JP3651536B2 - Control method of air conditioner - Google Patents

Control method of air conditioner Download PDF

Info

Publication number
JP3651536B2
JP3651536B2 JP14476197A JP14476197A JP3651536B2 JP 3651536 B2 JP3651536 B2 JP 3651536B2 JP 14476197 A JP14476197 A JP 14476197A JP 14476197 A JP14476197 A JP 14476197A JP 3651536 B2 JP3651536 B2 JP 3651536B2
Authority
JP
Japan
Prior art keywords
amount
change
temperature
value
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14476197A
Other languages
Japanese (ja)
Other versions
JPH10318612A (en
Inventor
隆志 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP14476197A priority Critical patent/JP3651536B2/en
Publication of JPH10318612A publication Critical patent/JPH10318612A/en
Application granted granted Critical
Publication of JP3651536B2 publication Critical patent/JP3651536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はインバータ式空気調和機の冷凍サイクルに含まれる膨張弁(電子膨張弁)の開度制御技術に係り、特に詳しくは圧縮機の吸入冷媒温度(サクション温度)と蒸発器の熱交温度との温度差((S−H)量)を目標(S−H)値に合わせる、いわゆるスーパーヒート制御を行う空気調和機の制御方法に関するものである。
【0002】
【従来の技術】
冷暖房式の空気調和機は、例えば図4に示すように、圧縮機1、四方弁2、室内熱交換器3、室外熱交換器4および電子膨張弁5等からなる冷凍サイクルを有する。
【0003】
冷房運転時には、四方弁2の切り替えにより冷媒を図4の線矢印にしたがって室内熱交換器3から圧縮機1に、さらに圧縮機1から室外熱交換器4、電子膨張弁5を介して室内熱交換器3に戻す一方、リモコンの設定風量等に応じて室内側ファンを回転制御し、室内熱交換器3で熱交換した冷風を室内に吹き出し、室内温度とリモコンの設定温度との差に応じた所定運転周波数で圧縮機1を運転して室温をコントロールする。
【0004】
暖房運転時には、冷房運転時と逆に冷媒を室外熱交換器4から圧縮機1に、さらに圧縮機1から室内熱交換器3、電子膨張弁5を介して室外熱交換器4に戻す一方(図4の実線矢印参照)、リモコンの設定風量等に応じて室内ファンを回転制御し、室内熱交換器3で熱交換した温風を室内に吹き出し、室内温度とリモコンの設定温度との差に応じた所定運転周波数で圧縮機1を運転して室温をコントロールする。
【0005】
そのため、図5に示すように、マイクロコンピュータやドライブ回路等からなる室内機制御部6および室外機制御部7を備え、室内機制御部6はリモコンによる指示にしたがって室内ファンを制御するとともに、室外機制御部7に所定指令(室温と設定値の差に応じた運転周波数等)を転送し、室外機制御部7はその指令により圧縮機1等を制御する。
【0006】
また、この空気調和機は、室内熱交換器3の熱交温度を検出する室内熱交サーミスタ8、圧縮機1のサクション温度を検出するサクションサーミスタ9および室外熱交換器4の熱交温度を検出する室外熱交サーミスタ10を備えている。
【0007】
そして、室外機制御部7においては、圧縮機1のサクション温度と蒸発器の温度(熱交温度)との差((S−H)量)を一定(目標(S−H)値;例えば5deg)にするスーパーヒート制御により、電子膨張弁5の開度を所定に制御し冷凍サイクルの安定化を図る。 例えば、1分毎に(S−H)量を検出し、この(S−H)量と目標(S−H)値との差に応じて電子膨張弁5の開度を調節する。
【0008】
【発明が解決しようとする課題】
しかしながら、前記空気調和機の制御方法において、圧縮機1の運転周波数が特に低い場合(特に最低周波数運転時)には(S−H)量が目標(S−H)値になかなか近づかず、その間冷凍サイクルが安定せず、ひいては室内環境の悪化を招くことがあった。
【0009】
図6に示すように、例えば低周波数運転時において(S−H)量と目標(S−H)値(5deg)との差が大きく、目標(S−H)値に対して(S−H)量が0deg未満にあると、1分毎に電子膨張弁5の開閉度合を調節するための変化量が小さいために(1回の変化量が6パルスであるために)、電子膨張弁5の絞りが遅く、(S−H)量が目標(S−H)値に近づくまで時間(同図ta参照)がかかる。
【0010】
この発明は前記課題に鑑みなされたものであり、その目的は電子膨張弁の開閉度合の変化量を最適な値に変え、特に低周波数運転時に(S−H)量を短時間で目標(S−H)値に近づけることができ、冷凍サイクルを速やかに安定化し、ひいては室内環境の悪化を抑えることができるようにした空気調和機の制御方法を提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成するために、請求項1に記載の発明は冷凍サイクルに含まれる圧縮機の吸入冷媒温度と蒸発器の温度との温度差((S−H)量)を目標(S−H)値に合わせるようにスーパーヒート制御を行うために前記冷凍サイクルに含まれる膨張弁の開度を調節する空気調和機の制御方法において、前記圧縮機が低周波数にて運転されている状態で、前記目標(S−H)値と前記温度差((S−H)量)との差が所定の第1閾値以上であるときには、前記圧縮機の吐出冷媒温度の変化量を監視し、前記吐出冷媒温度の変化量が所定の第2閾値未満であれば、前記膨張弁の開閉度合の1回の変化量を大きくすることを特徴としている。
【0012】
請求項2に記載の発明によれば、上記請求項1において、前記目標(S−H)値と前記温度差((S−H)量)との差が所定の第1閾値未満になったときおよび/または前記吐出冷媒温度の変化量が所定の第2閾値以上になったときには、前記膨張弁の開閉度合の変化量を大きくする制御が解除される。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図1ないし図3を参照して説明する。なお、図1中、図5と同一部分には同一符号を付して重複説明を省略する。また、冷凍サイクルについては図4を参照されたい。
【0014】
この発明の空気調和機の制御方法は、電子膨張弁5の開閉によっても圧縮機の吐出冷媒温度(吐出温度)が変化することに着目し、目標(S−H)値に対して(S−H)量が所定値未満であるとき、吐出温度の変化が小さければ膨張弁の開閉度合の1回の変化量を大きくして(S−H)量を速やかに目標(S−H)値に近づけ、その吐出温度の変化が大きくなったときにはその1回の変化量をもとに戻してスーパーヒート制御を行う。
【0015】
そのために、図1に示すように、この発明の空気調和機の制御方法を適用した制御装置は、図5に示す室外機制御部7の機能の他に、所定時間(例えば5分)を計時するためのタイマ部11aと、吐出温度サーミスタ12を用いてその所定時間前後の吐出温度を検出して吐出温度変化の大きさを算出する吐出温度変化算出部11bと、この吐出温度の変化の大きさにより電子膨張弁5の開閉度合の1回の変化量を可変するパルス変化量可変部11cとを有し、目標(S−H)値に対して(S−H)量が所定値未満であるとき、前記吐出温度変化の大きさに応じて1回の変化量を変えて電子膨張弁5の開度を調節する室外機制御部11を備えている。なお、タイマ部11a、吐出温度変化算出部11bおよびパルス変化量可変部11cは当該室外機制御部11のマイクロコンピュータで実現する。また、吐出温度サーミスタ12は当該空気調和機の過負荷保護を目的として備えられているものを利用するとよい。
【0016】
次に、前記構成の空気調和機の制御装置の動作を図2のフローチャート図および図3のグラフ図を参照して説明すると、まずリモコンによって運転操作が行われると、室内機制御部6は当該室温調節に必要な信号(運転周波数等)を室外機制御部11に転送する。室外機制御部11は少なくとも圧縮機1を所定に駆動し、電子膨張弁5を所定の開度とし、冷凍サイクルを作動する。なお、従来同様に、室内機制御部6および室外機制御部11は他の必要な制御(ファンの回転制御等)を行って室温調節を行う。
【0017】
この場合、暖房運転であれば、室外機制御部11は、室外熱交温度とサクション温度との温度差((S−H)量)を検出し、この(S−H)量を目標(S−H)値(5deg)に合わせるようにスーパーヒート制御を行う。なお、冷房運転であれば、室内機制御部6は室内熱交温度を室外機制御部11に転送し、室外機制御部11は圧縮機1の吸入温度(サクション温度)と室内熱交温度との温度差((S−H)量)を検出し、この(S−H)量を目標(S−H)値に合わせるようにスーパーヒート制御を行う。
【0018】
このとき、室外機制御部11は、目標(S−H)値(5deg)に対して(S−H)量が大きく異なった値であるか否か、例えば(S−H)量が所定値(0deg)未満であるか否かを判断する(ステップST1)。(S−H)量が目標(S−H)値の5degに近いときには、ステップST2に進み電子膨張弁5の開閉度合の1回の変化量を通常の値(従来と同じ1回の変化量を6パルス)とする。
【0019】
しかし、目標(S−H)値に対して(S−H)量が所定値(0deg)未満であれば、ステップST1からST3に進み、吐出温度サーミスタ12からの検出信号により吐出温度(Tcn)を検出し、また圧縮機1の現運転周波数H1を検出し(ステップST4)、さらにタイマ部11aをスタートする(ステップST5)。なお、前記検出された現運転周波数H1は例えば最低運転周波数であり、つまり圧縮機1が低周波数運転になっているものとする。
【0020】
続いて、タイマ部11aのタイムアップを判断し(ステップST6)、このタイムアップまで運転周波数の変化および(S−H)量を監視し、運転周波数が変わらず、例えばH1±5(Hz)以上でなければ、つまり圧縮機1が低い運転周波数のままであるときにはステップST7からST8に進み、さらに(S−H)量がまだ所定値(0deg)未満であればステップST6に戻り、前述した処理を繰り返す。
【0021】
運転周波数が低く、かつ(S−H)量が所定値(0deg)未満の状態で前記タイマ部11aがタイムアップすると、ステップST6からST9に進み、再度吐出温度サーミスタ12からの検出信号により吐出温度(Tcn1)を検出し、前回の吐出温度(Tcn)と今回の吐出温度(Tcn1)との差(つまり変化の大きさ)を吐出温度変化算出部11bで算出する。
【0022】
続いて、吐出温度の変化の大きさ(Tcn−Tcn1)が所定値(例えば4deg)以上であるか否かを判断する(ステップST10)。その変化の大きさが4deg以上でないときには、電子膨張弁5の開閉度合の1回の変化量が適切でないと判断し、パルス変化量可変部11cにおいて現変化量を2倍にする(ステップST11)。
【0023】
例えば、現変化量が6パルスであれば12パルスにすると、図3に示すように、1分毎の電子膨張弁5の開閉度合の調節が大きくなり、これに伴って吐出温度にも変化が現れ、また(S−H)量が目標(S−H)値に近づく。なお、図2に示すルーチンを繰り返し実行するために、目標(S−H)値に対して(S−H)量が所定値未満である限り、1回の変化量がさらに大きい値となる。
【0024】
そして、開閉度合の1回の変化量を大きくしたことにより吐出温度の変化が大きくなり、その変化の大きさが4deg以上になると(図3参照)、ステップST10からST2に進み、パルス変化量可変部11cにおいてその開閉度合の1回の変化量を元の値(6パルス)に戻す。したがって、(S−H)量が目標(S−H)値から大きくずれこともなく、つまり冷凍サイクルの安定化が損なわれることもなく、以後のスーパーヒート制御を適切に行うことができる。
【0025】
なお、目標(S−H)値に対して(S−H)量が0deg以上になれば、ステップST1からST2に進み、あるいは5分タイマのタイムアップ間に目標(S−H)値に対して(S−H)量が0deg以上になれば、ステップST8からST2に進み、1回の変化量をもとの値(例えば6パルス)に戻す。したがって、冷凍サイクルに影響を与えることもなく、スーパーヒート制御を行うことができる。
【0026】
また、前記5分のタイムアップの間に、運転周波数が所定値アップしたときにはステップST7からST12に進み、運転周波数の安定状態を判断する。運転周波数が上昇したままで所定時間変わらなければ、つまり低い運転周波数でなければ、ステップST12からST2に進み、電子膨張弁5の開閉度合の1回の変化量を元の値(例えば6パルス)に戻す。
【0027】
すなわち、圧縮機1の運転周波数が高くなれば、(S−H)量が目標(S−H)値に近づき易くなるため、その1回の変化量を大きい値のままにしていると、(S−H)量が目標(S−H)値から大きくずれることになり(オーバーシュートやアンダーシュートが起こり)、ひいては冷凍サイクルの安定化が損なわれるからである。
【0028】
このように、目標(S−H)値に対して(S−H)量が大きくずれているときに、吐出温度の変化が小さければ電子膨張弁5の開閉度合の1回の変化量を大きくし、その吐出温度の変化が大きくなったときにはその1回の変化量を元の大きさに戻す。
【0029】
したがって、(S−H)量を短時間で目標(S−H)値に近づけることができ、また(S−H)量が目標(S−H)値に近づいたときには、通常の変化量によるスーパーヒート制御を行うことから、(S−H)量が目標(S−H)値に対してオーバーシュートやアンダーシュートとならず、安定したスーパーヒート制御を行うことができる。
【0030】
なお、前述した実施の形態では、圧縮機1の吐出温度の変化に応じて電子膨張弁5の開閉度合の1回の変化量を変えているが、その吐出温度に変えて凝縮器の入口温度を利用しても、全く同様の効果を得ることができることは明かである。
【0031】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、スーパーヒート制御において、圧縮機が低周波数にて運転されている状態で、目標(S−H)値と温度差((S−H)量)との差が所定の第1閾値以上であるときには、圧縮機の吐出冷媒温度の変化量を監視し、その吐出冷媒温度の変化量が所定の第2閾値未満であれば、膨張弁の開閉度合の1回の 変化量を大きくするようにしたことにより、特に低周波数運転時に(S−H)量を短時間で目標(S−H)値に近づけることができ、冷凍サイクルを速やかに安定化し室内環境の悪化を抑えることができるという効果が奏される。
【0032】
また、請求項2記載の発明によれば請求項1において、目標(S−H)値と温度差((S−H)量)との差が所定の第1閾値未満になったときおよび/または前記吐出冷媒温度の変化量が所定の第2閾値以上になったときには、前記膨張弁の開閉度合の変化量を大きくする制御を解除するようにたことにより、(S−H)量が目標(S−H)値に対してオーバーシュートやアンダーシュートとにならず、安定したスーパーヒート制御を行うことができ、冷凍サイクルの安定化が図れるという効果がある。
【図面の簡単な説明】
【図1】 この発明の一実施の形態を示し、空気調和機の制御方法が適用される制御装置の概略的ブロック線図。
【図2】 図1に示す制御装置の動作を説明するための概略的フローチャート図。
【図3】 図1に示す制御装置の動作を説明するための概略的グラフ図。
【図4】 空気調和機の冷凍サイクルを説明するための概略的構成図。
【図5】 従来の空気調和機の制御装置を説明するための概略的ブロック線図。
【図6】 図5に示す制御装置の動作を説明するための概略的グラフ図。
【符号の説明】
1 圧縮機
3 室内熱交換器
4 室外熱交換器
5 膨張弁(電子膨張弁)
6 室内機制御部
7,11 室外機制御部
8 室内熱交サーミスタ
9 サクションサーミスタ(圧縮機吸入温度センサ)
10 室外熱交サーミスタ
11a タイマ部
11b 吐出温度変化算出部
11c パルス変化量可変部
12 吐出温度サーミスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an opening degree control technology of an expansion valve (electronic expansion valve) included in a refrigeration cycle of an inverter type air conditioner, and more particularly, a suction refrigerant temperature (suction temperature) of a compressor and a heat exchange temperature of an evaporator. It is related with the control method of the air conditioner which performs what is called superheat control which adjusts the temperature difference ((SH) amount) of this to a target (SH) value.
[0002]
[Prior art]
For example, as shown in FIG. 4, the air- conditioning type air conditioner has a refrigeration cycle including a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, an electronic expansion valve 5, and the like.
[0003]
During cooling operation, the refrigerant by switching the four-way valve 2 to the compressor 1 from the indoor heat exchanger 3 according to dashed line arrow in FIG. 4, further compressor 1 outdoor heat exchanger 4, through the electronic expansion valve 5 Indoor While returning to the heat exchanger 3, the rotation of the indoor fan is controlled according to the air volume set by the remote controller, etc., and the cold air exchanged by the indoor heat exchanger 3 is blown into the room, and the difference between the room temperature and the remote controller set temperature is detected. The room temperature is controlled by operating the compressor 1 at a predetermined operating frequency.
[0004]
In the heating operation, the refrigerant is returned from the outdoor heat exchanger 4 to the compressor 1 and from the compressor 1 to the outdoor heat exchanger 4 via the electronic expansion valve 5 (in contrast to the cooling operation) ( The rotation of the indoor fan is controlled according to the set air volume of the remote control, etc., and the hot air exchanged by the indoor heat exchanger 3 is blown into the room, and the difference between the room temperature and the set temperature of the remote control is determined. The room temperature is controlled by operating the compressor 1 at a predetermined operating frequency.
[0005]
Therefore, as shown in FIG. 5, an indoor unit control unit 6 and an outdoor unit control unit 7 including a microcomputer, a drive circuit, and the like are provided. The indoor unit control unit 6 controls the indoor fan according to instructions from the remote controller and A predetermined command (such as an operating frequency corresponding to the difference between the room temperature and the set value) is transferred to the machine control unit 7, and the outdoor unit control unit 7 controls the compressor 1 and the like according to the command.
[0006]
The air conditioner also detects the heat exchange temperature of the indoor heat exchange thermistor 8 that detects the heat exchange temperature of the indoor heat exchanger 3, the suction thermistor 9 that detects the suction temperature of the compressor 1, and the outdoor heat exchanger 4. An outdoor heat exchange thermistor 10 is provided.
[0007]
In the outdoor unit control unit 7, the difference ((SH) amount) between the suction temperature of the compressor 1 and the evaporator temperature (heat exchange temperature) is constant (target (SH) value; for example, 5 deg. the superheat control to), by controlling the opening degree of the electronic expansion valve 5 at a predetermined stabilized refrigeration cycle. For example, the amount (SH) is detected every minute, and the opening degree of the electronic expansion valve 5 is adjusted according to the difference between the amount (SH) and the target (SH) value.
[0008]
[Problems to be solved by the invention]
However, in the control method for the air conditioner, when the operation frequency of the compressor 1 is particularly low (particularly during the lowest frequency operation), the (SH) amount does not easily approach the target (SH) value, The refrigeration cycle was not stable, and consequently the indoor environment could be deteriorated.
[0009]
As shown in FIG. 6, for example, during low frequency operation, the difference between the (SH) amount and the target (SH) value (5 deg) is large, and the target (SH) value is (SH). ) When the amount is less than 0 deg, the amount of change for adjusting the degree of opening and closing of the electronic expansion valve 5 is small every minute (because the amount of change at one time is 6 pulses), the electronic expansion valve 5 Is slow, and it takes time (see ta in the figure) until the (SH) amount approaches the target (SH) value.
[0010]
The present invention has been made in view of the above-mentioned problems, and its purpose is to change the amount of change in the degree of opening and closing of the electronic expansion valve to an optimum value, and in particular, at the time of low frequency operation, the (SH) amount can be quickly reached (S-H). The object of the present invention is to provide a control method for an air conditioner that can be close to the value -H), stabilize the refrigeration cycle quickly, and thereby suppress deterioration of the indoor environment.
[0011]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the present invention, the temperature difference between the temperature of the suction refrigerant temperature evaporator of a compressor included in a refrigeration cycle ((S-H) weight) Target (S to perform the scan Pahito controlled to match the -H) value, in the control method of an air conditioner for adjusting the opening of the expansion valve included in the freezing cycle, the compressor is operated at a low frequency When the difference between the target (SH) value and the temperature difference ((SH) amount) is greater than or equal to a predetermined first threshold value, the amount of change in the discharge refrigerant temperature of the compressor is monitored. If the amount of change in the discharged refrigerant temperature is less than a predetermined second threshold, the amount of change in the degree of opening and closing of the expansion valve is increased .
[0012]
According to a second aspect of the present invention, in the first aspect, the difference between the target (SH) value and the temperature difference ((SH) amount) is less than a predetermined first threshold value. When and / or when the amount of change in the discharge refrigerant temperature exceeds a predetermined second threshold, the control for increasing the amount of change in the degree of opening and closing of the expansion valve is released.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. In FIG. 1, the same parts as those in FIG. See FIG. 4 for the refrigeration cycle.
[0014]
The air conditioner control method of the present invention pays attention to the fact that the discharge refrigerant temperature (discharge temperature) of the compressor also changes depending on the opening and closing of the electronic expansion valve 5, and the (S-H) value is compared with the target (SH) value. H) When the amount is less than a predetermined value, if the change in the discharge temperature is small, the amount of change in the degree of opening and closing of the expansion valve is increased once, and the (SH) amount is quickly set to the target (SH) value. When the change in the discharge temperature becomes close, the amount of change at one time is restored to perform the superheat control.
[0015]
Therefore, as shown in FIG. 1, the control device to which the air conditioner control method of the present invention is applied measures a predetermined time (for example, 5 minutes) in addition to the function of the outdoor unit control unit 7 shown in FIG. A timer section 11a for detecting the discharge temperature, a discharge temperature change calculation section 11b for calculating the magnitude of the change in discharge temperature by detecting the discharge temperature around the predetermined time using the discharge temperature thermistor 12, and the magnitude of the change in the discharge temperature. And a pulse change amount variable unit 11c that changes the amount of change in the degree of opening and closing of the electronic expansion valve 5 by one, and the (SH) amount is less than a predetermined value with respect to the target (SH) value. In some cases, an outdoor unit control unit 11 is provided that adjusts the degree of opening of the electronic expansion valve 5 by changing the amount of change at one time in accordance with the magnitude of the change in the discharge temperature. The timer unit 11a, the discharge temperature change calculation unit 11b, and the pulse change amount variable unit 11c are realized by the microcomputer of the outdoor unit control unit 11. The discharge temperature thermistor 12 may utilize what is gills Bei purposes overload protection of the air conditioner.
[0016]
Next, the operation of the air conditioner control apparatus having the above-described configuration will be described with reference to the flowchart of FIG. 2 and the graph of FIG. 3. When the driving operation is first performed by the remote controller, the indoor unit control unit 6 A signal (such as an operating frequency) necessary for adjusting the room temperature is transferred to the outdoor unit control unit 11. The outdoor unit control unit 11 drives at least the compressor 1 in a predetermined manner, sets the electronic expansion valve 5 to a predetermined opening, and operates the refrigeration cycle. As in the prior art, the indoor unit control unit 6 and the outdoor unit control unit 11 perform other necessary controls (such as fan rotation control) to adjust the room temperature.
[0017]
In this case, if it is a heating operation, the outdoor unit control unit 11 detects a temperature difference ((S−H) amount) between the outdoor heat exchange temperature and the suction temperature, and sets this (S−H) amount as the target (S−H). -H) Superheat control is performed to match the value (5 deg). In the case of cooling operation, the indoor unit control unit 6 transfers the indoor heat exchange temperature to the outdoor unit control unit 11, and the outdoor unit control unit 11 determines the suction temperature (suction temperature) of the compressor 1 and the indoor heat exchange temperature. Temperature difference ((SH) amount) is detected, and superheat control is performed so that the (SH) amount matches the target (SH) value.
[0018]
At this time, the outdoor unit control unit 11 determines whether or not the (SH) amount is significantly different from the target (SH) value (5 deg), for example, the (SH) amount is a predetermined value. It is determined whether or not it is less than (0 deg) (step ST1). When the (SH) amount is close to the target (SH) value of 5 deg, the process proceeds to step ST2, where the amount of change in the degree of opening and closing of the electronic expansion valve 5 is changed to a normal value (the same amount of change as in the conventional case). Is 6 pulses).
[0019]
However, if the (SH) amount with respect to the target (SH) value is less than the predetermined value (0 deg), the process proceeds from step ST1 to ST3, and the discharge temperature (Tcn) is detected by the detection signal from the discharge temperature thermistor 12. And the current operating frequency H1 of the compressor 1 is detected (step ST4), and the timer unit 11a is started (step ST5). The detected current operating frequency H1 is, for example, the lowest operating frequency, that is, the compressor 1 is in a low frequency operation.
[0020]
Subsequently, it is determined whether the timer 11a is timed up (step ST6), and the operating frequency change and (SH) amount are monitored until this time is up, and the operating frequency does not change, for example, H1 ± 5 (Hz) or more. Otherwise, that is, when the compressor 1 remains at a low operating frequency, the process proceeds from step ST7 to ST8. If the (SH) amount is still less than the predetermined value (0 deg), the process returns to step ST6, and the processing described above. repeat.
[0021]
When the timer unit 11a times out in a state where the operation frequency is low and the (SH) amount is less than the predetermined value (0 deg), the process proceeds from step ST6 to ST9, and the discharge temperature is again detected by the detection signal from the discharge temperature thermistor 12. (Tcn1) is detected, and the difference (that is, the magnitude of the change) between the previous discharge temperature (Tcn) and the current discharge temperature (Tcn1) is calculated by the discharge temperature change calculation unit 11b.
[0022]
Subsequently, it is determined whether or not the magnitude of change in the discharge temperature (Tcn−Tcn1) is equal to or greater than a predetermined value (for example, 4 deg) (step ST10). When the magnitude of the change is not 4 deg or more, it is determined that the amount of change in the degree of opening and closing of the electronic expansion valve 5 is not appropriate, and the current change amount is doubled in the pulse change amount variable unit 11c (step ST11). .
[0023]
For example, if the current change amount is 6 pulses, if it is 12 pulses, as shown in FIG. 3, the adjustment of the degree of opening and closing of the electronic expansion valve 5 per minute increases, and the discharge temperature also changes accordingly. Appears, and the (SH) amount approaches the target (SH) value. In order to repeatedly execute the routine shown in FIG. 2, as long as the (S−H) amount is less than the predetermined value with respect to the target (S−H) value, the amount of change at one time becomes a larger value.
[0024]
When the change amount of the opening / closing degree is increased once, the change in the discharge temperature becomes large. When the change amount becomes 4 deg or more (see FIG. 3), the process proceeds from step ST10 to ST2, and the pulse change amount is variable. In unit 11c, the amount of change in the degree of opening / closing is returned to the original value (6 pulses). Therefore, the amount of (S−H) does not greatly deviate from the target (S−H) value, that is, the stabilization of the refrigeration cycle is not impaired, and the subsequent superheat control can be appropriately performed.
[0025]
If the (SH) amount is 0 deg or more with respect to the target (SH) value, the process proceeds from step ST1 to ST2, or the target (SH) value is reached during the time-up of the 5-minute timer. If the (SH) amount becomes 0 deg or more, the process proceeds from step ST8 to ST2, and the amount of change at one time is returned to the original value (for example, 6 pulses). Therefore, superheat control can be performed without affecting the refrigeration cycle.
[0026]
When the operating frequency is increased by a predetermined value during the time-up of 5 minutes, the process proceeds from step ST7 to ST12, and the stable state of the operating frequency is determined. If the operating frequency remains elevated and does not change for a predetermined time, that is, if the operating frequency is not low, the process proceeds from step ST12 to ST2, and the amount of change in the degree of opening and closing of the electronic expansion valve 5 is the original value (for example, 6 pulses). Return to.
[0027]
That is, the higher the operating frequency of the compressor 1, when being to leave (S-H) amount is likely close to the target (S-H) values because, a large value that one variation, This is because the amount of (SH) greatly deviates from the target (SH) value (overshoot or undershoot occurs), and the stabilization of the refrigeration cycle is impaired.
[0028]
As described above, when the (SH) amount is greatly deviated from the target (SH) value, if the change in the discharge temperature is small, the amount of change in the degree of opening and closing of the electronic expansion valve 5 is increased. When the change in the discharge temperature becomes large, the amount of change at one time is returned to the original size.
[0029]
Therefore, the (SH) amount can be brought close to the target (SH) value in a short time, and when the (SH) amount approaches the target (SH) value, it depends on the normal change amount. Since superheat control is performed, the amount of (SH) does not cause overshoot or undershoot with respect to the target (SH) value, and stable superheat control can be performed.
[0030]
In the above-described embodiment, the amount of change in the degree of opening and closing of the electronic expansion valve 5 is changed according to the change in the discharge temperature of the compressor 1, but the inlet temperature of the condenser is changed to the discharge temperature. It is clear that the same effect can be obtained even when using.
[0031]
【The invention's effect】
As described above , according to the first aspect of the present invention , in the superheat control, the target (SH) value and the temperature difference ((S- H) When the difference from the amount) is equal to or greater than a predetermined first threshold, the amount of change in the discharge refrigerant temperature of the compressor is monitored, and if the amount of change in the discharge refrigerant temperature is less than the predetermined second threshold, expansion By increasing the amount of change in the degree of opening and closing of the valve , the (SH) amount can be brought close to the target (SH) value in a short time, especially during low frequency operation, and the refrigeration cycle There is an effect that it can be quickly stabilized and deterioration of the indoor environment can be suppressed.
[0032]
Also, lever by the invention described in claim 2, in claim 1, the difference between the target (S-H) value and the temperature difference ((S-H) amount) becomes less than a predetermined first threshold value When and / or when the amount of change in the discharge refrigerant temperature becomes equal to or greater than a predetermined second threshold, the control for increasing the amount of change in the opening / closing degree of the expansion valve is canceled (SH). The amount does not become overshoot or undershoot with respect to the target (SH) value, stable superheat control can be performed, and the refrigeration cycle can be stabilized.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a control apparatus to which an air conditioner control method is applied according to an embodiment of the present invention.
FIG. 2 is a schematic flowchart for explaining the operation of the control device shown in FIG. 1;
FIG. 3 is a schematic graph for explaining the operation of the control device shown in FIG. 1;
FIG. 4 is a schematic configuration diagram for explaining a refrigeration cycle of an air conditioner.
FIG. 5 is a schematic block diagram for explaining a conventional control device for an air conditioner.
6 is a schematic graph for explaining the operation of the control device shown in FIG. 5;
[Explanation of symbols]
1 Compressor 3 Indoor Heat Exchanger 4 Outdoor Heat Exchanger 5 Expansion Valve (Electronic Expansion Valve)
6 Indoor Unit Control Unit 7, 11 Outdoor Unit Control Unit 8 Indoor Heat Exchange Thermistor 9 Suction Thermistor (Compressor Intake Temperature Sensor)
DESCRIPTION OF SYMBOLS 10 Outdoor heat exchanger thermistor 11a Timer part 11b Discharge temperature change calculation part 11c Pulse change amount variable part 12 Discharge temperature thermistor

Claims (2)

冷凍サイクルに含まれる圧縮機の吸入冷媒温度と蒸発器の温度との温度差((S−H)量)を目標(S−H)値に合わせるようにスーパーヒート制御を行うために前記冷凍サイクルに含まれる膨張弁の開度を調節する空気調和機の制御方法において、
前記圧縮機が低周波数にて運転されている状態で、前記目標(S−H)値と前記温度差((S−H)量)との差が所定の第1閾値以上であるときには、前記圧縮機の吐出冷媒温度の変化量を監視し、前記吐出冷媒温度の変化量が所定の第2閾値未満であれば、前記膨張弁の開閉度合の1回の変化量を大きくすることを特徴とする空気調和機の制御方法。
To perform the scan Pahito controlled to match the temperature difference ((S-H) amount) to the target (S-H) values of the sucked refrigerant temperature of the compressor included in a refrigeration cycle and temperature of the evaporator, the In the control method of the air conditioner for adjusting the opening degree of the expansion valve included in the refrigeration cycle,
When the compressor is operated at a low frequency and the difference between the target (SH) value and the temperature difference ((SH) amount) is a predetermined first threshold value or more, The amount of change in the refrigerant discharge temperature of the compressor is monitored, and if the amount of change in the discharge refrigerant temperature is less than a predetermined second threshold, the amount of change in the degree of opening and closing of the expansion valve is increased. To control the air conditioner.
前記目標(S−H)値と前記温度差((S−H)量)との差が所定の第1閾値未満になったときおよび/または前記吐出冷媒温度の変化量が所定の第2閾値以上になったときには、前記膨張弁の開閉度合の変化量を大きくする制御を解除する請求項1記載の空気調和機の制御方法。 When the difference between the target (SH) value and the temperature difference ((SH) amount) is less than a predetermined first threshold and / or the change amount of the discharged refrigerant temperature is a predetermined second threshold. The air conditioner control method according to claim 1, wherein the control for increasing the amount of change in the degree of opening and closing of the expansion valve is canceled when the above is reached .
JP14476197A 1997-05-19 1997-05-19 Control method of air conditioner Expired - Fee Related JP3651536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14476197A JP3651536B2 (en) 1997-05-19 1997-05-19 Control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14476197A JP3651536B2 (en) 1997-05-19 1997-05-19 Control method of air conditioner

Publications (2)

Publication Number Publication Date
JPH10318612A JPH10318612A (en) 1998-12-04
JP3651536B2 true JP3651536B2 (en) 2005-05-25

Family

ID=15369796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14476197A Expired - Fee Related JP3651536B2 (en) 1997-05-19 1997-05-19 Control method of air conditioner

Country Status (1)

Country Link
JP (1) JP3651536B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471453B1 (en) * 2002-11-22 2005-03-08 엘지전자 주식회사 a heat pump system and a linear expansion valve's control method for the same
US7784296B2 (en) 2007-03-08 2010-08-31 Nordyne Inc. System and method for controlling an air conditioner or heat pump
US20140196489A1 (en) * 2013-01-11 2014-07-17 University Of Dayton Energy-optimized cycle control of time-variant loads for thermal management of vapor compression systems
JP6557855B2 (en) * 2015-05-20 2019-08-14 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
CN111457630A (en) * 2020-04-01 2020-07-28 江苏拓米洛环境试验设备有限公司 Environment test equipment based on suction superheat degree and air volume partition and control method thereof
CN114857663A (en) * 2022-05-12 2022-08-05 青岛海信日立空调***有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
JPH10318612A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3888403B2 (en) Method and apparatus for controlling air conditioner
JP2007100699A (en) Method of controlling variable capacity compressor of air conditioner
JP4150870B2 (en) Control method of air conditioner
JP3651536B2 (en) Control method of air conditioner
JP3716593B2 (en) refrigerator
JP2004028429A (en) Air conditioner
JP3622817B2 (en) Control method of air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
JP3531709B2 (en) Control method of air conditioner
JPH11257718A (en) Method of controlling air conditioner
JPH11257719A (en) Method of controlling air conditioner, and its device
JP2000074504A (en) Method and device for controlling air conditioner
JP2003050066A (en) Controller for air conditioner
JP2002195666A (en) Control method for air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
JPH10141744A (en) Control of air conditioner
JP5384124B2 (en) Refrigeration system, control device and control method thereof
JPH10267372A (en) Controlling method for air conditioner
JPH10246543A (en) Controlling method for air conditioner
JPH10246517A (en) Control for air conditioner
JP2001241779A (en) Refrigerant flow rate controller for air conditioner
JP2000035265A (en) Control method of air conditioner
JP4273547B2 (en) Operation control device for refrigerator
JPH10267430A (en) Control method for air-conditioner
JP2005016802A (en) Air-conditioner control method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees