JP3657768B2 - X-ray transmission inspection equipment - Google Patents

X-ray transmission inspection equipment Download PDF

Info

Publication number
JP3657768B2
JP3657768B2 JP05730398A JP5730398A JP3657768B2 JP 3657768 B2 JP3657768 B2 JP 3657768B2 JP 05730398 A JP05730398 A JP 05730398A JP 5730398 A JP5730398 A JP 5730398A JP 3657768 B2 JP3657768 B2 JP 3657768B2
Authority
JP
Japan
Prior art keywords
electronic component
ray
detection sensor
inspection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05730398A
Other languages
Japanese (ja)
Other versions
JPH11218503A (en
Inventor
龍介 平嶋
Original Assignee
株式会社ユニハイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニハイト filed Critical 株式会社ユニハイト
Priority to JP05730398A priority Critical patent/JP3657768B2/en
Publication of JPH11218503A publication Critical patent/JPH11218503A/en
Application granted granted Critical
Publication of JP3657768B2 publication Critical patent/JP3657768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検体の検査領域の透過像を検出するX線透過検査装置に関する。
【0002】
【従来の技術】
被検体の内部の欠陥や不良組立の有無を、放射線により非破壊的に検査することは従来から行なわれており、例えば、鋳物製品の内部欠陥の有無を、鋳物製品のX線透過写真により判定することが行なわれている。また、電力用ケーブルの導線の撚線が、絶縁体内にささくれ状に突出していると、絶縁耐圧が低下して事故の原因になるので、生産工程内で電力用ケーブルのX線透過写真により、不良製品のチェックが行なわれている。
さらに最近では、高装着密度化された電子部品の内部構造の検査にも、放射線による透過検査の手法が取り入れられている。
【0003】
図5は従来のX線透過検査装置による透過検査の説明図であり、被検電子部品12には、導体片35a、35bが配置され、導体片35a、35b間が半田36aで半田付されている。
導体片35a、35bが半田36aで完全に接続されている同図(a)の状態では、被検電子部品12の透過X線像38は、イメージインテンシファイア40上に連続して作像され、このX線フィルム37の透過X線像38により、導体片35a、35bが半田38aで完全に接続されていると判定される。
一方、同図(b)に示すように、被検電子部品12の導体片35a、35bが半田36bで半田付されていない場合には、イメージインテンシファイア40上に被検電子部品12の透過X線像38a、38bが、間隙部39で分離されて形成され、導体片35a、35bが、半田38bで接続されていないと判定される。
【0004】
【発明が解決しようとする課題】
しかし、前述の従来のX線透過検査では、図5(c)に示すように、半田36cの接続が不完全であって、導体片35a、35b間が導通していない状態でも、被検電子部品12の透過X線像38は、イメージインテンシファイア40上に同図(a)と同様に作像され、半田36cの不完全接続を検出することはできない。
このように、従来のX線透過検査による被検体の内部構造の検査では、被検体が電子部品のように小型化されると、所定の検査位置の画像を他部分に対してコントロストよく高精度で表示することが困難となり、例えば電子部品の半田付けの状態を高精度で判定することは難しい。
【0005】
本発明は、前述したような被検体のX線透過検査の現状に鑑みてなされたものであり、その目的は、簡単な構成で電子部品のように小型化された被検体の内部接続構造の高精度の検査を行なうことが可能なX線透過検査装置を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するために、請求項1記載の発明は、試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、前記X線発生源と前記試料台とを固定し、前記検出センサ位置調整手段により、前記検出センサを位置調整して、前記被検電子部品の所定方向の透過像を検出するように制御を行なう検査制御手段と
を有することを特徴とするものである。
【0007】
同様に前記目的を達成するために、請求項2記載の発明は、試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、前記X線発生源と前記検出センサとを固定し、前記試料台を水平回転して、前記被検電子部品の所定方向の透過像を検出するように制御を行なう検査制御手段と
を有することを特徴とするものである。
【0008】
同様に前記目的を達成するために、請求項3記載の発明は、試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、
前記X線発生源と前記検出センサとを固定し、前記試料台を水平回転して、前記被検電子部品の透過像を検出するように制御を行なう検査制御手段と、
前記透過像の撮像データにより、前記被検電子部品内の同一断層面上の撮像データを演算処理して、前記被検電子部品の断層画像を形成する画像処理手段と
を有することを特徴とするものである。
上記画像処理手段は、検出センサを構成するCCDの出力端子に、そのCCDが取込む画像データをアフィン変換するアフィン変換回路を接続することにより構成され、上記アフィン変換回路は、CCDから出力されるθ回転毎の着目点の座標データを回転前の着目点の座標データに逐次変換し、加算重畳して被検電子部品の検査領域の断層画像の形成を行ない、画像データが断層面上で積分強調された断層画像とするものとして構成することができる。
【0009】
【発明の実施の形態】
[第1の実施の形態]
本発明の第1の実施の形態を図1ないし図3を参照して説明する。
図1は本実施の形態の構成を示す説明図、図2は本実施の形態の検出センサの移動による透過検査の説明図、図3は本実施の形態の透過検査時の検出センサの配設角度と透過像の関係を示す説明図である。
【0010】
本実施の形態では、図1に示すように、X線の透過窓2を備えた試料台1が設けられ、この試料台1に対して焦点径が10μm以下のX線を照射するX線発生源6が、X線の光軸を試料台1の中心に一致させて配設され、このX線発生源6の軸7には螺子が刻設されている。また、X線発生源6に対してX線発生源駆動モータ8が配設されており、このX線源発生源駆動モータ8の回転軸10には螺子が刻設され、駆動軸10の螺子がX線発生源6の軸7の螺子と噛合している。
【0011】
そして、試料台1に対して試料台回転モータ3が配設され、この試料台回転モータ3の回転軸が、伝達アーム5を介して試料台1に接続され、試料台回転モータ3の回転によって、試料台1が回転するような構成になっている。
この試料台1上に、被検電子部品12が載置されるX線透過材で作成された試料載置板11が配設されており、この試料載置板11に対して、試料台1上で試料載置板11を位置決めする試料駆動ユニット18が配設されており、試料駆動ユニット18には、試料載置板11に係合可能で、試料載置板11を試料台1上で、X軸方向とY軸方向とに移動させる伝達軸13が取り付けられている。
【0012】
試料駆動ユニット18には、X駆動軸21とY駆動軸20とが取り付けられており、X駆動軸21とY駆動軸20とには、それぞれ螺子が刻設され、X駆動軸21の螺子にはX軸駆動モータ14の回転軸16に刻設された螺子が噛合され、Y駆動軸20の螺子には、Y軸駆動モータ15の回転軸15の螺子が噛合している。
このようにして、X軸駆動モータ14とY軸駆動モータ15との駆動によって、試料駆動ユニット18の伝達軸13を介して、試料台1上で試料載置板11を位置決め可能な構成になっている。
【0013】
また、本実施の形態では、X線発生源6からのX線による被検電子部品12の透過像を検出する検出センサ23が設けられ、この検出センサ23は、X線透過像を光像に変換するイメージインテンシファイア40と、イメージインテンシファイア40の光像を検出するCCD41とからなっている。
この検出センサ23が、検出センサ駆動ユニット22によって、X線の照射領域内で3次元的に移動され、且つ検出センサ23の検出面をX線の光軸に垂直になるように回転されるように構成されている。
【0014】
即ち、検出センサ駆動ユニット22には、それぞれ螺子が刻設されたX駆動軸30、Y駆動軸31及びZ駆動軸32が取り付けられ、X駆動軸30の螺子には、X軸駆動モータ24の螺子が螺合され、Y駆動軸31の螺子には、Y軸駆動モータ25の螺子が螺合され、Z駆動軸32の螺子には、Z軸駆動モータ25の螺子が螺合されている。
さらに、検出センサ駆動ユニット22には、検出センサ23の検出面がX線発生源6からの照射X線の光軸にほぼ直角になるように、検出センサ23を回動させる検出センサ回転モータ33が取り付けられている。
【0015】
そして、本実施の形態では、試料台回転モータ3、X線発生源駆動モータ8、X軸駆動モータ14、Y軸駆動モータ15、X軸駆動モータ24、Y軸駆動モータ25、Z軸駆動モータ26、検出センサ回転モータ33は、全体の動作を制御する図示せぬCPUに接続され、CPUからの指令信号に基づいて駆動されるようになっている。
このようにして、本実施の形態では、検出センサ駆動ユニット22によって、検出センサ23が、試料台1上の被検電子部品12に対して、X線の照射領域内において任意の位置に3次元的に移動され、且つX線発生源6から照射されるX線の光軸に、検出面がほぼ直角になるように回動されるように構成されている。
【0016】
このような構成の本実施の形態の動作を説明する。
本実施の形態では、被検電子部品12を載せた試料載置板11が試料台1の透過窓2上に配置され、CPUからの指令信号によって、被検電子部品12の検査領域が、X線発生源6の光軸位置にほぼ一致するように、X軸駆動モータ14とY軸駆動モータ15とが駆動され、試料載置板11に係合された伝達軸13によって、試料載置板11が移動されて検査位置の設定が行なわれる。
【0017】
この検査位置の設定後に、CPUの指令によって、X線発生源6と試料台1が固定され、検出センサ駆動ユニット22が駆動されて、X線駆動モータ24、Y軸駆動モータ25、Z軸駆動モータ26が回転駆動され、検出センサ23が被検電子部品12の検査領域に対して、所定の3次元位置に位置決め設定され、例えば、図3(a)に示すように検出センサ23の位置決めが行なわれる。
次いで、CPUの指令によって、同図(b)に示すように、検出センサ23の検出面が、X線発生源6からのX線の光軸にほぼ直角になるように、検出センサ回転モータ33によって検出センサ23が回動位置決めされる。
【0018】
そして、この状態で、イメージインテンシファイア40の光像38a、38bが、CCD41によって、被検電子部品12の検査領域の画像データとして取込まれ、光電変換されて被検電子部品12の検査領域が、図示せぬモニタに画像表示される。
この撮像条件では、被検電子部品12の検査領域の導体片35a、35bが、図3(b)に示すように、特に高倍率で問題となる歪みなしに撮像され、図2(b)に示すように、例えば導体片35a、35b間の半田36cによる接続が不完全な状態を、透過X線像38a、38bの分離によって、精度よく判定することが可能になる。
【0019】
このように、本実施の形態によると、X線透過検査装置本体の形状的な影響を受けることなく、被検電子部品23をX線源6に近付けることができ、被検電子部品23に対して、検出センサ23を全角度方向に位置設定することができ、被検電子部品23の検査領域の内部構造を、高倍率で且つ高分解能で撮像して、モニタに画像表示することにより、被検電子部品の内部の接続構造の高精度の検査を行なうことが可能になる。
【0020】
[第2の実施の形態]
本発明の第2の実施の形態を、図4を参照して説明する。
図4は本実施の形態の要部の構成を示す説明図である。
【0021】
本実施の形態では、図4に示すように、検出センサ23のCCD41の出力端子に、CCD41が取込む画像データを、アフィン変換するアフィン変換回路42が接続され、アフィン変換された両像データが画像表示されるような構成になっている。
本実施の形態のその他の部分の構成は、すでに説明した第1の実施の形態と同一なので、重複する説明は行なわない。
【0022】
このような構成の本実施の形態の動作を説明する。
本実施の形態では、CPUの指令信号によって、第1の実施の形態と同様に、被検電子部品12の検査位置の設定、検出センサ23の位置決め及び検出センサ23の回動位置決めが行なわれ、例えば図4(a)に示すように撮像開始位置が設定される。
そして、CPUの指令信号によって、X線発生源6と検出センサ23とが固定され、X線発生源6から被検電子部品12の検査領域にX線が照射され、被検電子部品12が載置された試料載置板11を載せた試料台1が回動を開始し、イメージインテンシファイア40の光像が、CCDによって、被検電子部品12の検査領域の画像データとして取込まれ、光電変換されて被検電子部品12の画像データとして出力される。
【0023】
本実施の形態において、被検電子部品12の着目点Pに対するイメージインテンシファイア40の光像点をP0、試料台1の回転により被検電子部品12が、図4に示すように反時計方向にθ回転された時の着目点Pに対するイメージインテンシファイア40の光像点をP1とし、回転前の着目点P0のイメージインテンシファイア40上での座標をP0(x´、y´)、回転後の着目点P0のイメージインテンシファイア40上での座標をP1(x、y)とすると、アフィン変換により、イメージインテンシファイア40の座標系を時計回り方向にθ回転することにより、光像点P1を光像点P0に戻す変換では(1)式が成立する。
【0024】
x´=xcosθ−ysinθ
y´=xsinθ+ycosθ (1)
【0025】
本実施の形態では、CCD41から出力される着目点P1、P2、P3・・・の座標データ(x、y)が、アフィン変換回路42に入力され、(1)式に基づいて、回転前の着目点P0の座標データに逐次変換され、加算重畳されて被検電子部品12の検査領域の断層画像の形成が行なわれる。
この断層画像は、断層面上で被検電子部品12の画像データが、断層面上で積分強調され、断層面の画像が、断層面以外の部分に対してコントラストよく鮮明に表示される。このために、例えば図2(b)に示すように、被検電子部品12の導体片35a、35b間の半田35cの不良接続の画像が、モニタに断層画像として鮮明に表示され、不良接続部の検査が簡単に精度よく行なわれる。
【0026】
このように、本実施の形態によると、被検電子部品12の検査領域のX線透過像を検出する検出センサ23から出力される画像データに基づき、アフィン変換回路42でアイン変換の画像処理をすることにより、検査領域の着目点の高精度の断層画像を、簡単な動作でモニタに鮮明に表示して、被検電子部品12の内部構造の高精度の検査を行なうことが可能になる。
【0027】
【発明の効果】
請求項1記載の発明によると、位置設定手段によって、検査領域がX線のほぼ光軸上に位置するように、被検体が試料台上で位置決めされ、倍率設定手段によって、X線発生源と試料台間距離が調整されて被検体の検査倍率が設定され、検査制御手段によつて、X線発生源と、光軸を中心に水平回転自在な試料台とが固定された状態で、検出センサ位置調整手段により、検出センサがX線の照射領域内でX線の光軸にほぼ直角になるように3次元的に位置調整され、被検体の所定方向の透過像が検出されるように制御され、試料台上に載置された被検体にX線発生源からのX線が照射され、検出センサによって、被検体の検査領域の透過像が検出され、モニタに画像表示されるので、被検体の内部構造を、任意の方向から所望の検査倍率で高精度に検査することが可能になる。
請求項2記載の発明によると、位置設定手段によって、検査領域がX線のほぼ光軸上に位置するように、被検体が試料台上で位置決めされ、倍率設定手段によって、X線発生源と試料台間距離が調整されて被検体の検査倍率が設定され、検査制御手段の制御によって、検出センサ位置調節手段によりX線の照射領域内でX線の光軸にほぼ直角になるように3次元的に位置調整され、X線発生源とが固定された状態で、試料台回転手段によって、試料台が光軸を中心に水平回転され、被検体の所定方向の透過像が検出されるように制御が行なわれ、試料台上に載置された被検体にX線発生源からのX線が照射され、検出センサによって、被検体の検査領域の透過像が検出され、モニタに画像表示されるので、被検体の内部構造を、任意の方向から所望の検査倍率で、高精度に検査することが可能になる。
請求項3記載の発明によると、位置設定手段によって、検査領域がX線のほぼ光軸上に位置するように、被検体が試料台上で位置決めされ、倍率設定手段によって、X線発生源と試料台間距離が調整されて被検体の検査倍率が設定され、検査制御手段の制御によって、X線発生源と、検出センサ位置調節手段によりX線の照射領域内で3次元的に位置調整された検出センサとが固定された状態で、試料台の回転によって、試料台上に載置された被検体が移動制御され、試料台上に載置された被検体にX線発生源からのX線が照射され、検出センサによって、被検体の検査領域の透過像が検出され、画像処理手段によって、検出された透過像の撮像データに基づいて、被検体内の同一断層面上の撮像データが演算処理されて、被検体の断層画像が演算形成され、演算形成された断層画像がモニタに画像表示されるので、被検体の構造を、所望の検査倍率で、断層画像として表示して高精度の検査を行なうことが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す説明図である。
【図2】同実施の形態の検出センサの移動による透過検査の説明図である。
【図3】同実施の形態の透過検査時の検出センサの配設角度と透過像の関係を示す説明図である。
【図4】本発明の第2の実施の実施の形態の要部の構成を示す説明図である。
【図5】従来のX線透過検査装置による透過検査の説明図である。
【符号の説明】
1 試料台
3 試料台回転モータ
6 X線発生源
8 X線発生源駆動モータ
12 被検電子部品
14 X軸駆動モータ
15 Y軸駆動モータ
18 試料駆動ユニット
22 検出センサ駆動ユニット
23 検出センサ
24 X軸駆動モータ
25 Y軸駆動モータ
26 Z軸駆動モータ
33 検出センサ回転モータ
40 イメージインテンシファイヤ
41 CCD
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray transmission inspection apparatus that detects a transmission image of an inspection region of a subject.
[0002]
[Prior art]
Conventionally, non-destructive inspection of the inside of a specimen for defects and defective assembly is performed by radiation, and for example, the presence or absence of internal defects in a cast product is determined by an X-ray transmission photograph of the cast product. To be done. In addition, if the stranded wire of the power cable lead wire protrudes into the insulator, the insulation withstand voltage decreases and causes an accident. Therefore, according to the X-ray transmission photograph of the power cable in the production process, Check for defective products.
More recently, a radiation inspection method using radiation has been adopted for the inspection of the internal structure of electronic components having a high mounting density.
[0003]
FIG. 5 is an explanatory view of transmission inspection by a conventional X-ray transmission inspection apparatus. Conductive pieces 35a and 35b are arranged on the electronic component 12 to be tested, and the conductor pieces 35a and 35b are soldered with solder 36a. Yes.
When the conductor pieces 35a and 35b are completely connected by the solder 36a, the transmitted X-ray image 38 of the electronic component 12 to be measured is continuously formed on the image intensifier 40. From the transmitted X-ray image 38 of the X-ray film 37, it is determined that the conductor pieces 35a and 35b are completely connected by the solder 38a.
On the other hand, as shown in FIG. 4B, when the conductor pieces 35a and 35b of the electronic component 12 to be tested are not soldered by the solder 36b, the transmission of the electronic component 12 to be examined on the image intensifier 40 is performed. X-ray images 38a and 38b are formed by being separated by the gap 39, and it is determined that the conductor pieces 35a and 35b are not connected by the solder 38b.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional X-ray transmission inspection, as shown in FIG. 5 (c), even if the connection of the solder 36c is incomplete and the conductor pieces 35a and 35b are not conductive, The transmitted X-ray image 38 of the component 12 is formed on the image intensifier 40 in the same manner as in FIG. 6A, and incomplete connection of the solder 36c cannot be detected.
As described above, in the examination of the internal structure of the subject by the conventional X-ray transmission examination, when the subject is miniaturized like an electronic component, the image at a predetermined examination position is high in contrast with other parts. For example, it is difficult to determine the soldering state of the electronic component with high accuracy.
[0005]
The present invention has been made in view of the current state of the X-ray transmission examination of the subject as described above, and its purpose is to provide an internal connection structure of the subject that is miniaturized like an electronic component with a simple configuration. An object of the present invention is to provide an X-ray transmission inspection apparatus capable of performing high-precision inspection.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the test electronic component placed on the sample stage is irradiated with X-rays from the X-ray generation source, and the test electronic component is detected by a detection sensor. Is an X-ray transmission inspection apparatus that detects a transmission image of the inspection area and displays an image on a monitor.
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about the optical axis, fixed to said sample table and said X-ray source, by the detection sensor position adjusting means, by positioning the detection sensor, And inspection control means for performing control so as to detect a transmission image in a predetermined direction of the electronic component to be inspected.
[0007]
Similarly, in order to achieve the object, the invention according to claim 2 irradiates a test electronic component placed on a sample stage with X-rays from an X-ray generation source, and detects the test by a detection sensor. An X-ray transmission inspection apparatus that detects a transmission image of an inspection area of an electronic component and displays an image on a monitor.
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about the optical axis, is fixed and said detection sensor and the X-ray source, the sample stage horizontally rotated in a given direction of the electronic component under test And inspection control means for performing control so as to detect a transmitted image of the image.
[0008]
Similarly, in order to achieve the object, the invention according to claim 3 irradiates the test electronic component placed on the sample stage with X-rays from the X-ray generation source, and detects the test by a detection sensor. An X-ray transmission inspection apparatus that detects a transmission image of an inspection area of an electronic component and displays an image on a monitor.
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about said optical axis,
Inspection control means for fixing the X-ray generation source and the detection sensor, horizontally rotating the sample stage , and performing control to detect a transmission image of the electronic component to be examined;
And image processing means for calculating imaging data on the same tomographic plane in the electronic component to be processed based on the transmission image imaging data to form a tomographic image of the electronic component to be detected. Is.
The image processing means is constituted by connecting an affine transformation circuit for affine transformation of image data captured by the CCD to an output terminal of the CCD constituting the detection sensor, and the affine transformation circuit is output from the CCD. The coordinate data of the point of interest for each θ rotation is sequentially converted to the coordinate data of the point of interest before the rotation, and addition and superposition are performed to form a tomographic image of the inspection area of the electronic component under test, and the image data is integrated on the tomographic plane It can be configured as an enhanced tomographic image.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an explanatory view showing the configuration of the present embodiment, FIG. 2 is an explanatory view of a transmission inspection by movement of the detection sensor of the present embodiment, and FIG. 3 is an arrangement of detection sensors at the time of the transmission inspection of the present embodiment. It is explanatory drawing which shows the relationship between an angle and a transmitted image.
[0010]
In the present embodiment, as shown in FIG. 1, a sample stage 1 having an X-ray transmission window 2 is provided, and X-ray generation is performed by irradiating the sample stage 1 with X-rays having a focal diameter of 10 μm or less. A source 6 is disposed with the optical axis of the X-ray coincident with the center of the sample table 1, and a screw is engraved on the shaft 7 of the X-ray generation source 6. An X-ray generation source drive motor 8 is provided for the X-ray generation source 6, and a screw is engraved on the rotary shaft 10 of the X-ray source generation source drive motor 8. Meshes with the screw of the shaft 7 of the X-ray generation source 6.
[0011]
A sample stage rotation motor 3 is provided for the sample stage 1, and the rotation axis of the sample stage rotation motor 3 is connected to the sample stage 1 via the transmission arm 5, and the sample stage rotation motor 3 rotates. The sample stage 1 is configured to rotate.
A sample placement plate 11 made of an X-ray transmitting material on which the electronic component 12 to be tested is placed is disposed on the sample stand 1, and the sample stand 1 is placed against the sample placement plate 11. A sample driving unit 18 for positioning the sample mounting plate 11 is disposed above. The sample driving unit 18 can be engaged with the sample mounting plate 11, and the sample mounting plate 11 is placed on the sample table 1. A transmission shaft 13 that moves in the X-axis direction and the Y-axis direction is attached.
[0012]
An X drive shaft 21 and a Y drive shaft 20 are attached to the sample drive unit 18, and screws are engraved on the X drive shaft 21 and the Y drive shaft 20, respectively. The screw engraved on the rotary shaft 16 of the X-axis drive motor 14 is engaged, and the screw of the Y-axis drive motor 15 is engaged with the screw of the Y drive shaft 20.
In this manner, the sample mounting plate 11 can be positioned on the sample stage 1 through the transmission shaft 13 of the sample drive unit 18 by driving the X-axis drive motor 14 and the Y-axis drive motor 15. ing.
[0013]
Further, in the present embodiment, a detection sensor 23 for detecting a transmission image of the electronic component 12 to be inspected by X-rays from the X-ray generation source 6 is provided. The detection sensor 23 converts the X-ray transmission image into an optical image. The image intensifier 40 for conversion and the CCD 41 for detecting the light image of the image intensifier 40 are included.
The detection sensor 23 is moved three-dimensionally within the X-ray irradiation area by the detection sensor driving unit 22 and rotated so that the detection surface of the detection sensor 23 is perpendicular to the optical axis of the X-ray. It is configured.
[0014]
That is, an X drive shaft 30, a Y drive shaft 31, and a Z drive shaft 32, each of which is engraved with a screw, are attached to the detection sensor drive unit 22. The screw of the X drive shaft 30 is attached to the screw of the X drive shaft 30. The screw is screwed, the screw of the Y-axis drive motor 25 is screwed to the screw of the Y drive shaft 31, and the screw of the Z-axis drive motor 25 is screwed to the screw of the Z drive shaft 32.
Further, the detection sensor drive unit 22 includes a detection sensor rotation motor 33 that rotates the detection sensor 23 so that the detection surface of the detection sensor 23 is substantially perpendicular to the optical axis of the X-rays emitted from the X-ray generation source 6. Is attached.
[0015]
In the present embodiment, the sample stage rotation motor 3, the X-ray generation source drive motor 8, the X axis drive motor 14, the Y axis drive motor 15, the X axis drive motor 24, the Y axis drive motor 25, and the Z axis drive motor. 26. The detection sensor rotation motor 33 is connected to a CPU (not shown) that controls the overall operation, and is driven based on a command signal from the CPU.
In this way, in the present embodiment, the detection sensor drive unit 22 causes the detection sensor 23 to be three-dimensionally positioned at an arbitrary position within the X-ray irradiation region with respect to the electronic component 12 on the sample stage 1. The detection surface is rotated so as to be substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source 6.
[0016]
The operation of the present embodiment having such a configuration will be described.
In the present embodiment, the sample mounting plate 11 on which the electronic component 12 to be tested is placed is disposed on the transmission window 2 of the sample table 1, and the inspection area of the electronic component 12 to be inspected is determined by the command signal from the CPU. The X-axis drive motor 14 and the Y-axis drive motor 15 are driven so as to substantially coincide with the optical axis position of the line generation source 6, and the sample mounting plate is engaged by the transmission shaft 13 engaged with the sample mounting plate 11. 11 is moved to set the inspection position.
[0017]
After setting the inspection position, the X-ray generation source 6 and the sample stage 1 are fixed and the detection sensor drive unit 22 is driven by an instruction from the CPU, and the X-ray drive motor 24, the Y-axis drive motor 25, and the Z-axis drive. The motor 26 is driven to rotate, and the detection sensor 23 is set to a predetermined three-dimensional position with respect to the inspection area of the electronic component 12 to be detected. For example, the detection sensor 23 is positioned as shown in FIG. Done.
Next, the detection sensor rotation motor 33 is set so that the detection surface of the detection sensor 23 is substantially perpendicular to the optical axis of the X-ray from the X-ray generation source 6 as shown in FIG. Thus, the detection sensor 23 is rotationally positioned.
[0018]
In this state, the optical images 38a and 38b of the image intensifier 40 are captured as image data of the inspection area of the electronic component 12 by the CCD 41, photoelectrically converted, and the inspection area of the electronic component 12 is photoelectrically converted. Is displayed on a monitor (not shown).
Under this imaging condition, the conductor pieces 35a and 35b in the inspection area of the electronic component 12 to be inspected are imaged without distortion, which is a problem particularly at a high magnification, as shown in FIG. 3B. As shown, for example, a state in which the connection between the conductor pieces 35a and 35b by the solder 36c is incomplete can be accurately determined by separating the transmission X-ray images 38a and 38b.
[0019]
As described above, according to the present embodiment, the electronic component 23 to be examined can be brought close to the X-ray source 6 without being influenced by the shape of the X-ray transmission inspection apparatus main body. The detection sensor 23 can be positioned in all directions, and the internal structure of the inspection area of the electronic component 23 to be detected is imaged at a high magnification and with a high resolution and displayed on the monitor. It becomes possible to perform a high-precision inspection of the connection structure inside the electronic inspection component.
[0020]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is an explanatory diagram showing a configuration of a main part of the present embodiment.
[0021]
In the present embodiment, as shown in FIG. 4, an affine transformation circuit 42 that affine-transforms image data captured by the CCD 41 is connected to the output terminal of the CCD 41 of the detection sensor 23, and both image data that have undergone affine transformation are obtained. The image is displayed.
Since the configuration of the other parts of the present embodiment is the same as that of the first embodiment already described, duplicate description will not be given.
[0022]
The operation of the present embodiment having such a configuration will be described.
In the present embodiment, the test position of the electronic component 12 to be tested, the positioning of the detection sensor 23, and the rotational positioning of the detection sensor 23 are performed by a command signal from the CPU, as in the first embodiment. For example, the imaging start position is set as shown in FIG.
Then, the X-ray generation source 6 and the detection sensor 23 are fixed by a command signal from the CPU, the X-ray generation source 6 irradiates the inspection area of the electronic component 12 to be tested, and the electronic component 12 to be tested is mounted. The sample stage 1 on which the placed sample mounting plate 11 is placed starts to rotate, and the optical image of the image intensifier 40 is captured by the CCD as image data of the inspection area of the electronic component 12 to be tested. Photoelectrically converted and output as image data of the electronic component 12 to be tested.
[0023]
In the present embodiment, the optical image point of the image intensifier 40 with respect to the point of interest P of the electronic component 12 to be detected is P0, and the electronic component 12 to be detected is rotated counterclockwise as shown in FIG. The optical image point of the image intensifier 40 with respect to the point of interest P when θ is rotated by θ is P1, and the coordinates of the point of interest P0 before rotation on the image intensifier 40 are P0 (x ′, y ′), Assuming that the coordinate on the image intensifier 40 after the rotation is P1 (x, y), the coordinate system of the image intensifier 40 is rotated by θ in the clockwise direction by affine transformation. In the conversion for returning the image point P1 to the light image point P0, the equation (1) is established.
[0024]
x ′ = x cos θ−ysin θ
y ′ = x sin θ + y cos θ (1)
[0025]
In the present embodiment, the coordinate data (x, y) of the points of interest P1, P2, P3,... Output from the CCD 41 are input to the affine transformation circuit 42, and based on the equation (1), before the rotation. The tomographic image of the inspection area of the electronic component 12 to be tested is formed by sequentially converting to coordinate data of the point of interest P0 and adding and superimposing it.
In this tomographic image, the image data of the electronic component 12 to be examined is integrated and emphasized on the tomographic plane on the tomographic plane, and the image of the tomographic plane is clearly displayed with a good contrast with respect to portions other than the tomographic plane. Therefore, for example, as shown in FIG. 2B, an image of defective connection of the solder 35c between the conductor pieces 35a and 35b of the electronic component 12 to be tested is clearly displayed as a tomographic image on the monitor, and the defective connection portion This inspection is performed easily and accurately.
[0026]
As described above, according to the present embodiment, the affine transformation circuit 42 performs image processing for ine transformation based on the image data output from the detection sensor 23 that detects the X-ray transmission image of the examination region of the electronic component 12 to be examined. As a result, a high-accuracy tomographic image of the point of interest in the inspection area can be clearly displayed on the monitor with a simple operation, and the internal structure of the electronic component 12 to be inspected can be inspected with high accuracy.
[0027]
【The invention's effect】
According to the first aspect of the present invention, the subject is positioned on the sample stage by the position setting means so that the examination region is located substantially on the optical axis of the X-ray, and the magnification setting means and the X-ray generation source are positioned. The distance between the sample bases is adjusted to set the inspection magnification of the object, and the detection control means detects the X-ray source and the sample base that is horizontally rotatable around the optical axis. The sensor position adjusting means three-dimensionally adjusts the position of the detection sensor so as to be substantially perpendicular to the optical axis of the X-ray within the X-ray irradiation region so that a transmission image of the subject in a predetermined direction is detected. Since the subject placed on the sample stage is irradiated with the X-rays from the X-ray generation source, a transmission image of the examination region of the subject is detected by the detection sensor and displayed on the monitor. Increase the internal structure of the subject from any direction at the desired magnification. It is possible to test every time.
According to the second aspect of the present invention, the subject is positioned on the sample stage so that the examination region is located substantially on the optical axis of the X-ray by the position setting means, and the X-ray generation source is determined by the magnification setting means. The distance between the sample stands is adjusted, the examination magnification of the subject is set, and, under the control of the examination control means, the detection sensor position adjustment means causes the X-ray irradiation area to be substantially perpendicular to the X-ray optical axis 3. In a state where the position is adjusted dimensionally and the X-ray generation source is fixed, the sample stage is rotated horizontally around the optical axis by the sample stage rotating means so that a transmission image of the subject in a predetermined direction is detected. The X-ray from the X-ray generation source is irradiated to the subject placed on the sample stage, and the transmission image of the examination region of the subject is detected by the detection sensor and displayed on the monitor. Therefore, the internal structure of the subject can be Therefore, it is possible to inspect with high accuracy at a desired inspection magnification.
According to the third aspect of the present invention, the subject is positioned on the sample stage by the position setting means so that the examination region is located substantially on the optical axis of the X-ray, and the magnification setting means and the X-ray generation source are positioned. The distance between the sample tables is adjusted to set the examination magnification of the subject, and the position is adjusted three-dimensionally within the X-ray irradiation area by the X-ray generation source and the detection sensor position adjusting means under the control of the examination control means. in a state where the detecting sensor is fixed a, by rotation of the sample table, is placed on the subject was a movement control on the sample stage, X from X-ray source to the object placed on the sample stage The detection sensor detects a transmission image of the examination region of the subject, and the image processing means detects imaging data on the same tomographic plane in the subject based on the imaging data of the detected transmission image. Computed tomographic image of the subject Is computed formed tomographic images computed formed since the image displayed on the monitor, the structure of the subject, at a desired inspection magnification, it is possible to display a tomographic image inspecting precision.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a first exemplary embodiment of the present invention.
FIG. 2 is an explanatory diagram of a transmission inspection by movement of a detection sensor according to the embodiment.
FIG. 3 is an explanatory diagram showing a relationship between an arrangement angle of a detection sensor and a transmission image at the time of a transmission inspection according to the embodiment;
FIG. 4 is an explanatory diagram showing a configuration of a main part of a second embodiment of the present invention.
FIG. 5 is an explanatory diagram of transmission inspection by a conventional X-ray transmission inspection apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample stand 3 Sample stand rotation motor 6 X-ray generation source 8 X-ray generation source drive motor 12 Test electronic component 14 X-axis drive motor 15 Y-axis drive motor 18 Sample drive unit 22 Detection sensor drive unit 23 Detection sensor 24 X-axis Drive motor 25 Y-axis drive motor 26 Z-axis drive motor 33 Detection sensor rotation motor 40 Image intensifier 41 CCD

Claims (4)

試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、
前記X線発生源と前記試料台とを固定し、前記検出センサ位置調整手段により、前記検出センサを位置調整して、前記被検電子部品の所定方向の透過像を検出するように制御を行なう検査制御手段と
を有することを特徴とするX線透過検査装置。
X-rays are emitted from an X-ray generation source to an electronic component to be inspected placed on a sample table , a transmission image of an inspection region of the electronic component to be detected is detected by a detection sensor, and an image is displayed on a monitor. A line penetration inspection device,
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about said optical axis,
The X-ray generation source and the sample stage are fixed, and the detection sensor position adjusting means adjusts the position of the detection sensor so as to detect a transmission image of the electronic component to be detected in a predetermined direction. An X-ray transmission inspection apparatus comprising: an inspection control unit.
試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、
前記X線発生源と前記検出センサとを固定し、前記試料台を水平回転して、前記被検電子部品の所定方向の透過像を検出するように制御を行なう検査制御手段と
を有することを特徴とするX線透過検査装置。
X-rays are emitted from an X-ray generation source to an electronic component to be inspected placed on a sample table , a transmission image of an inspection region of the electronic component to be detected is detected by a detection sensor, and an image is displayed on a monitor. A line penetration inspection device,
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about said optical axis,
Inspection control means for fixing the X-ray generation source and the detection sensor, and horizontally rotating the sample stage to perform control so as to detect a transmission image of the electronic component to be detected in a predetermined direction. X-ray transmission inspection device.
試料台上に載置された被検電子部品にX線発生源からのX線を照射し、検出センサによって、前記被検電子部品の検査領域の透過像を検出し、モニタに画像表示するX線透過検査装置であり、
前記検査領域が、前記X線のほぼ光軸上に位置するように、前記被検電子部品を前記試料台上で位置決めする位置設定手段と、
前記X線発生源と前記試料台間距離を調整し、前記被検電子部品の検査倍率を設定する倍率設定手段と、
前記X線の照射領域内において、前記検出センサを、その検出面が試料台上の被検電子部品に対してX線発生源から照射されるX線の光軸にほぼ直角になるように、3次元的に位置調整する検出センサ位置調整手段と、
前記試料台を前記光軸を中心に水平回転する試料台回転手段と、
前記X線発生源と前記検出センサとを固定し、前記試料台を水平回転して、前記被検電子部品の透過像を検出するように制御を行なう検査制御手段と、
前記透過像の撮像データにより、前記被検電子部品内の同一断層面上の撮像データを演算処理して、前記被検電子部品の断層画像を形成する画像処理手段と、
を有することを特徴とするX線透過検査装置。
X-rays are emitted from an X-ray generation source to an electronic component to be inspected placed on a sample table , a transmission image of an inspection region of the electronic component to be detected is detected by a detection sensor, and an image is displayed on a monitor A line penetration inspection device,
Position setting means for positioning the electronic component to be tested on the sample stage so that the inspection region is located substantially on the optical axis of the X-ray;
A magnification setting means for adjusting the distance between the X-ray generation source and the sample stage and setting an inspection magnification of the electronic component to be examined;
In the X-ray irradiation region, the detection sensor is arranged so that its detection surface is substantially perpendicular to the optical axis of the X-ray irradiated from the X-ray generation source to the test electronic component on the sample stage. Detection sensor position adjusting means for three-dimensional position adjustment;
And the sample base rotating means for horizontally rotating the sample table about said optical axis,
Inspection control means for fixing the X-ray generation source and the detection sensor, horizontally rotating the sample stage , and performing control to detect a transmission image of the electronic component to be examined;
Image processing means for computing imaging data on the same tomographic plane in the electronic component to be tested based on the imaging data of the transmission image, and forming a tomographic image of the electronic component to be examined;
An X-ray transmission inspection apparatus characterized by comprising:
請求項3に記載の画像処理手段が、検出センサを構成するCCDの出力端子に、そのCCDが取込む画像データをアフィン変換するアフィン変換回路を接続することにより構成され、上記アフィン変換回路は、CCDから出力されるθ回転毎の着目点の座標データを回転前の着目点の座標データに逐次変換し、加算重畳して被検電子部品の検査領域の断層画像の形成を行ない、画像データが断層面上で積分強調された断層画像とするものとしたことを特徴とするX線透過検査装置。The image processing means according to claim 3 is configured by connecting an affine transformation circuit for affine transformation of image data captured by the CCD to an output terminal of the CCD constituting the detection sensor, The coordinate data of the point of interest for each θ rotation output from the CCD is sequentially converted into the coordinate data of the point of interest before the rotation, and addition and superposition are performed to form a tomographic image of the inspection area of the electronic component to be tested. An X-ray transmission inspection apparatus characterized in that a tomographic image is integral-emphasized on a tomographic plane.
JP05730398A 1998-02-03 1998-02-03 X-ray transmission inspection equipment Expired - Lifetime JP3657768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05730398A JP3657768B2 (en) 1998-02-03 1998-02-03 X-ray transmission inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05730398A JP3657768B2 (en) 1998-02-03 1998-02-03 X-ray transmission inspection equipment

Publications (2)

Publication Number Publication Date
JPH11218503A JPH11218503A (en) 1999-08-10
JP3657768B2 true JP3657768B2 (en) 2005-06-08

Family

ID=13051802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05730398A Expired - Lifetime JP3657768B2 (en) 1998-02-03 1998-02-03 X-ray transmission inspection equipment

Country Status (1)

Country Link
JP (1) JP3657768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281648A (en) * 2009-06-03 2010-12-16 Nagoya Electric Works Co Ltd Device, method and program for radiographic inspection
KR20230148458A (en) * 2022-04-15 2023-10-25 미래산업 주식회사 Lighting Apparatus for Mounter and Mounter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184267A (en) * 2004-11-30 2006-07-13 Nagoya Electric Works Co Ltd System, method and program for x-ray inspection
JP4732886B2 (en) * 2005-12-15 2011-07-27 東芝Itコントロールシステム株式会社 X-ray fluoroscopy system
JP2011169711A (en) * 2010-02-18 2011-09-01 Nagoya Electric Works Co Ltd Radiation inspection processor, and method and program for the same
EP2927945B1 (en) 2014-04-04 2023-05-31 Nordson Corporation X-ray inspection apparatus for inspecting semiconductor wafers
GB2574188B (en) * 2018-04-11 2022-03-09 E M & I Maritime Ltd Inspection of hazardous area equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281648A (en) * 2009-06-03 2010-12-16 Nagoya Electric Works Co Ltd Device, method and program for radiographic inspection
KR20230148458A (en) * 2022-04-15 2023-10-25 미래산업 주식회사 Lighting Apparatus for Mounter and Mounter
KR102672504B1 (en) * 2022-04-15 2024-06-11 미래산업 주식회사 Lighting Apparatus for Mounter and Mounter

Also Published As

Publication number Publication date
JPH11218503A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US7099432B2 (en) X-ray inspection apparatus and X-ray inspection method
KR100435108B1 (en) Radiation inspection system and method thereof
JPH06100451B2 (en) Automatic laminograph system for electronics inspection.
JP4386812B2 (en) X-ray inspection equipment
JPH0252246A (en) X-ray inspection device
JP7217943B2 (en) Projection image capturing method, control device, control program, processing device and processing program
JP2010160070A (en) Examination method, examination apparatus and examination program
US7110489B2 (en) Device for manipulating a product and for processing radioscopy images of the product to obtain tomographic sections and uses
JP4610590B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JP3657768B2 (en) X-ray transmission inspection equipment
JPWO2018083930A1 (en) Imaging magnification calibration method of radiation tomography apparatus
KR101043612B1 (en) X-ray inspection system and metohd using the same
JP2006162335A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
JP3318827B2 (en) Perspective image imaging device and object inspection device
JP2008020344A (en) Radiation tomographic imaging system
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
JPH0821605B2 (en) X-ray inspection device
JP4155866B2 (en) X-ray tomography system
JPH0692944B2 (en) X-ray tomography system
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP2006266754A (en) Method and system for x-ray tomographic imaging
JP6805200B2 (en) Movement control device, movement control method and movement control program
JP2713287B2 (en) X-ray tomography method and apparatus
JP3693318B2 (en) X-ray variable perspective angle fluoroscope
JP2000356606A (en) Fluoroscopic examination device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term