JP3648912B2 - Polyester container manufacturing method - Google Patents

Polyester container manufacturing method Download PDF

Info

Publication number
JP3648912B2
JP3648912B2 JP9368797A JP9368797A JP3648912B2 JP 3648912 B2 JP3648912 B2 JP 3648912B2 JP 9368797 A JP9368797 A JP 9368797A JP 9368797 A JP9368797 A JP 9368797A JP 3648912 B2 JP3648912 B2 JP 3648912B2
Authority
JP
Japan
Prior art keywords
temperature
polyester
crystallization
time
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9368797A
Other languages
Japanese (ja)
Other versions
JPH10287799A (en
Inventor
一吉 美濃
隆 中村
諭 徳重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9368797A priority Critical patent/JP3648912B2/en
Publication of JPH10287799A publication Critical patent/JPH10287799A/en
Application granted granted Critical
Publication of JP3648912B2 publication Critical patent/JP3648912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプリフォームを延伸ブローするポリエステル容器の製造法の改良に関するものであり、短時間で口栓部の結晶化を行うことのできる容器の製造法に関するものである。
【0002】
【従来の技術】
エチレンテレフタレート単位を主たる繰り返し単位とするポリエステルを用いて射出成形によりプリフォームを製造し、次いでこれを延伸ブローして容器を製造することは周知である。このようにして得られる容器に果汁飲料などを高温で充填する場合には、予め容器の胴部にヒートセットと称する熱処理を施し、また口栓部には加熱結晶化処理を施して、容器に耐熱性を付与することが行われている。生産性の観点から口栓部の加熱結晶化処理は短時間で行うことが望ましい。
【0003】
【発明が解決しようとする課題】
口栓部の加熱結晶化を短時間で行うには、結晶化速度の速い樹脂を用いて容器を製造すればよいが、このような容器は往々にして外観が不透明化し易いという欠点があった。従って口栓部の加熱結晶化に際してその結晶化速度が速く、しかも不透明化しない容器を与えるポリエステルが求められている。
【0004】
【課題を解決するための手段】
本発明によれば、エチレンテレフタレートを主たる繰り返し単位とする下記のポリエステルAとBとを、A/B(重量比)=1/9〜9/1で混合したものを用いてプリフォームを製造し、次いでこれを延伸ブローすることにより、加熱処理により口栓部が速やかに結晶化し、しかも他の部分が不透明化しない容器を製造することができる。
ポリエステルA;極限粘度が0.60〜0.70dl/gであり、示差走査熱量計で測定した昇温時の結晶化温度が140〜162℃、降温時の結晶化温度が175〜190℃であるポリエステル
ポリエステルB;極限粘度が0.77〜0.90dl/gであり、示差走査熱量計で測定した昇温時の結晶化温度が165〜180℃、降温時の結晶化温度が150〜170℃であるポリエステル。
【0005】
【発明の実施の形態】
本発明について詳細に説明すると、ポリエステルの延伸ブロー成形により得られた容器の外観が不透明化するのは、主として前駆体であるパリソン成形時の冷却過程において生起する結晶化が原因であるとされている。そして一般に、用いるポリエステルの示差走査熱量計で測定した降温時のピーク温度が高いほど、この結晶化が起り易いとされている。これに対し、口栓部の結晶化速度の遅速は、示差走査熱量計で測定した昇温時のピーク温度と関係があり、ピーク温度が低いほど結晶化速度が速くなるとされている。従って透明性がよく、しかも口栓部の結晶化速度の速い容器を製造するには、昇温時のピーク温度と降温時のピーク温度が共に低いポリエステルを用いればよい。しかしポリエステルは一般に、昇温時のピーク温度が低ければ降温時のピーク温度に高いというように両者が関連しているので、両者を任意に変更することはできないとされている。しかるに本発明者らの検討によれば、極限粘度及び2つのピーク温度が或る限定された範囲にある2種類のポリエステルの配合物は、降温時のピーク温度は双方のポリエステルの平均値と等しくなるが、昇温時のピーク温度は双方のポリエステルの平均値よりも低くなることを見出した。従ってこのようなポリエステル配合物を用いて延伸ブロー法により成形した容器は、外観が透明でしかも口栓部結晶化速度が速い。
【0006】
本発明では常法により製造したポリエステルを用いることができる。すなわちテレフタル酸又はそのエステル形成性誘導体とエチレングリコールとを、エステル化又はエステル交換反応させてビス(β−ヒドロキシエチル)テレフタレートを生成させ、次いでこれを重縮合させて得たポリエチレンテレフタレートを用いればよい。なお、所望ならばテレフタル酸及びエチレングリコールに加えて、他の常用のポリカルボン酸やポリオールを少量共重合させてもよい。このような共重合成分としては、フタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4′−ジフェニルスルホンジカルボン酸、4,4′−ビフェニルジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−フエニレンジオキシジ酢酸、マロン酸、コハク酸、アジピン酸などのジカルボン酸、p−ヒドロキシ安息香酸、グリコール酸などのオキシカルボン酸、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノールなどの脂肪族又は脂環式グリコール、更にはビスフェノールA、ビスフェノールSなどの芳香族グリコールが挙げられる。
【0007】
テレフタル酸とエチレングリコールとのエステル化反応は触媒を用いなくても進行するが、所望ならば少量の無機酸を添加したり、後述する重縮合触媒の存在下に反応を行ってもよい。エステル交換反応には、ナトリウム、リチウムなどのアルカリ金属塩、マグネシウム、カルシウムなどのアルカリ土類金属塩、亜鉛、マンガンなどの化合物から選ばれたエステル交換触媒を用いるが、透明な生成物を与える点からしてマンガン化合物を用いるのが好ましい。
【0008】
重縮合触媒としては公知のものを用いればよく、例えば二酸化ゲルマニウムなどのゲルマニウム化合物、三酸化アンチモンなどのアンチモン化合物、チタン化合物、コバルト化合物、錫化合物などの反応系に可溶の化合物が用いられるが、二酸化ゲルマニウム又は三酸化アンチモンを用いるのが好ましい。
重縮合反応は通常は安定剤の存在下に行われる。安定剤としてはトリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェートなどのリン酸エステル、トリフェニルホスファイト、トリスドデシルホスファイトなどの亜リン酸エステル、メチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェートなどの酸性リン酸エステル、更にはリン酸、亜リン酸、次亜リン酸、ポリリン酸などのリン化合物が好ましい。
【0009】
これらの触媒や安定剤は、生成するポリマー中の濃度として、触媒の場合には金属として通常は0.0005〜0.2重量%、好ましくは0.001〜0.05重量%となるように用いられる。安定剤はリン原子として0.001〜0.1重量%、好ましくは0.002〜0.02重量%となるように用いられる。
エステル化及びエステル交換反応は、通常0〜5kg/cm2 Gの圧力及び220〜280℃の温度条件下で2〜10時間行なえばよく、これにより数平均重合度が2〜10のビス(ヒドロキシエチル)テレフタレートオリゴマーが生成する。
【0010】
重縮合反応は、通常、30Torr以下の圧力及び220〜300℃の温度条件下で2〜8時間行われるが、生成するポリエステルの極限粘度が0.50dl/g以上となるまで行うのが好ましい。重縮合により生成した溶融状態のポリエステルは常法により冷却固化してチップとし、通常は更に固相重合を行って所望の品質のポリエステルとする。固相重合に供する前にポリエステルチップは予備結晶化しておくのが好ましい。予備結晶化は常法により、チップを乾燥状態で120〜220℃、好ましくは140〜200℃に1分間〜4時間程度加熱すればよい。また、別法として、チップを水蒸気含有ガスにさらして含水率が100〜10000ppm、好ましくは1000〜5000ppmとなるように吸湿させたのち、120〜220℃、好ましくは140〜200℃に加熱する方式に依ることもできる。
【0011】
固相重合は、通常180〜240℃、好ましくは190〜220℃で、減圧下又は窒素、二酸化炭素などの不活性ガス流通下に、2〜50時間、好ましくは10〜25時間保持すればよい。圧力は、減圧下で実施する場合は通常0.01〜300mmHg、好ましくは0.01〜100mmHgであり、不活性ガス流通下で実施する場合は10mmHg〜1kg/cm2 G、好ましくは100mmHg〜0.5kg/cm2 Gである。
【0012】
本発明方法では、上記の方法により極限粘度及び結晶化温度で特徴づけられる下記のA,B2種類のポリエステルを製造し、これを1/9〜9/1の重量比で配合して容器の成形に供する。配合比がこの範囲外では口栓部の結晶化速度の改良効果が小さい。好適な配合比は4/6〜6/4(重量比)である。
ポリエステルA;極限粘度が0.60〜0.70dl/g、好ましくは0.60〜0.65dl/gで、示差走査熱量計で測定した昇温時の結晶化温度が140〜162℃、好ましくは142〜160℃であり、降温時の結晶化温度が175〜190℃、好ましくは180〜190℃であるポリエステル
ポリエステルB;極限粘度が0.77〜0.90dl/g、好ましくは0.77〜0.85dl/gであり、示差走査熱量計で測定した昇温時の結晶化温度が165〜180℃、好ましくは165〜175℃であり、降温時の結晶化温度が150〜170℃、好ましくは155〜170℃であるポリエステル
【0013】
ポリエステルAの極限粘度が0.60dl/g未満であると、成形により得られる容器に厚みむらが生じ易い。逆に0.70dl/gを超えると口栓部の結晶化速度改良効果が小さい。また昇温時の結晶化温度が162℃を超えるか又は降温時の結晶化温度が175℃未満であると、口栓部の結晶化速度改良効果が小さく、逆に昇温時の結晶化温度が140℃未満であるか又は降温時の結晶化温度が190℃を超えると、成形により得られる容器の透明性が悪化する。ポリエステルAとしては、溶融重縮合により得られたものをそのまま用いることもできるが、固相重合を経たものを用いるのが好ましい。
【0014】
ポリエステルBは、極限粘度が0.77dl/g未満であると、得られる容器の透明性が悪化し、逆に0.90dl/gを超えると得られる容器に厚みむらが生じ易い。また結晶化温度も、昇温時の結晶化温度が165℃未満であるか、降温時の結晶化温度が170℃を超えると得られる容器の透明性が悪化し、逆に昇温時の結晶化温度が180℃を超えるか又は降温時の結晶化温度が150℃未満では、口栓部の結晶化速度の改良効果が小さい。ポリエステルBとしては通常は固相重合を経たものを用いる。
ポリエステルA及びBのいずれも、極限粘度は重合温度や時間などの重合条件を制御することにより調節できる。また結晶化温度も重縮合に用いる触媒の種類や量、核剤の添加などにより調節できる。
【0015】
本発明に従いポリエステルAとBとから容器を製造するには、ブレンダーを用いて両者をドライブレンドして成形機に供給すればよい。またポリエステルAとBとを別々のフィーダーから成形機のシリンダーに供給し、シリンダー内で溶融混練するようにしてもよい。ポリエステルAとBとの混合物からのプリフォームの製造及びプリフォームの延伸ブローによる容器の製造そのものは常法により行うことができる。
【0016】
【実施例】
以下に実施例により本発明を更に具体的に説明する。なお、極限粘度、ヘーズ、結晶化温度、1/2結晶化温度及び透明性は下記により測定した。
極限粘度;ウベローデ粘度管を用い、フェノール/テトラクロロエタン(重量比1/1)の混合溶媒中、30℃で測定した。
【0017】
ヘーズ;後記する1/2結晶化時間の測定で製造した容器の胴部を切り取り、これを5枚重ねて日本電色社製ヘーズメーターNDH−300Aを用いて測定した。
結晶化温度;名機製作所(株)製の射出成形機M−70A(スクリュー径36mm)と図示の金型を用い、シリンダー各部及びノズルヘッドの温度を280℃、スクリュー回転数200rpm、60秒/サイクル、金型冷却水温15℃で、重量約50gの段付成形板を射出成形し、成形開始後15枚目の段付成形板を試料とした。セイコー電子(株)製の示差走査熱量計DSC220Cを用い、上記で製作した試料の厚さ3mmの部分の端部を1cm角に切取り、これを室温から285℃まで20℃/分で昇温し、285℃で3分間保持したのち、10℃/分で降温した。昇温時に観察された結晶化のピーク温度を昇温時の結晶化温度、降温時に観察された結晶化のピーク温度を降温時の結晶化温度とした。
【0018】
1/2結晶化時間;東芝(株)製射出成形機LS−60Bを用い、シリンダー各部及びノズルヘッドの温度を280℃、スクリュー回転数100rpm、10秒/サイクル、金型冷却水温10℃の設定条件でプリフォーム(外径30mm、肉厚3.8mm、長さ170mm、目付60g)を製造した。このプリフォームを予熱炉温度90℃、ブロー圧力20kg/cm2 G、成形サイクル10秒に設定した延伸ブロー成形機で、内容積1.5リットル、胴部の平均厚さ300μmのボトルに成形した。このボトルの口栓部を切り取り、これを180℃のオイルバス中に0.5分、1分、1.5分、2分又は3分間浸漬したものの密度を、密度勾配管を用いて測定し、下記式により結晶化度を算出した。この結果から到達結晶化度の半分の結晶化度に到達する時間を求め、1/2結晶化時間とした。
【0019】
X=(d−1.335)/0.12
X:結晶化度(%)
d:密度(g/cc)
【0020】
ポリエステル(I)の製造;
250℃のビス(β−ヒドロキシエチル)テレフタレートオリゴマー300部が収容されているエステル化反応機に、テレフタル酸12700部とエチレングリコール5820部とから成るスラリーを、250分間かけて供給した。
供給終了後60分間エステル化反応を行わせたのち、反応機内容物の半量を重縮合反応機に移し、リン酸0.90部及び二酸化ゲルマニウム1.00部を添加し、250℃から280℃まで漸次昇温するとともに、常圧から0.5mmHgまで漸次減圧した。3時間重縮合反応を行わせたのち、生成した溶融状態のポリエステルをストランド状に抜出し、水冷したのちカットしてポリエステルチップとした。
このポリエステルは極限粘度が0.624dl/g、昇温時の結晶化温度は158.2℃、降温時の結晶化温度は183.0℃であった。
【0021】
ポリエステル(II)〜(V)の製造;
ポリエステル(I)を、撹拌結晶化機を用いて180℃で表面を結晶化させたのち、静置固相重合装置を用いて20リットル/kg・Hrの窒素流通化、約160℃で3時間乾燥したのち、210℃で固相重合した。得られたポリエステルの極限粘度、昇温時の結晶化温度、及び降温時の結晶化温度を表−1に示す。
【0022】
【表1】

Figure 0003648912
【0023】
ポリエステル(VI)〜(VIII) の製造;
ポリエステル(I)の製造において、リン酸及び二酸化ゲルマニウムの添加量をそれぞれ1.00部及び1.20部とした以外は実施例1と同様にして、極限粘度が0.603dl/gのポリエステルを得た。
このポリエステルを用いポリエステル(II)〜(V)と同様にして固相重合を行った。得られたポリエステルの極限粘度、昇温時の結晶化温度及び降温時の結晶化温度を表−2に示す。
【0024】
【表2】
Figure 0003648912
【0025】
実施例1〜4及び比較例1〜4
上記で得たポリエステルをドライブレンドしたものを用いて成形された容器の物性を表−3に示す。
【0026】
【表3】
Figure 0003648912
【0027】
【図面の簡単な説明】
【図1】図は結晶化温度の測定に用いる試料を作成する段付金型である。全長100mm、幅50mmで、各段の長さは25mm、段差は1mmである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for producing a polyester container in which a preform is stretched and blown, and relates to a method for producing a container capable of crystallizing a stopper part in a short time.
[0002]
[Prior art]
It is well known that a preform is produced by injection molding using a polyester having ethylene terephthalate units as the main repeating unit, and then stretched and blown to produce a container. When filling the container obtained in this manner with a fruit juice beverage or the like at a high temperature, the body part of the container is preliminarily subjected to heat treatment called heat set, and the mouth plug part is subjected to heat crystallization treatment, Giving heat resistance is performed. From the viewpoint of productivity, it is desirable to perform the heat crystallization treatment of the plug portion in a short time.
[0003]
[Problems to be solved by the invention]
In order to heat and crystallize the plug part in a short time, a container may be manufactured using a resin having a high crystallization speed. However, such a container often has a drawback that the appearance is easily opaque. . Accordingly, there is a need for a polyester that provides a container that has a high crystallization rate and is not opaque at the time of heat crystallization of the plug portion.
[0004]
[Means for Solving the Problems]
According to the present invention, a preform is produced using a mixture of the following polyesters A and B having ethylene terephthalate as the main repeating unit at A / B (weight ratio) = 1/9 to 9/1. Subsequently, by stretching and blowing this, a container in which the plug portion is rapidly crystallized by heat treatment and the other portions are not opaque can be produced.
Polyester A; the intrinsic viscosity is 0.60 to 0.70 dl / g, the crystallization temperature at the time of temperature rise measured by a differential scanning calorimeter is 140 to 162 ° C., and the crystallization temperature at the time of temperature fall is 175 to 190 ° C. A certain polyester polyester B; the intrinsic viscosity is 0.77 to 0.90 dl / g, the crystallization temperature at the temperature rise measured by a differential scanning calorimeter is 165 to 180 ° C., and the crystallization temperature at the temperature fall is 150 to 170 Polyester at ℃.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail. The reason why the appearance of the container obtained by the stretch blow molding of polyester becomes opaque is mainly caused by crystallization that occurs in the cooling process during the parison molding as a precursor. Yes. In general, it is said that the higher the peak temperature at the time of temperature reduction measured with a differential scanning calorimeter of the polyester used, the easier this crystallization occurs. On the other hand, the slow crystallization rate of the plug portion is related to the peak temperature at the time of temperature rise measured by a differential scanning calorimeter, and the crystallization rate is said to increase as the peak temperature decreases. Therefore, in order to produce a container having good transparency and a fast crystallization rate of the plug portion, a polyester having a low peak temperature during temperature rise and a low peak temperature during temperature fall may be used. However, since polyester is generally related to the fact that if the peak temperature at the time of temperature rise is low, the peak temperature at the time of temperature fall is high, and therefore both cannot be arbitrarily changed. However, according to the study by the present inventors, a blend of two kinds of polyesters in which the intrinsic viscosity and the two peak temperatures are in a limited range, the peak temperature at the time of cooling is equal to the average value of both polyesters. However, it has been found that the peak temperature during temperature rise is lower than the average value of both polyesters. Therefore, a container molded by such a polyester blend by the stretch blow method has a transparent appearance and a fast plug crystallization rate.
[0006]
In the present invention, a polyester produced by a conventional method can be used. That is, terephthalic acid or its ester-forming derivative and ethylene glycol are esterified or transesterified to produce bis (β-hydroxyethyl) terephthalate, and then polycondensed to obtain polyethylene terephthalate. . If desired, in addition to terephthalic acid and ethylene glycol, other conventional polycarboxylic acids and polyols may be copolymerized in small amounts. Such copolymer components include phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3- Dicarboxylic acids such as phenylenedioxydiacetic acid, malonic acid, succinic acid and adipic acid, oxycarboxylic acids such as p-hydroxybenzoic acid and glycolic acid, 1,2-propanediol, 1,3-propanediol, 1, Examples include aliphatic or alicyclic glycols such as 4-butanediol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol, and aromatic glycols such as bisphenol A and bisphenol S.
[0007]
The esterification reaction of terephthalic acid and ethylene glycol proceeds without using a catalyst, but if desired, a small amount of an inorganic acid may be added or the reaction may be performed in the presence of a polycondensation catalyst described later. The transesterification reaction uses a transesterification catalyst selected from alkali metal salts such as sodium and lithium, alkaline earth metal salts such as magnesium and calcium, and compounds such as zinc and manganese, but gives a transparent product. Therefore, it is preferable to use a manganese compound.
[0008]
Known polycondensation catalysts may be used, for example, germanium compounds such as germanium dioxide, antimony compounds such as antimony trioxide, compounds that are soluble in the reaction system such as titanium compounds, cobalt compounds, and tin compounds. Preferably, germanium dioxide or antimony trioxide is used.
The polycondensation reaction is usually performed in the presence of a stabilizer. Stabilizers include phosphoric acid esters such as trimethyl phosphate, triethyl phosphate, and triphenyl phosphate, phosphorous acid esters such as triphenyl phosphite, trisdodecyl phosphite, and acidic phosphoric acid such as methyl acid phosphate, dibutyl phosphate, and monobutyl phosphate. Ester, and phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid and polyphosphoric acid are preferred.
[0009]
The concentration of these catalysts and stabilizers is usually 0.0005 to 0.2% by weight, preferably 0.001 to 0.05% by weight as a metal in the case of a catalyst as a concentration in the polymer to be produced. Used. A stabilizer is used so that it may become 0.001-0.1 weight% as a phosphorus atom, Preferably it is 0.002-0.02 weight%.
The esterification and transesterification reaction may be usually carried out for 2 to 10 hours under a pressure of 0 to 5 kg / cm 2 G and a temperature of 220 to 280 ° C. Thereby, a bis (hydroxy) having a number average degree of polymerization of 2 to 10 is obtained. An ethyl) terephthalate oligomer is formed.
[0010]
The polycondensation reaction is usually performed for 2 to 8 hours under a pressure of 30 Torr or less and a temperature of 220 to 300 ° C., but it is preferably performed until the intrinsic viscosity of the resulting polyester is 0.50 dl / g or more. The molten polyester produced by polycondensation is cooled and solidified by a conventional method to form chips, and usually further solid phase polymerization is performed to obtain a polyester of a desired quality. The polyester chip is preferably precrystallized before being subjected to solid phase polymerization. The precrystallization may be performed by a conventional method by heating the chip in a dry state to 120 to 220 ° C., preferably 140 to 200 ° C. for about 1 minute to 4 hours. As another method, the chip is exposed to a water vapor-containing gas so that the moisture content is 100 to 10,000 ppm, preferably 1000 to 5000 ppm, and then heated to 120 to 220 ° C., preferably 140 to 200 ° C. You can also rely on
[0011]
The solid phase polymerization is usually performed at 180 to 240 ° C., preferably 190 to 220 ° C., for 2 to 50 hours, preferably 10 to 25 hours under reduced pressure or under an inert gas flow such as nitrogen or carbon dioxide. . The pressure is usually 0.01 to 300 mmHg, preferably 0.01 to 100 mmHg when carried out under reduced pressure, and 10 mmHg to 1 kg / cm 2 G, preferably 100 mmHg to 0 when carried out under inert gas flow. 0.5 kg / cm 2 G.
[0012]
In the method of the present invention, the following two types of polyesters A and B characterized by the intrinsic viscosity and the crystallization temperature are produced by the above method, and these are blended at a weight ratio of 1/9 to 9/1 to form a container. To serve. When the blending ratio is outside this range, the effect of improving the crystallization rate of the plug portion is small. A suitable blending ratio is 4/6 to 6/4 (weight ratio).
Polyester A; the intrinsic viscosity is 0.60 to 0.70 dl / g, preferably 0.60 to 0.65 dl / g, and the crystallization temperature at the time of temperature rise measured by a differential scanning calorimeter is 140 to 162 ° C., preferably Is polyester polyester B having a crystallization temperature of 175 to 190 ° C., preferably 180 to 190 ° C .; intrinsic viscosity is 0.77 to 0.90 dl / g, preferably 0.77 -0.85 dl / g, the crystallization temperature at the time of temperature rise measured with a differential scanning calorimeter is 165-180 ° C, preferably 165-175 ° C, and the crystallization temperature at the time of temperature fall is 150-170 ° C, Polyester, preferably 155-170 ° C.
When the intrinsic viscosity of polyester A is less than 0.60 dl / g, unevenness in thickness tends to occur in a container obtained by molding. Conversely, if it exceeds 0.70 dl / g, the effect of improving the crystallization rate of the plug portion is small. Further, if the crystallization temperature at the time of temperature rise exceeds 162 ° C. or the crystallization temperature at the time of temperature drop is less than 175 ° C., the effect of improving the crystallization speed of the plug portion is small, and conversely the crystallization temperature at the time of temperature rise. If the temperature is less than 140 ° C. or the crystallization temperature when the temperature falls is over 190 ° C., the transparency of the container obtained by molding deteriorates. As polyester A, those obtained by melt polycondensation can be used as they are, but it is preferable to use those subjected to solid phase polymerization.
[0014]
When the intrinsic viscosity of polyester B is less than 0.77 dl / g, the transparency of the resulting container deteriorates. Conversely, when the viscosity exceeds 0.90 dl / g, the resulting container tends to have uneven thickness. The crystallization temperature is also less than 165 ° C. at the time of temperature rise, or when the crystallization temperature at the time of temperature drop exceeds 170 ° C., the transparency of the resulting container deteriorates. When the crystallization temperature is higher than 180 ° C. or the crystallization temperature at lowering temperature is lower than 150 ° C., the effect of improving the crystallization rate of the plug portion is small. As polyester B, one that has undergone solid phase polymerization is usually used.
In both polyesters A and B, the intrinsic viscosity can be adjusted by controlling polymerization conditions such as polymerization temperature and time. The crystallization temperature can also be adjusted by the type and amount of the catalyst used for the polycondensation and the addition of a nucleating agent.
[0015]
In order to produce a container from polyesters A and B according to the present invention, both may be dry blended using a blender and supplied to a molding machine. Alternatively, polyester A and B may be supplied from separate feeders to the cylinder of the molding machine and melt kneaded in the cylinder. Production of a preform from a mixture of polyesters A and B and production of a container by stretch blow of the preform can be performed by a conventional method.
[0016]
【Example】
The present invention will be described more specifically with reference to the following examples. The intrinsic viscosity, haze, crystallization temperature, ½ crystallization temperature and transparency were measured as follows.
Intrinsic viscosity: It was measured at 30 ° C. in a mixed solvent of phenol / tetrachloroethane (weight ratio 1/1) using an Ubbelohde viscosity tube.
[0017]
Haze: The body part of the container manufactured by the measurement of 1/2 crystallization time mentioned later was cut out, five this was piled up, and it measured using Nippon Denshoku's haze meter NDH-300A.
Crystallizing temperature: Using an injection molding machine M-70A (screw diameter: 36 mm) manufactured by Meiki Seisakusho Co., Ltd. and the illustrated mold, the temperature of each part of the cylinder and the nozzle head is 280 ° C., the screw rotation speed is 200 rpm, 60 seconds / A stepped molded plate having a weight of about 50 g was injection molded at a cycle and mold cooling water temperature of 15 ° C., and a 15th stepped molded plate was used as a sample after the start of molding. Using a differential scanning calorimeter DSC220C manufactured by Seiko Electronics Co., Ltd., the end of the 3 mm thick portion of the sample produced above was cut into a 1 cm square, and this was heated from room temperature to 285 ° C. at a rate of 20 ° C./min. After holding at 285 ° C. for 3 minutes, the temperature was lowered at 10 ° C./min. The peak temperature of crystallization observed at the time of temperature increase was defined as the crystallization temperature at the time of temperature increase, and the peak temperature of crystallization observed at the time of temperature decrease was defined as the crystallization temperature at the time of temperature decrease.
[0018]
1/2 crystallization time: Setting of temperature of each part of cylinder and nozzle head at 280 ° C., screw rotation speed 100 rpm, 10 seconds / cycle, mold cooling water temperature 10 ° C. using an injection molding machine LS-60B manufactured by Toshiba Corporation A preform (outer diameter 30 mm, wall thickness 3.8 mm, length 170 mm, basis weight 60 g) was manufactured under the conditions. This preform was molded into a bottle having an inner volume of 1.5 liters and an average thickness of 300 μm by a stretch blow molding machine set at a preheating furnace temperature of 90 ° C., a blow pressure of 20 kg / cm 2 G, and a molding cycle of 10 seconds. . Cut the cap of this bottle, and measure the density of the bottle immersed in an oil bath at 180 ° C for 0.5 minutes, 1 minute, 1.5 minutes, 2 minutes or 3 minutes using a density gradient tube. The crystallinity was calculated by the following formula. From this result, the time required to reach a degree of crystallinity half of the ultimate degree of crystallinity was determined, and this was taken as a half-crystallization time.
[0019]
X = (d-1.335) /0.12
X: Crystallinity (%)
d: Density (g / cc)
[0020]
Production of polyester (I);
A slurry consisting of 12700 parts of terephthalic acid and 5820 parts of ethylene glycol was fed into an esterification reactor containing 300 parts of bis (β-hydroxyethyl) terephthalate oligomer at 250 ° C. over 250 minutes.
After the esterification reaction was carried out for 60 minutes after the completion of the supply, half of the reactor contents were transferred to a polycondensation reactor, 0.90 parts of phosphoric acid and 1.00 parts of germanium dioxide were added, and 250 to 280 ° C. The temperature was gradually increased to normal pressure and gradually reduced from normal pressure to 0.5 mmHg. After the polycondensation reaction was performed for 3 hours, the produced polyester in a molten state was drawn out into a strand shape, cooled with water, and then cut to obtain a polyester chip.
This polyester had an intrinsic viscosity of 0.624 dl / g, a crystallization temperature at the time of temperature increase of 158.2 ° C., and a crystallization temperature at the time of temperature decrease of 183.0 ° C.
[0021]
Production of polyesters (II) to (V);
Polyester (I) is crystallized at 180 ° C. using a stirrer crystallizer, and then nitrogen is circulated at 20 liters / kg · Hr using a stationary solid-phase polymerization apparatus at about 160 ° C. for 3 hours. After drying, solid state polymerization was performed at 210 ° C. Table 1 shows the intrinsic viscosity, the crystallization temperature at the time of temperature increase, and the crystallization temperature at the time of temperature decrease of the obtained polyester.
[0022]
[Table 1]
Figure 0003648912
[0023]
Production of polyesters (VI) to (VIII);
In the production of the polyester (I), a polyester having an intrinsic viscosity of 0.603 dl / g was obtained in the same manner as in Example 1 except that the addition amounts of phosphoric acid and germanium dioxide were 1.00 parts and 1.20 parts, respectively. Obtained.
Using this polyester, solid phase polymerization was carried out in the same manner as in polyesters (II) to (V). Table 2 shows the intrinsic viscosity, the crystallization temperature at the time of temperature increase, and the crystallization temperature at the time of temperature decrease of the obtained polyester.
[0024]
[Table 2]
Figure 0003648912
[0025]
Examples 1-4 and Comparative Examples 1-4
Table 3 shows the physical properties of the container formed using the dry blended polyester obtained above.
[0026]
[Table 3]
Figure 0003648912
[0027]
[Brief description of the drawings]
FIG. 1 is a stepped mold for preparing a sample used for measuring a crystallization temperature. The total length is 100 mm, the width is 50 mm, the length of each step is 25 mm, and the step is 1 mm.

Claims (1)

エチレンテレフタレートを主たる繰り返し単位とする下記のポリエステルAとポリエステルBとをA/B(重量比)=1/9〜9/1で混合したものを用いて射出成形によりプリフォームを製造し、次いでこれを延伸ブローすることを特徴とするポリエステル容器の製造方法。
ポリエステルA;極限粘度が0.60〜0.70dl/gであり、示差走査熱量計で測定した昇温時の結晶化温度が140〜162℃、降温時の結晶化温度が175〜190℃であるポリエステル。
ポリエステルB;極限粘度が0.77〜0.90dl/gであり、示差走査熱量計で測定した昇温時の結晶化温度が165〜180℃、降温時の結晶化温度が150〜170℃であるポリエステル。
A preform is manufactured by injection molding using a mixture of the following polyester A and polyester B having ethylene terephthalate as the main repeating unit at A / B (weight ratio) = 1/9 to 9/1. A process for producing a polyester container, characterized by stretching and blowing.
Polyester A; the intrinsic viscosity is 0.60 to 0.70 dl / g, the crystallization temperature at the time of temperature rise measured by a differential scanning calorimeter is 140 to 162 ° C., and the crystallization temperature at the time of temperature fall is 175 to 190 ° C. Some polyester.
Polyester B; the intrinsic viscosity is 0.77 to 0.90 dl / g, the crystallization temperature at the time of temperature rise measured by a differential scanning calorimeter is 165 to 180 ° C., and the crystallization temperature at the time of temperature fall is 150 to 170 ° C. Some polyester.
JP9368797A 1997-04-11 1997-04-11 Polyester container manufacturing method Expired - Fee Related JP3648912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9368797A JP3648912B2 (en) 1997-04-11 1997-04-11 Polyester container manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9368797A JP3648912B2 (en) 1997-04-11 1997-04-11 Polyester container manufacturing method

Publications (2)

Publication Number Publication Date
JPH10287799A JPH10287799A (en) 1998-10-27
JP3648912B2 true JP3648912B2 (en) 2005-05-18

Family

ID=14089323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9368797A Expired - Fee Related JP3648912B2 (en) 1997-04-11 1997-04-11 Polyester container manufacturing method

Country Status (1)

Country Link
JP (1) JP3648912B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119464B2 (en) * 2004-04-12 2013-01-16 東洋紡株式会社 Method for producing polyester unstretched molded body
JP4929616B2 (en) * 2004-05-12 2012-05-09 東洋紡績株式会社 Polyester composition and polyester molded body comprising the same
JP4929615B2 (en) * 2004-05-12 2012-05-09 東洋紡績株式会社 Polyester composition and polyester molded body comprising the same
JP4752361B2 (en) * 2004-07-09 2011-08-17 東洋紡績株式会社 Polyester, polyester composition and polyester molded body comprising them
JP2006096040A (en) * 2004-09-03 2006-04-13 Toyobo Co Ltd Manufacturing method of polyester preform, and manufacturing method of polyester stretched molded body
JP2006104453A (en) * 2004-09-07 2006-04-20 Toyobo Co Ltd Polyester composition, polyester molded body consisting thereof, and manufacturing method thereof
JP4802664B2 (en) * 2004-11-05 2011-10-26 東洋紡績株式会社 Method for producing polyester preform and method for producing stretched polyester
WO2006062148A1 (en) * 2004-12-08 2006-06-15 Toyo Boseki Kabushiki Kaisha Polyester resin, polyester molding thereof and process for producing the same
JP2011001510A (en) * 2009-06-22 2011-01-06 Teijin Dupont Films Japan Ltd Polyester composition
KR102332382B1 (en) * 2021-05-04 2021-12-02 주식회사 아이코닉 PTP blister packaging material, PTP blister package containing the same and Manufacturing method thereof

Also Published As

Publication number Publication date
JPH10287799A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
TWI313275B (en) High iv melt phase polyester polymer catalyzed with antimony containing compounds
KR100217955B1 (en) Copolyester, and hollow container and stretched film made thereof
JP3690255B2 (en) Polyester resin production method and polyester resin obtained thereby
JP3648912B2 (en) Polyester container manufacturing method
EP0684269A2 (en) Process for the preparation of re-usable bottles starting from modified PET
JP5598162B2 (en) Copolyester molded product
JPH06322082A (en) Polyester and hollow container made using the same
JP3072939B2 (en) Copolyester and hollow container and stretched film comprising the same
JP3765197B2 (en)   Polyester manufacturing method
JPH09221540A (en) Polyethylene terephthalate, hollow container, and oriented film
KR101826812B1 (en) Preparation method of low crystalline polyester resin that has improved thermal characteristic
JP3427202B2 (en) Polyester resin composition
JP3275649B2 (en) Method for producing modified polyester resin
JP4069669B2 (en) Method for crystallizing copolyester resin
JP3357489B2 (en) Polyester production method
JP3395423B2 (en) polyester
KR101121361B1 (en) Blend of polyester copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and polycarbonate, and preparing method thereof
JP2020164867A (en) Injection molded body, polyethylene terephthalate copolymer and method for producing injection molded body
JP3477970B2 (en) Polyester resin composition
JP3136767B2 (en) Copolyester and hollow container and stretched film comprising the same
JP4209634B2 (en) POLYESTER RESIN, POLYESTER RESIN MOLDED BODY, AND BLOW BOTTLE MANUFACTURING METHOD
KR101159850B1 (en) Polyester resin copolymerized with neopentylglycol having low oligomer content and preparing method thereof
JPH07205257A (en) Molding method for polyester resin
JP3136768B2 (en) Copolyester and hollow container and stretched film comprising the same
JP4086983B2 (en) Polyester manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100225

LAPS Cancellation because of no payment of annual fees