JP3646645B2 - Coil flaw detection method and apparatus - Google Patents

Coil flaw detection method and apparatus Download PDF

Info

Publication number
JP3646645B2
JP3646645B2 JP2000349997A JP2000349997A JP3646645B2 JP 3646645 B2 JP3646645 B2 JP 3646645B2 JP 2000349997 A JP2000349997 A JP 2000349997A JP 2000349997 A JP2000349997 A JP 2000349997A JP 3646645 B2 JP3646645 B2 JP 3646645B2
Authority
JP
Japan
Prior art keywords
coil
current value
solution
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000349997A
Other languages
Japanese (ja)
Other versions
JP2002156351A (en
Inventor
宏司 丹下
謙司 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000349997A priority Critical patent/JP3646645B2/en
Publication of JP2002156351A publication Critical patent/JP2002156351A/en
Application granted granted Critical
Publication of JP3646645B2 publication Critical patent/JP3646645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、コイルに発生した傷を検出するコイルの傷検出方法および装置に関する。
【0002】
【従来の技術】
従来、コイル表面の絶縁層に発生した傷を検出する方法として、図4に示すようなものがある。これは、コイル1を、食塩水とフェノールフタレインとを混合した導電性の溶液3にどぶ漬けし、同じく溶液3にどぶ漬けした電極5とコイル1の端子1aとを、コイル1側を負極として電源7を介して配線9により接続する。そして、この電源7によりコイル1と電極5との間に電圧を印加する。
【0003】
ここで、コイル1の絶縁層を破壊する傷11が発生していると、コイル1(傷11の発生部位)と電極5との間に電流が流れ、このとき傷11から気泡13が発生したり、溶液3が赤色に変色することに基づいて、傷11の発生を判定している。
【0004】
気泡13の発生は、コイル1側を負極としているため、下記の化学反応が発生することによる。
【0005】
2H(水素イオン)+2e(負極の電荷)=H2↑(水素の気泡)
また、溶液3が赤色に変色するのは、酸塩基指示薬であるフェノールフタレインが水素イオンと反応することによる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術では、単に気泡の発生や溶液の色の変化によってコイルの傷を検出しているので、傷の大きさを定量的に判定することができず、改善が望まれている。
【0007】
そこで、この発明は、コイルに発生した傷の大きさを定量的に判定できるようにすることを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、モータのコイルに対して耐腐食性のあるフッ素系不活性液体に導電性のあるアルコール系溶液を混合した溶液を容器内に収容し、前記溶液中に絶縁被覆されたコイルと電極とを浸し、前記溶液中のコイルと電極との間に電圧を印加して前記コイルと電極との間に流れる電流値を計測し、この計測した電流値に応じて前記コイルの傷の大きさを判定するようにしている。
【0009】
請求項2の発明は、請求項1の発明の方法において、電流値計測は、電圧印加後所定時間経過した後に行うようにしてある。
【0010】
請求項3の発明は、請求項1の発明の方法において、電流値計測は、電流値が最大となった後に行うようにしてある。
【0011】
請求項4の発明は、請求項3の発明の方法において、電流値計測は、電流値が最大となる点から微小時間経過した後に行うようにしてある。
【0012】
請求項5の発明は、請求項1または2の発明の方法において、電流値計測は、電圧印加後5秒から50秒経過するまでの間に行うようにしてある。
【0014】
請求項の発明は、請求項の発明の方法において、アルコール系溶液は、イソプロピルアルコールである。
【0015】
請求項7の発明は、モータのコイルに対して耐腐食性のあるフッ素系不活性液体に導電性のあるアルコール系溶液を混合して容器内に収容した溶液と、この溶液中に配置され、前記溶液中に浸した絶縁被覆されたコイルとの間に電圧が印加される電極と、前記コイルと電極との間に電圧を印加する電圧印加手段と、前記コイルと電極との間に流れる電流を検出する電流検出手段と、前記電圧印加手段による電圧印加後所定時間経過した後の前記コイルと電極との間の前記電流検出手段による電流検出値に応じて前記コイルの傷の大きさを判定するコイル傷判定手段とを有する構成としてある。
【0016】
【発明の効果】
請求項1または請求項の発明によれば、コイルに傷が発生していると、コイル・電極間への印加電圧により、その傷発生部位と電極との間に電流が流れるので、この電流値を計測することで、コイルに発生している傷の大きさを電流値に応じて定量的に判定することができる。
また、溶液として、フッ素系不活性液体を使用することで、コイルの腐食を防止できるとともに、フッ素系不活性液体にアルコール系溶液を混合することで、導電性を持たせることができる。
【0017】
請求項2の発明によれば、電流値計測を、電圧印加後所定時間経過した後に行うようにしたので、安定した電流値計測が行え、コイルに発生している傷の大きさの定量的判定を精度よく行うことができる。
【0018】
請求項3の発明によれば、電流値計測を、電流値が最大となった後に行うようにしたので、より安定した電流値計測が行え、コイルに発生している傷の大きさの定量的判定をより精度よく行うことができる。
【0019】
請求項4の発明によれば、電流値計測を、電流値が最大となる点から微小時間経過した後に行うようにしたので、さらに安定した電流値計測が行え、傷の大きさの定量的判定を短時間に高精度に行うことができる。
【0020】
請求項5の発明によれば、電流値計測は、電圧印加後5秒から50秒経過するまでの間に行うようにしたので、電流値の計測を安定した状態で行え、傷の大きさの定量的判定を高精度に行うことができる。
【0022】
請求項の発明によれば、アルコール系溶液として、イソプロピルアルコールを使用することで、導電性を持たせることができる。
【0023】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0024】
図1は、この発明の実施の一形態を示すコイルの傷検出装置の全体構成図である。容器15内には、絶縁被覆されたコイル17に対して腐食性がなく電子装置の洗浄に用いられるフッ素系不活性液体に、導電性を備えたアルコール系溶液であるイソプロピルアルコールを7%混合した溶液19が収容されている。
【0025】
上記した溶液19中には、ステータ21にコイル17が組み付けられたモータ(ステータアッセンブリ)23と電極となる正極導体棒25とがどぶ付けされている。正極導体棒25は、腐食や酸化しにくい材質を選択する。そして、コイル17の端末に接続した端子17aと正極導体棒25とは、配線26により接続し、配線26には、コイル17側から、端子17aに負極が接続される電圧印加手段としての安定化電源27、スイッチ29、電流検出手段としての電流計31が順次接続されている。電流計31には、計測した電流値に基づいて、コイル17に発生している傷33の面積を判定するマイクロコンピュータなどで構成されるコイル傷判定手段としての判定回路35が接続されている。
【0026】
この状態で、スイッチ29を投入すると、コイル17と正極導体棒25との間に電圧が印加される。このとき、コイル17に絶縁層を破壊するような傷33が発生していると、導電性の溶液19を介してコイル17と正極導体棒25との間に電流が流れ、この電流は電流計31によって計測される。電流計31によって計測される電流値は、例えば図2に示すようなものとなる。すなわち、電流値は、電圧印加してから時間t1経過した時点(5秒経過時より僅かに前)で最大(60mA)となり、その後徐々に低下して50秒程度経過した後には、20mAと40mAとの間で不安定な値となる。
【0027】
電流値が最大となった後に低下するのは、溶液19の電気抵抗が徐々に増大することによるが、これは、正極導体棒25およびコイル17の傷発生部位と、導電性のある溶液19との化学反応によって起こり、この化学反応により正極導体棒25および傷発生部位の各表面付近の溶液19の濃度が低下していくためである。
【0028】
つまり、正極導体棒25の表面では、酸素や酸素イオンが正極導体棒25の表面に被膜を生成し、安定した電子eの受け取りを拒否する。一方負極側であるコイル17の傷発生部部位の表面では、傷33から発生する水素の気泡が傷33の表面に被膜を生成し、安定した電子eの放出を阻害する。
【0029】
電圧印加してから5秒経過後は、電流値最大の時間t1より微小時間経過しており、この5秒経過した時点の電流値を計測することで、コイル17に発生している傷33の面積を、判定回路35により判定する。電流値計測を5秒経過後としたのは、この時点の電流値を数回計測してもほぼ安定した結果が得られ、かつ電圧印加後短時間で計測が行えるためである。時間t1における電流値最大の点は、電流値のばらつきが大きく電流値計測に適さない。また、電圧印加後50秒経過した後は、電流値が不安定となって電流値計測に適さない。したがって、電圧印加後、5秒から50秒経過した領域が電流計測に適した安定領域Pとなる。
【0030】
図3は、判定回路35における図示しないメモリに格納されている、電圧印加してから5秒経過した時点の電流値と傷33の面積との関係を示している。これによれば、電流値A(mA)と傷面積S(mm2)との関係は、電流値Aの増大に伴い傷面積Sも増大する比例関係にあり、S=kAとなる。比例定数kは、10の3乗倍程度である。
【0031】
したがって、電圧印加してから5秒経過した時点の電流値を計測することで、コイル17に発生している傷33の面積を図3の関係に基づいて、判定回路35により定量的に判定することができる。
【0032】
なお、図3における電流値と傷面積との関係は、コイル17の種類によって異なるものを用意しておく。また、図1の例では判定回路35を設けているが、判定回路35を設けずに、単に電流計31による計測値を図3のデータと照らし合わせて傷33の面積を求めるようにしてもよい。
【0033】
また、溶液19中のイソプロピルアルコールの割合は、労働安全衛生法上7%としてあるが、7%を多少下回っても構わない。
【図面の簡単な説明】
【図1】この発明の実施の一形態を示すコイルの傷検出装置の全体構成図である。
【図2】コイルに傷がある状態での電圧印加後の電流値を示す説明図である。
【図3】電流値と傷面積との相関図である。
【図4】従来例を示すコイルの傷検出装置の全体構成図である。
【符号の説明】
17 コイル
19 溶液
25 正極導体棒(電極)
27 安定化電源(電圧印加手段)
31 電流計(電流検出手段)
35 判定回路(コイル傷判定手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coil flaw detection method and apparatus for detecting flaws generated in a coil.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, there is a method for detecting a scratch generated in the insulating layer on the coil surface. This is because the coil 1 is immersed in a conductive solution 3 in which saline and phenolphthalein are mixed, and the electrode 5 and the terminal 1a of the coil 1 which are also immersed in the solution 3 are connected to the negative electrode on the coil 1 side. As shown in FIG. A voltage is applied between the coil 1 and the electrode 5 by the power source 7.
[0003]
Here, if a flaw 11 that breaks the insulating layer of the coil 1 is generated, a current flows between the coil 1 (where the flaw 11 is generated) and the electrode 5, and at this time, bubbles 13 are generated from the flaw 11. Or the occurrence of the scratch 11 is determined based on the fact that the solution 3 changes to red.
[0004]
The bubble 13 is generated because the following chemical reaction occurs because the coil 1 side is the negative electrode.
[0005]
2H + (hydrogen ion) + 2e (negative electrode charge) = H 2 ↑ (hydrogen bubbles)
Moreover, the reason why the solution 3 turns red is that phenolphthalein, which is an acid-base indicator, reacts with hydrogen ions.
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional technique, since the wound of the coil is detected simply by the generation of bubbles or the change in the color of the solution, the size of the wound cannot be determined quantitatively, and improvement is desired. Yes.
[0007]
Accordingly, an object of the present invention is to make it possible to quantitatively determine the size of a scratch generated in a coil.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention of claim 1 contains a solution obtained by mixing a conductive alcohol-based solution with a fluorine-based inert liquid having corrosion resistance with respect to a motor coil, in a container, Immerse the coil and the electrode coated with insulation in the solution, apply a voltage between the coil and the electrode in the solution to measure the current value flowing between the coil and the electrode, and measure the measured current. The size of the scratch on the coil is determined according to the value.
[0009]
According to a second aspect of the present invention, in the method of the first aspect of the invention, the current value measurement is performed after a predetermined time has elapsed after the voltage application.
[0010]
According to a third aspect of the present invention, in the method of the first aspect of the present invention, the current value measurement is performed after the current value becomes maximum.
[0011]
According to a fourth aspect of the present invention, in the method of the third aspect of the invention, the current value measurement is performed after a minute time has elapsed from the point where the current value becomes maximum.
[0012]
According to a fifth aspect of the present invention, in the method of the first or second aspect of the invention, the current value measurement is performed between 5 seconds and 50 seconds after voltage application.
[0014]
According to a sixth aspect of the invention, in the method of the first aspect of the invention, the alcoholic solution is isopropyl alcohol.
[0015]
According to a seventh aspect of the present invention, there is provided a solution in which a conductive alcohol-based solution mixed with a fluorine-based inert liquid having corrosion resistance with respect to a motor coil is contained in a container, and disposed in the solution. An electrode to which a voltage is applied between an insulation-coated coil immersed in the solution, a voltage applying means for applying a voltage between the coil and the electrode, and a flow between the coil and the electrode A current detecting means for detecting a current, and a size of a wound of the coil according to a current detection value by the current detecting means between the coil and the electrode after a predetermined time has elapsed after voltage application by the voltage applying means. And a coil flaw determining means for determining.
[0016]
【The invention's effect】
According to the invention of claim 1 or claim 7 , when a flaw is generated in the coil, a current flows between the flaw occurrence site and the electrode due to a voltage applied between the coil and the electrode. By measuring the value, the size of the scratch generated in the coil can be quantitatively determined according to the current value.
Moreover, corrosion of the coil can be prevented by using a fluorine-based inert liquid as a solution, and conductivity can be imparted by mixing an alcohol-based solution with the fluorine-based inert liquid.
[0017]
According to the second aspect of the present invention, since the current value measurement is performed after a predetermined time has elapsed after the voltage application, a stable current value measurement can be performed, and a quantitative determination of the size of the scratch generated in the coil can be performed. Can be performed with high accuracy.
[0018]
According to the invention of claim 3, since the current value measurement is performed after the current value reaches the maximum, more stable current value measurement can be performed, and the size of the scratch generated in the coil can be quantitatively determined. The determination can be performed with higher accuracy.
[0019]
According to the invention of claim 4, since the current value measurement is performed after a minute time has elapsed from the point where the current value becomes maximum, more stable current value measurement can be performed, and quantitative determination of the size of the scratch Can be performed with high accuracy in a short time.
[0020]
According to the invention of claim 5, since the current value measurement is performed between 5 seconds and 50 seconds after the voltage application, the current value can be measured in a stable state, and the size of the flaw can be measured. Quantitative determination can be performed with high accuracy.
[0022]
According to the sixth aspect of the present invention, conductivity can be imparted by using isopropyl alcohol as the alcoholic solution.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
FIG. 1 is an overall configuration diagram of a coil flaw detection apparatus showing an embodiment of the present invention. In the container 15, 7% of isopropyl alcohol, which is an alcoholic solution having conductivity, is mixed with a fluorine-based inert liquid that is not corrosive to the coil 17 coated with insulation and is used for cleaning an electronic device. Solution 19 is contained.
[0025]
In the solution 19, the motor (stator assembly) 23 in which the coil 17 is assembled to the stator 21 and the positive electrode conductor rod 25 serving as an electrode are bumped. For the positive electrode conductor rod 25, a material which is not easily corroded or oxidized is selected. Then, the terminal 17a connected to the terminal of the coil 17 and the positive electrode conductor rod 25 are connected by a wiring 26, and the wiring 26 is stabilized as a voltage applying means in which the negative electrode is connected to the terminal 17a from the coil 17 side. A power supply 27, a switch 29, and an ammeter 31 as current detection means are sequentially connected. The ammeter 31 is connected to a determination circuit 35 as a coil flaw determination means configured by a microcomputer or the like that determines the area of the flaw 33 generated in the coil 17 based on the measured current value.
[0026]
When the switch 29 is turned on in this state, a voltage is applied between the coil 17 and the positive electrode conductor rod 25. At this time, if a scratch 33 that breaks the insulating layer is generated in the coil 17, a current flows between the coil 17 and the positive electrode conductor rod 25 through the conductive solution 19, and this current is measured by an ammeter. 31. The current value measured by the ammeter 31 is, for example, as shown in FIG. That is, the current value reaches the maximum (60 mA) when the time t 1 has elapsed since the voltage application (slightly before the lapse of 5 seconds), and then gradually decreases to 20 mA after about 50 seconds. It becomes an unstable value between 40 mA.
[0027]
The decrease after the current value reaches the maximum is due to the gradual increase in the electrical resistance of the solution 19, which is due to the damage of the positive electrode conductor rod 25 and the coil 17, the conductive solution 19, and the conductive solution 19. This is because the concentration of the solution 19 in the vicinity of each surface of the positive electrode conductor rod 25 and the scratch generation site decreases due to this chemical reaction.
[0028]
That is, on the surface of the positive electrode conductor rod 25, oxygen and oxygen ions form a film on the surface of the positive electrode conductor rod 25, and refuse to receive stable electrons e. On the other hand, on the surface of the wound generating portion of the coil 17 on the negative electrode side, hydrogen bubbles generated from the scratch 33 generate a film on the surface of the scratch 33 and inhibit stable release of electrons e.
[0029]
After a lapse of 5 seconds from the voltage application, a minute time has elapsed from the maximum current value time t 1. By measuring the current value at the time when 5 seconds have passed, the scratch 33 generated in the coil 17 is measured. Is determined by the determination circuit 35. The reason why the current value is measured after 5 seconds is that even if the current value at this time is measured several times, a substantially stable result can be obtained and the measurement can be performed in a short time after the voltage is applied. The point at the maximum current value at time t 1 is not suitable for current value measurement because of large variations in current value. In addition, after 50 seconds have elapsed since the voltage application, the current value becomes unstable and is not suitable for current value measurement. Therefore, a region where 5 to 50 seconds have elapsed after voltage application is a stable region P suitable for current measurement.
[0030]
FIG. 3 shows the relationship between the current value stored in a memory (not shown) in the determination circuit 35 and the area of the scratch 33 when 5 seconds have elapsed since the voltage application. According to this, the relationship between the current value A (mA) and the scratch area S (mm 2 ) is a proportional relationship in which the scratch area S increases as the current value A increases, and S = kA. The proportionality constant k is about 10 to the third power.
[0031]
Therefore, by measuring the current value at the time when 5 seconds have elapsed since the voltage application, the area of the scratch 33 generated in the coil 17 is quantitatively determined by the determination circuit 35 based on the relationship of FIG. be able to.
[0032]
Note that the relationship between the current value and the scratch area in FIG. Further, although the determination circuit 35 is provided in the example of FIG. 1, the area of the scratch 33 may be obtained by simply comparing the measurement value by the ammeter 31 with the data of FIG. 3 without providing the determination circuit 35. Good.
[0033]
Further , the ratio of isopropyl alcohol in the solution 19 is 7% in the occupational safety and health law, but it may be slightly lower than 7%.
[Brief description of the drawings]
1 is an overall configuration diagram of a coil flaw detection device showing an embodiment of the present invention;
FIG. 2 is an explanatory diagram showing a current value after voltage application in a state where a coil is scratched.
FIG. 3 is a correlation diagram between a current value and a scratch area.
FIG. 4 is an overall configuration diagram of a coil flaw detection apparatus showing a conventional example.
[Explanation of symbols]
17 Coil 19 Solution 25 Positive electrode conductor (electrode)
27 Stabilized power supply (voltage application means)
31 Ammeter (Current detection means)
35 judgment circuit (coil damage judgment means)

Claims (7)

モータのコイルに対して耐腐食性のあるフッ素系不活性液体に導電性のあるアルコール系溶液を混合した溶液を容器内に収容し、前記溶液中に絶縁被覆されたコイルと電極とを浸し、前記溶液中のコイルと電極との間に電圧を印加して前記コイルと電極との間に流れる電流値を計測し、この計測した電流値に応じて前記コイルの傷の大きさを判定することを特徴とするコイルの傷検出方法。 A solution in which a conductive alcohol-based solution mixed with a fluorine-based inert liquid having corrosion resistance with respect to a motor coil is contained in a container, and the coil and the electrode coated with insulation are immersed in the solution , Measuring a current value flowing between the coil and the electrode by applying a voltage between the coil and the electrode in the solution, and determining a size of the wound of the coil according to the measured current value A method for detecting flaws in a coil characterized by the above. 電流値計測は、電圧印加後所定時間経過した後に行うことを特徴とする請求項1記載のコイルの傷検出方法。  The coil flaw detection method according to claim 1, wherein the current value measurement is performed after a predetermined time has elapsed after the voltage application. 電流値計測は、電流値が最大となった後に行うことを特徴とする請求項1記載のコイルの傷検出方法。  The coil flaw detection method according to claim 1, wherein the current value measurement is performed after the current value becomes maximum. 電流値計測は、電流値が最大となる点から微小時間経過した後に行うことを特徴とする請求項3記載のコイルの傷検出方法。  The method for detecting flaws in a coil according to claim 3, wherein the current value measurement is performed after a minute time has elapsed from the point where the current value becomes maximum. 電流値計測は、電圧印加後5秒から50秒経過するまでの間に行うことを特徴とする請求項1または2に記載のコイルの傷検出方法。  The coil flaw detection method according to claim 1 or 2, wherein the current value measurement is performed between 5 seconds and 50 seconds after voltage application. アルコール系溶液は、イソプロピルアルコールであることを特徴とする請求項1記載のコイルの傷検出方法。  2. The coil flaw detection method according to claim 1, wherein the alcohol-based solution is isopropyl alcohol. モータのコイルに対して耐腐食性のあるフッ素系不活性液体に導電性のあるアルコール系溶液を混合して容器内に収容した溶液と、この溶液中に配置され、前記溶液中に浸した絶縁被覆されたコイルとの間に電圧が印加される電極と、前記コイルと電極との間に電圧を印加する電圧印加手段と、前記コイルと電極との間に流れる電流を検出する電流検出手段と、前記電圧印加手段による電圧印加後所定時間経過した後の前記コイルと電極との間の前記電流検出手段による電流検出値に応じて前記コイルの傷の大きさを判定するコイル傷判定手段とを有することを特徴とするコイルの傷検出装置。 A solution in which a conductive alcohol-based solution mixed with a fluorine-based inert liquid that is corrosion-resistant to the motor coil is contained in a container, and the solution is placed in the solution and immersed in the solution. An electrode to which a voltage is applied between the insulation-coated coil, a voltage applying means for applying a voltage between the coil and the electrode, and a current detecting means for detecting a current flowing between the coil and the electrode And a coil flaw determination unit that determines a flaw size of the coil according to a current detection value by the current detection unit between the coil and the electrode after a predetermined time has elapsed after the voltage application by the voltage application unit. A coil flaw detection apparatus comprising:
JP2000349997A 2000-11-16 2000-11-16 Coil flaw detection method and apparatus Expired - Lifetime JP3646645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349997A JP3646645B2 (en) 2000-11-16 2000-11-16 Coil flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349997A JP3646645B2 (en) 2000-11-16 2000-11-16 Coil flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2002156351A JP2002156351A (en) 2002-05-31
JP3646645B2 true JP3646645B2 (en) 2005-05-11

Family

ID=18823305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349997A Expired - Lifetime JP3646645B2 (en) 2000-11-16 2000-11-16 Coil flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3646645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058864A (en) * 2009-09-08 2011-03-24 Aisin Aw Co Ltd Method for non-destructive inspection of coil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712730B2 (en) * 2007-01-12 2011-06-29 古河電気工業株式会社 Pinhole test method and wire pulling device
JP4873753B2 (en) * 2007-09-28 2012-02-08 国立大学法人 長崎大学 Plant adaptive response measuring apparatus and plant adaptive response measuring method
JP4973524B2 (en) * 2008-01-31 2012-07-11 トヨタ自動車株式会社 Coil inspection apparatus and coil inspection method
JP5126046B2 (en) * 2008-12-22 2013-01-23 トヨタ自動車株式会社 Coil wound inspection reference electrode
KR102192090B1 (en) * 2012-10-19 2020-12-16 프리에토 배터리, 인크. Detection of defects in solid-polymer coatings
KR102101781B1 (en) * 2018-09-04 2020-04-20 주식회사 디엠에스 Apparatus for detecting pin hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058864A (en) * 2009-09-08 2011-03-24 Aisin Aw Co Ltd Method for non-destructive inspection of coil

Also Published As

Publication number Publication date
JP2002156351A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US5846398A (en) CMP slurry measurement and control technique
CN109313160B (en) Method for determining alkalinity of aqueous sample using alkalinity sensor
JP4041667B2 (en) Plating bath analysis method
JP2009503452A5 (en)
JP2007271501A (en) Method of evaluating corrosion protection for coating
US5188715A (en) Condensate corrosion sensor
JP3646645B2 (en) Coil flaw detection method and apparatus
JP2931214B2 (en) How to monitor acid concentration in plating bath
US7438796B2 (en) Electrochemical chlorine sensor
JP5617179B2 (en) Dielectric breakdown test apparatus and dielectric breakdown test method for coated electric wire
JP3707495B2 (en) Coil wound inspection apparatus and method
JP4973524B2 (en) Coil inspection apparatus and coil inspection method
JPH11270860A (en) Floor heater with function for detecting deterioration of antifreeze
JP2009053145A (en) Device and method for inspecting coil
JPH08201341A (en) Method for measuring oxidation of substrate having coating
JP2004125668A (en) Oxidation-reduction potential measuring instrument
KR102543389B1 (en) Apparatus and method for measuring concentration of depolarizer using resistance changing rate
JP3614141B2 (en) Coil wound inspection apparatus and method
JPS6379053A (en) Corrosion test for metal material
JP2002267628A (en) Electrochemical measuring method and instrument therefor
US9028670B2 (en) Method for proportioning nitrates and/or nitrites in a neutral medium
JP2005331337A (en) Oxidation-reduction current measuring device and cleaning method of the oxidation-reduction current measuring device
KR970013166A (en) Method of evaluating surface state of metal and method of manufacturing semiconductor device
JP2000162167A (en) Method for measuring faraday resistance
JP2004347610A (en) Coil flaw inspecting device and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3646645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

EXPY Cancellation because of completion of term