm以上20μm以下の膜厚で成長させることが好ましく、より好ましくは1μm以上10μm以下、更に好ましくは1.5μm以上5μm以下である。この層はアンドープの層であるため、抵抗率は0.1Ω・cmよりも大きい。また第1の窒化物半導体層は、バッファ層よりも高温で成長させる層であるためアンドープでもバッファ層とは区別される。
【0020】
(第2の窒化物半導体層104)
続いて基板温度を980℃で、同じく原料ガスにTMG、アンモニアガス、不純物ガスにTESn(テトラエチルスズ)ガスを用い、Sn高濃度ドープGaNよりなる第2の窒化物半導体層を3μmの膜厚で成長させる。
【0021】
第2の窒化物半導体層も第1の窒化物半導体層と同様に、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成でき、その組成は特に問うものではないが、好ましくはGaN、X値が0.2以下のAlXGa1-XNとすると結晶欠陥の少ない窒化物半導体層が得られやすい。
【0022】
第2の窒化物半導体層は外部から半導体に電流が供給されるn型電極が形成されるものであり、第3の窒化物半導体層を介して活性層などに均一に電流を注入させるものである。そのため、比較的厚膜の窒化物半導体に不純物を高濃度に添加させるものである。特に、第3の窒化物半導体層がアンドープ層の場合、如何に第2の窒化物半導体層の不純物を多くし抵抗率を下げられるかが大きな問題となる。
【0023】
本発明では、Sn高濃度ドープにより第2の窒化物半導体層の抵抗率を4×10-3Ω・cm以上2×10-1Ω以下とすることもできる。また、第2の窒化物半導体層の膜厚は1μm以上20μm以下の膜厚で成長させことが望ましい。特に好ましくは、3μm以上10μm以下である。これにより本発明では、厚膜の第2の不純物濃度層を高不純物濃度で形成させても、個々の半導体特性がばらつくことがなくなる。
【0024】
(第3の窒化物半導体層105)
次にTESnガスのみを止め、1050℃で同様にしてアンドープGaNよりなる第3の窒化物半導体層を0.15μmの膜厚で成長させる。この第3の窒化物半導体層もInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成でき、その組成は特に問うものではないが、好ましくはGaN、X値が0.2以下のAlXGa1-XN、又はY値が0.1以下のInYGa1-YNとすると結晶欠陥の少ない窒化物半導体層が得られやすい。InGaNを成長させると、その上にAlを含む窒化物半導体層を成長させる場合に、Alを含む窒化物半導体層にクラックが入るのを防止することができる。
【0025】
このような第3の窒化物半導体層はアンドープ(不純物無添加)若しくは第2の窒化物半導体層よりも不純物濃度が低いため、膜厚が厚すぎると抵抗が増える。そのため、その上に形成する活性層など機能部の駆動電圧が高くなるだけでなく、発熱など種々の弊害を生ずる。また、薄すぎると第2の窒化物半導体層が高濃度不純物層であるが故に、リーク電流の増加、静電耐圧やサージに対する耐電圧が低くなるなどの問題を生ずる。また、その上に形成される機能部の結晶性も低下する傾向にある。したがって、第3の窒化物半導体層の膜厚は0.1μm以上1μm以下が好ましく、0.2μm以上0.4μm以下がより好ましい。
【0026】
なお第2の窒化物半導体層を単一の窒化物半導体層で成長させる場合、第1の窒化物半導体層と、第2の窒化物半導体層と、第3の窒化物半導体層とは同一組成の窒化物半導体を成長させることが望ましい。
【0027】
(活性層106)
次に、基板温度を800℃にして、キャリアガスを窒素に切り替え、TMGガス、TMI(トリメチルインジウム)ガス、アンモニアを用いアンドープIn0.4Ga0.6N層を30オングストロームの膜厚で成長させて量子井戸構造とされる活性層を成長させる。なお、活性層を単一量子井戸構造としたが、井戸層が障壁層に挟まれたものを複数積層させた多重量子井戸構造とすることもできることは言うまでもない。
【0028】
(p側クラッド層107)
活性層を成膜後、基板温度を再び1050℃に上げ、TMGガス、TMAガス、アンモニア、Cp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cm3ドープしたp型Al0.1Ga0.9Nよりなるp側クラッド層を0.1μmの膜厚で成長させる。この層は活性層のキャリア閉じ込め層として作用し、Alを含む窒化物半導体、好ましくはAlYGa1-YN(0<Y<1)を成長させることが望ましく、結晶性の良い層を成長させるためにはY値が0.3以下のAlYGa1-YN層を0.5μm以下の膜厚で成長させることが望ましい。
【0029】
(p側コンタクト層108)
続いて基板温度を1050℃で維持し、TMG、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層を0.1μmの膜厚で成長させる。p側コンタクト層もInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成でき、その組成は特に問うものではないが、好ましくはGaNとすると結晶欠陥の少ない窒化物半導体層が得られやすく、またp電極材料と好ましいオーミック接触が得られやすい。
【0030】
反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウエハを反応容器内において、700℃で熱処理を行い、p型層をさらに低抵抗化する。
【0031】
熱処理後、半導体ウエハを反応容器から取り出し、最上層のp側コンタクト層の表面に所定の形状のマスクを形成し、RIE(反応性イオンエッチング)装置でp側コンタクト層側からエッチングを行い、図1に示すように第2の窒化物半導体層の表面を露出させる。
【0032】
エッチング後、最上層にあるp側コンタクト層のほぼ全面に膜厚200オングストロームのNiとAuを含む透光性p型電極109と、その透光性p型電極の上にボンディング用のAuよりなるp型台座電極110を0.7μmの膜厚で形成する。一方エッチングにより露出させた第2の窒化物半導体層表面にはWとAlを含むn型電極111を形成する。最後にp型電極の表面を保護するためにSiO2よりなる絶縁膜を図1に示すように形成した後、半導体ウエハをスクライブにより分離して350μm角のLEDを形成させる。このLEDは順方向電圧20mAにおいて、520nmの純緑色発光を示す。
【0033】
本発明と比較のための窒化物半導体素子として図2に示すLEDチップを形成させた。図2では、サファイア基板201上にGaNよりなるバッファ層202と、SiドープGaNよりなるn側コンタクト層204と、単一量子井戸構造のInGaNよりなる活性層206と、MgドープAlGaNよりなるp側クラッド層207と、MgドープGaNよりなるp側コンタクト層208とを順に積層させた。本発明のLEDは、比較のためのLEDと較べて、20mAにおけるVfで約0.1V、出力で約4%向上させることができた。また、同一半導体ウエハから取り出されたLEDチップの発光出力のバラツキは比較のためのLEDの発光出力のバラツキを100として20%以上低減させることができる。
【0034】
【発明の効果】
本発明の構成とすることによって、n型半導体層上に形成される機能部の結晶性を向上させるばかりでなく、リーク電流の低下や静電耐圧を向上させることができる。また、半導体ウエハから取り出した個々の半導体特性などのバラツキが少なく歩留まりの高い窒化物半導体素子とすることができるという優れた特性を有する。
【図面の簡単な説明】
【図1】 本発明の窒化物半導体素子を示す模式的断面図を示す。
【図2】 本発明の窒化物半導体素子と比較のために示す窒化物半導体素子の模式的断面図である。
【符号の説明】
101、201・・・基板
102、202・・・バッファ層
103・・・第1の窒化物半導体層
104・・・第2の窒化物半導体層
105・・・第3の窒化物半導体層
106、206・・・活性層
107、207・・・p型クラッド層
108、208・・・p型コンタクト層
109、209・・・透光性p型電極
110、210・・・p型台座電極
111、211・・・n型電極
112、212・・・絶縁膜
204・・・n型クラッド層兼コンタクト層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitride semiconductor device that can be used for a light emitting diode (LED) or a laser diode (LD) using a nitride semiconductor (InxAlyGa1-x-yN, 0≤x, 0≤y, x + y≤1). In particular, the present invention relates to a nitride semiconductor device with little variation in semiconductor characteristics between formed semiconductor devices.
[0002]
[Prior art]
Nitride semiconductors have already been put to practical use as light sources for full-color LED displays as high-luminance, pure green light-emitting LEDs and blue LEDs. In addition, since nitride semiconductors have high physical strength and can be driven at high temperatures, they are being studied not only as light emitting elements such as LEDs and LDs but also as light receiving elements and various semiconductor elements. . In a light emitting device as one of semiconductor devices using such a nitride semiconductor device, an MOCVD method or the like is used on a nitride semiconductor layer doped with impurities at a low concentration for the purpose of improving light emission luminance and light emission efficiency. A functional element is formed. Examples of the light emitting element include nitride semiconductor elements described in JP-A-10-4210.
[0003]
Specifically, in a light emitting device having an n layer, a light emitting layer, and a p layer made of a group III nitride semiconductor formed on a substrate, a layer formed closer to the substrate among the n layer and the p layer. Are formed on the first low impurity concentration layer to which impurities are added at a low concentration including no addition of impurities and from the side closer to the substrate, and on the first low impurity concentration layer, a high impurity concentration to which impurities are added at a high concentration A light-emitting element in which a contact electrode is formed on the layer and a light-emitting element in which a second low-impurity concentration layer in which an impurity is added at a low concentration is formed between the high-impurity concentration layer and the light-emitting layer are disclosed.
[0004]
That is, the first low impurity concentration layer and the second low impurity concentration layer having relatively excellent crystallinity are provided to prevent the crystallinity of the semiconductor layer formed thereon from being lowered. By adopting such an element structure, it is possible to improve the crystallinity of the semiconductor light emitting layer and the like to improve the light emission luminance and the light emission efficiency to some extent.
[0005]
However, at the present time when further improvement in luminous efficiency and the like is required, the configuration of the semiconductor element having the above configuration is not sufficient, and further improvement in luminous efficiency is required. Also, depending on the layer structure of the semiconductor element, the characteristics of the semiconductor element taken out from the formed nitride semiconductor wafer vary, and the yield tends to decrease.
[0006]
Therefore, as a result of various experiments, the inventors of the present invention have improved the semiconductor characteristics and characteristics of individual semiconductor elements obtained from the semiconductor wafer by adopting a nitride semiconductor structure having a specific structure doped with a specific impurity. The present invention has been found out that the variation of the above can be reduced.
[0007]
That is, Sn can be doped as an n-type impurity in the nitride semiconductor layer at a low temperature and a high concentration, and the low temperature and high impurity doping of Sn prevents a decrease in yield due to warpage of a semiconductor wafer having a specific layer structure. It is. More specifically, the crystallinity on the low impurity concentration layer can be improved by sandwiching the high impurity concentration nitride semiconductor layer on which the electrode is formed between the low impurity concentration layers. In particular, the first nitride semiconductor layer counted from the substrate is not doped with impurities, but the third nitride semiconductor layer is also non-doped (substantially doped with no impurities) nitride semiconductor with good crystallinity. It is conceivable to make up layers. In this case, a semiconductor functional part such as an active layer is preferably provided on the third nitride semiconductor layer. For this reason, it is necessary to uniformly and efficiently pass a current through the functional portion, and the second nitride semiconductor layer to which the impurity is added must be doped with a higher concentration.
[0008]
However, in order to form an impurity-added layer with a thick film at a high concentration, the semiconductor wafer must be exposed to a high temperature for a long time in the reaction vessel, and the semiconductor wafer is warped due to a difference in thermal expansion coefficient of the laminated film. Arise. This warpage causes an imbalance in the heat distribution and source gas supplied to the semiconductor wafer in the reaction vessel. For this reason, even if semiconductor elements are taken out from the same semiconductor wafer, it is considered that there may be a large difference in impurity concentration distribution, film stress, etc., and the semiconductor characteristics may not be substantially the same. Such a variation in semiconductor elements also causes a decrease in yield. In particular, as the size of a semiconductor wafer increases, it becomes larger to take out from a single wafer.
[0009]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a nitride semiconductor light emitting device with improved light emission output and improved semiconductor characteristics with high yield.
[0010]
[Means for Solving the Problems]
The present invention includes an n-type first nitride semiconductor layer between a substrate and an active layer in order from the substrate side, a second nitride semiconductor layer having an n-type impurity and having an n-type electrode formed thereon, A nitride semiconductor device having an n-type third nitride semiconductor layer, wherein the n-type impurity of the second nitride semiconductor layer is Sn, and the third nitride semiconductor layer has no n-type impurity. added layer, or the second rather small, Sn content than the nitride semiconductor layer, the second nitride semiconductor layer at a temperature lower than the third nitride semiconductor layer, n-type impurity is doped, nitride It is a semiconductor element. Thereby, it is possible to obtain a semiconductor device with high yield while improving semiconductor characteristics. In particular, even if the second nitride semiconductor layer doped with Sn is doped with Sn at a low temperature and a high concentration, the nitride semiconductor layer can be easily formed with a relatively small pitch. Therefore, the current tends to flow uniformly in the layer.
[0011]
In the nitride semiconductor device according to claim 2 of the present invention, the film thickness of the first nitride semiconductor layer is not less than 1 μm and not more than 10 μm. Thereby, the crystallinity of the nitride semiconductor formed on the first nitride semiconductor layer can be kept good.
[0012]
In the nitride semiconductor device according to claim 3 of the present invention, the film thickness of the second nitride semiconductor layer is 3 μm or more and 10 μm or less. With this film thickness, a current can be passed through the semiconductor functional part formed thereon with good uniformity.
[0013]
In the nitride semiconductor device according to claim 4 of the present invention, the film thickness of the third nitride semiconductor layer is not less than 0.1 μm and not more than 1 μm. Thereby, the crystallinity of the nitride semiconductor formed on the third nitride semiconductor layer can be kept good and a short circuit can be prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific examples. Needless to say, the present invention is not limited to the following specific examples. FIG. 1 is a schematic cross-sectional view showing a layer structure in which the nitride semiconductor device of the present invention is formed as an LED.
[0015]
(Substrate 101)
After the sapphire substrate is set in a heater in the reaction vessel and the inside of the vessel is sufficiently replaced with hydrogen, the substrate is cleaned by raising the temperature of the substrate to 1050 ° C. with the heater while flowing hydrogen. In addition to sapphire C surface, sapphire whose main surface is R surface and A surface, other insulating substrates such as spinel (MgA12O4), SiC (including 6H, 4H, 3C), Si, A semiconductor substrate such as ZnO, GaAs, or GaN can be used.
[0016]
(Buffer layer 102)
Subsequently, the substrate temperature is lowered to 510 ° C., hydrogen is used as the carrier gas, ammonia and TMG (trimethyl gallium) are used as the source gas, and a buffer layer made of GaN is grown on the substrate to a thickness of about 200 Å.
[0017]
(First nitride semiconductor layer 103)
After growing the buffer layer, only TMG is stopped and the temperature is raised to 1050 ° C. When the temperature reaches 1050 ° C., similarly, TMG and ammonia gas are used as the source gas, and a first nitride semiconductor layer made of undoped (undoped impurities) GaN is grown to a thickness of 1.5 μm. The first nitride semiconductor layer can be grown at a higher temperature than, for example, 900 ° C. to 1100 ° C. than the buffer layer directly grown on the substrate, and can be composed of InXAlYGa1-X-YN (0 ≦ X, 0 ≦ Y, X + Y ≦ 1). The composition thereof is not particularly limited, but it is preferable to obtain a nitride semiconductor layer with few crystal defects when GaN, preferably AlXGa1-XN having an X value of 0.2 or less.
[0018]
Unlike the second and third nitride semiconductor layers, the first nitride semiconductor layer has relatively little electrical influence on driving of the semiconductor element. Further, in the nitride semiconductor layer laminated thereon, crystallinity greatly affects the characteristics of the semiconductor element in various characteristics as well as electrical characteristics. Therefore, it is preferable to use a non-doped and thick film. If the film thickness is increased, the crystallinity is improved so that it can be set to a desired thickness. However, if the film thickness is excessively thick, not only mass productivity is lowered but also internal distortion may occur.
[0019]
Therefore, the film thickness of the first nitride semiconductor layer is preferably grown to be thicker than that of the buffer layer, and is preferably grown to a thickness of 0.8 μm to 20 μm, more preferably 1 μm to 10 μm, and even more preferably. It is 1.5 μm or more and 5 μm or less. Since this layer is an undoped layer, the resistivity is greater than 0.1 Ω · cm. Further, since the first nitride semiconductor layer is a layer grown at a higher temperature than the buffer layer, it is distinguished from the buffer layer even if it is undoped.
[0020]
(Second nitride semiconductor layer 104)
Subsequently, the substrate temperature is 980 ° C., TMG and ammonia gas are used as the source gas, and TESn (tetraethyltin) gas is used as the impurity gas, and a second nitride semiconductor layer made of Sn highly doped GaN is formed to a thickness of 3 μm. Grow.
[0021]
Similar to the first nitride semiconductor layer, the second nitride semiconductor layer can be composed of InXAlYGa1-X-YN (0≤X, 0≤Y, X + Y≤1), and the composition is not particularly limited. Preferably, GaN, AlxGa1-XN having an X value of 0.2 or less, makes it easy to obtain a nitride semiconductor layer with few crystal defects.
[0022]
The second nitride semiconductor layer is formed with an n-type electrode for supplying a current to the semiconductor from the outside, and the current is uniformly injected into the active layer or the like through the third nitride semiconductor layer. is there. Therefore, a high concentration of impurities is added to a relatively thick nitride semiconductor. In particular, when the third nitride semiconductor layer is an undoped layer, how to increase the impurities in the second nitride semiconductor layer to lower the resistivity becomes a big problem.
[0023]
In the present invention, the resistivity of the second nitride semiconductor layer can be 4 × 10 −3 Ω · cm to 2 × 10 −1 Ω by Sn high concentration doping. The second nitride semiconductor layer is preferably grown to a thickness of 1 μm to 20 μm. Especially preferably, they are 3 micrometers or more and 10 micrometers or less. Accordingly, in the present invention, even if the thick second impurity concentration layer is formed with a high impurity concentration, individual semiconductor characteristics do not vary.
[0024]
(Third nitride semiconductor layer 105)
Next, only the TESn gas is stopped, and a third nitride semiconductor layer made of undoped GaN is grown to a thickness of 0.15 μm in the same manner at 1050 ° C. This third nitride semiconductor layer can also be composed of InXAlYGa1-X-YN (0.ltoreq.X, 0.ltoreq.Y, X + Y.ltoreq.1), although its composition is not particularly limited. When AlXGa1-XN of 2 or less or InYGa1-YN having a Y value of 0.1 or less, a nitride semiconductor layer with few crystal defects is easily obtained. When InGaN is grown, when a nitride semiconductor layer containing Al is grown thereon, cracks can be prevented from entering the nitride semiconductor layer containing Al.
[0025]
Since such a third nitride semiconductor layer has an impurity concentration lower than that of the undoped (no impurity added) or second nitride semiconductor layer, the resistance increases if the film thickness is too thick. For this reason, not only the drive voltage of the functional part such as the active layer formed thereon is increased, but also various problems such as heat generation are caused. On the other hand, if the thickness is too thin, the second nitride semiconductor layer is a high-concentration impurity layer, which causes problems such as an increase in leakage current and a reduction in electrostatic withstand voltage and withstand voltage against surge. In addition, the crystallinity of the functional part formed thereon tends to decrease. Therefore, the film thickness of the third nitride semiconductor layer is preferably 0.1 μm or more and 1 μm or less, and more preferably 0.2 μm or more and 0.4 μm or less.
[0026]
When the second nitride semiconductor layer is grown as a single nitride semiconductor layer, the first nitride semiconductor layer, the second nitride semiconductor layer, and the third nitride semiconductor layer have the same composition. It is desirable to grow a nitride semiconductor.
[0027]
(Active layer 106)
Next, the substrate temperature is set to 800 ° C., the carrier gas is switched to nitrogen, and an undoped In 0.4 Ga 0.6 N layer is grown to a thickness of 30 Å using TMG gas, TMI (trimethylindium) gas, and ammonia to form a quantum well. An active layer that is structured is grown. Although the active layer has a single quantum well structure, it is needless to say that a multiple quantum well structure in which a plurality of well layers sandwiched between barrier layers can be stacked.
[0028]
(P-side cladding layer 107)
After the formation of the active layer, the substrate temperature is raised again to 1050 ° C., p-type Al0.1Ga0. Doped with 1 × 10 20 / cm 3 of Mg using TMG gas, TMA gas, ammonia, Cp 2 Mg (cyclopentadienyl magnesium). A p-side cladding layer made of 9N is grown to a thickness of 0.1 μm. This layer acts as a carrier confinement layer of the active layer, and it is desirable to grow a nitride semiconductor containing Al, preferably AlYGa1-YN (0 <Y <1). In order to grow a layer with good crystallinity It is desirable to grow an AlYGa1-YN layer having a Y value of 0.3 or less with a film thickness of 0.5 μm or less.
[0029]
(P-side contact layer 108)
Subsequently, the substrate temperature is maintained at 1050 ° C., and a p-side contact layer made of p-type GaN doped with 1 × 10 20 / cm 3 of Mg is grown to a thickness of 0.1 μm using TMG, ammonia, and Cp 2 Mg. The p-side contact layer can also be composed of InXAlYGa1-X-YN (0≤X, 0≤Y, X + Y≤1), and the composition thereof is not particularly limited. In addition, it is easy to obtain preferable ohmic contact with the p-electrode material.
[0030]
After completion of the reaction, the temperature is lowered to room temperature, and the wafer is heat-treated in a reaction vessel at 700 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type layer.
[0031]
After the heat treatment, the semiconductor wafer is taken out of the reaction vessel, a mask having a predetermined shape is formed on the surface of the uppermost p-side contact layer, and etching is performed from the p-side contact layer side with an RIE (reactive ion etching) apparatus. As shown in FIG. 1, the surface of the second nitride semiconductor layer is exposed.
[0032]
After the etching, a light-transmitting p-type electrode 109 containing Ni and Au having a thickness of 200 angstroms is formed on almost the entire surface of the p-side contact layer as the uppermost layer, and bonding Au is formed on the light-transmitting p-type electrode. The p-type pedestal electrode 110 is formed with a film thickness of 0.7 μm. On the other hand, an n-type electrode 111 containing W and Al is formed on the surface of the second nitride semiconductor layer exposed by etching. Finally, an insulating film made of SiO2 is formed as shown in FIG. 1 to protect the surface of the p-type electrode, and then the semiconductor wafer is separated by scribe to form a 350 μm square LED. The LED emits pure green light of 520 nm at a forward voltage of 20 mA.
[0033]
The LED chip shown in FIG. 2 was formed as a nitride semiconductor device for comparison with the present invention. In FIG. 2, on the sapphire substrate 201, a buffer layer 202 made of GaN, an n-side contact layer 204 made of Si-doped GaN, an active layer 206 made of InGaN having a single quantum well structure, and a p-side made of Mg-doped AlGaN. A clad layer 207 and a p-side contact layer 208 made of Mg-doped GaN were sequentially stacked. The LED of the present invention was able to improve about 0.1 V at Vf at 20 mA and about 4% in output as compared with the LED for comparison. Further, the variation in the light emission output of the LED chips taken out from the same semiconductor wafer can be reduced by 20% or more, assuming that the variation in the light emission output of the LED for comparison is 100.
[0034]
【The invention's effect】
By adopting the structure of the present invention, not only the crystallinity of the functional portion formed on the n-type semiconductor layer can be improved, but also the leakage current can be reduced and the electrostatic withstand voltage can be improved. In addition, the nitride semiconductor device has excellent characteristics that it can be a nitride semiconductor element with little variation in individual semiconductor characteristics taken out of the semiconductor wafer and high yield.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a nitride semiconductor device of the present invention.
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor device shown for comparison with the nitride semiconductor device of the present invention.
[Explanation of symbols]
101, 201 ... substrate 102, 202 ... buffer layer 103 ... first nitride semiconductor layer 104 ... second nitride semiconductor layer 105 ... third nitride semiconductor layer 106, 206 ... active layers 107, 207 ... p-type cladding layers 108, 208 ... p-type contact layers 109, 209 ... translucent p-type electrodes 110, 210 ... p-type base electrodes 111, 211 ... n-type electrodes 112, 212 ... insulating film 204 ... n-type clad layer / contact layer

Claims (4)

基板と活性層との間に基板側から順にn型の第1の窒化物半導体層と、n型不純物を有しn型電極が形成される第2の窒化物半導体層と、n型の第3の窒化物半導体層とを有する窒化物半導体素子であって、
前記第2の窒化物半導体層のn型不純物がSnであると共に
前記第3の窒化物半導体層はn型不純物無添加層、若しくは前記第2の窒化物半導体層よりもSn含有量が少なく、
前記第2の窒化物半導体層は前記第3の窒化物半導体層より低温で、前記n型不純物がドープされている、窒化物半導体素子。
An n-type first nitride semiconductor layer, a second nitride semiconductor layer having an n-type impurity and having an n-type electrode formed, and an n-type first nitride semiconductor layer, in that order from the substrate side, between the substrate and the active layer A nitride semiconductor device having three nitride semiconductor layers,
The n-type impurity of the second nitride semiconductor layer is Sn ;
The third nitride semiconductor layer is n-type undoped layer, or the second rather small, Sn content than the nitride semiconductor layer,
The nitride semiconductor device, wherein the second nitride semiconductor layer is doped with the n-type impurity at a lower temperature than the third nitride semiconductor layer .
前記第1の窒化物半導体層の膜厚が1μm以上10μm以下である請求項1記載の窒化物半導体素子。  The nitride semiconductor device according to claim 1, wherein the first nitride semiconductor layer has a thickness of 1 μm or more and 10 μm or less. 前記第2の窒化物半導体層の膜厚が3μm以上10μm以下である請求項1記載の窒化物半導体素子。  2. The nitride semiconductor device according to claim 1, wherein the film thickness of the second nitride semiconductor layer is 3 μm or more and 10 μm or less. 前記第3の窒化物半導体層の膜厚が0.1μm以上1μm以下である請求項1記載の窒化物半導体素子。  The nitride semiconductor device according to claim 1, wherein a film thickness of the third nitride semiconductor layer is not less than 0.1 μm and not more than 1 μm.
JP11420599A 1998-04-21 1999-04-21 Nitride semiconductor device Expired - Fee Related JP3659059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11420599A JP3659059B2 (en) 1998-04-21 1999-04-21 Nitride semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11106098 1998-04-21
JP10-111060 1998-04-21
JP11420599A JP3659059B2 (en) 1998-04-21 1999-04-21 Nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2000012903A JP2000012903A (en) 2000-01-14
JP3659059B2 true JP3659059B2 (en) 2005-06-15

Family

ID=26450550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11420599A Expired - Fee Related JP3659059B2 (en) 1998-04-21 1999-04-21 Nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP3659059B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345519A (en) * 2000-06-01 2001-12-14 Nichia Chem Ind Ltd Laser element
JP4278405B2 (en) * 2003-02-28 2009-06-17 シャープ株式会社 Oxide semiconductor light emitting device and manufacturing method thereof
JP4316454B2 (en) * 2004-09-10 2009-08-19 株式会社東芝 Semiconductor substrate, semiconductor element, semiconductor element manufacturing method, and semiconductor substrate manufacturing method
CN100403561C (en) * 2004-10-27 2008-07-16 晶元光电股份有限公司 Light-emitting component with circuit protection device
JP5355158B2 (en) * 2009-03-13 2013-11-27 株式会社東芝 Semiconductor substrate and semiconductor element

Also Published As

Publication number Publication date
JP2000012903A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP3244010B2 (en) Light-emitting diode with peripheral electrodes
JP2002033512A (en) Nitride semiconductor light emitting diode
JP3620292B2 (en) Nitride semiconductor device
JP2011018869A (en) Nitride semiconductor element
JP3659059B2 (en) Nitride semiconductor device
JP2003060234A (en) Semiconductor light-emitting element and manufacturing method therefor
JPH11177135A (en) Gallium nitride semiconductor element and its manufacture
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP2012084667A (en) Compound semiconductor light-emitting element, method of manufacturing the same, lamp, electronic device, and mechanical apparatus
JPH11195812A (en) Nitride semiconductor light-emitting element
JP2004214337A (en) Nitride semiconductor light emitting device
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JP3897448B2 (en) Nitride semiconductor light emitting device
JP2006245555A (en) Translucent electrode
JP2006120856A (en) Manufacturing method of semiconductor light-emitting device
JP2019117950A (en) Electronic component
JP2003008059A (en) Nitride-family semiconductor light-emitting element
JP3267250B2 (en) Nitride semiconductor light emitting device
JP2003060228A (en) Semiconductor light-emitting element and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees