JP3646031B2 - Control method of latent heat recovery type water heater - Google Patents

Control method of latent heat recovery type water heater Download PDF

Info

Publication number
JP3646031B2
JP3646031B2 JP32286999A JP32286999A JP3646031B2 JP 3646031 B2 JP3646031 B2 JP 3646031B2 JP 32286999 A JP32286999 A JP 32286999A JP 32286999 A JP32286999 A JP 32286999A JP 3646031 B2 JP3646031 B2 JP 3646031B2
Authority
JP
Japan
Prior art keywords
valve
drain
water
hot water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32286999A
Other languages
Japanese (ja)
Other versions
JP2001141308A (en
Inventor
誉樹 竹内
錦司 森
正和 安藤
秀彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP32286999A priority Critical patent/JP3646031B2/en
Priority to KR10-2000-0048105A priority patent/KR100387178B1/en
Priority to CNB001283057A priority patent/CN1159554C/en
Publication of JP2001141308A publication Critical patent/JP2001141308A/en
Application granted granted Critical
Publication of JP3646031B2 publication Critical patent/JP3646031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/003Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation having means for moistening the combustion air with condensate from the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0036Dispositions against condensation of combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスバーナからの燃焼排気が露点以下になるまで熱交換器に吸熱させる形式の潜熱回収型給湯機の制御方法、特に、上記熱交換器で生じるドレンに通水路からの水を添加してこれを稀釈する機能を備えた潜熱回収型給湯機の制御方法に関するものである。
【0002】
【従来の技術】
熱交換器で生じるドレンを通水路からの水で稀釈する機能を備えた潜熱回収型給湯機として、既に出願人が提案した特願平11−175223号のものがある(図4)。
水入口(19)から図示しない出湯蛇口に繋がる通水路(11)には、入水温センサ(29),流量計(28),熱交換器(12),出湯温センサ(S) 及び出湯量調節弁(17)がこの順序で配設されている。
【0003】
熱交換器(12)で発生するドレンは受け皿(14)から排出路(18)を経て排出されると共に、通水路(11)に於ける入水温センサ(29)の上流側から分岐した分岐路(15)の下流端は前記排出路(18)に接続されており、該分岐路(15)には一定周期でON・OFF制御される開閉弁(16)が配設されている。又、熱交換器(12)を加熱するガスバーナ(21)へのガス回路(40)にはガス比例弁(43)とその上流側のガス元弁(44)が配設されている。
【0004】
このものでは、図示しない出湯蛇口が開放されるとガス元弁(44)が開弁してガスバーナ(21)が燃焼すると共に、ガスバーナ(21)からの燃焼排気が熱交換器(12)に接触して露点以下に冷やされ、これにより、酸性度の高いドレンが受け皿(14)から排出路(18)を介して排出される。そして、このドレン排出時には、一定周期で開閉弁(16)がON・OFF制御され、これにより、下水道に排出されるドレンに水道水を添加してそのPH値の平均を基準PH値まで上げるようにしている。
【0005】
前記ドレンのPH値を基準PH値まで上げる為の制御を更に説明する。
上記先行技術のものでは、流量計(28)や入水温センサ(29)や図示しない出湯温設定器の出力から判断されるガスバーナ(21)の燃焼量に基づいて単位時間当りのドレン発生量を求める演算を制御装置(1) が実行する。そして、開閉弁(16)のON・OFF制御の1周期に対する該弁(16)の開弁時間が前記ドレン発生量に応じて演算される。そして、上記開閉弁(16)の開弁時に分岐路(15)を流れる水道水が排出路(18)中のドレンに添加され、これにより、下水道に排出されるドレンのPH値を前記1周期で平均した平均PH値が基準PH値に上昇するようにしている。
【0006】
このものでは、ガスバーナ(21)の燃焼量によって変化するドレン発生量に応じた量の水道水を前記ドレンに添加するから、前記燃焼量に関わらず、常にドレンのPH値が適正値に保たれる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のものでは、潜熱回収型給湯機の運転時間は一定しないにも関わらず、開閉弁(16)のON・OFF制御の周期は常に一定に保たれていることから、次の問題が生じる。
▲1▼ 潜熱回収型給湯機が長時間に亘って継続運転される場合
浴槽への湯張りや温水暖房を行う場合には、給湯機が比較的長時間に亘って継続運転されることから、開閉弁(16)のON・OFF制御の周期を長くするのが望ましい。上記ON・OFFの制御周期が長い場合は、運転中の開閉弁(16)の開閉動作回数が少なくなり、係る場合は開閉弁(16)の開閉時の騒音を抑制できると共に、開閉弁(16)の開閉動作回数が少ないことから該開閉弁(16)の耐久性が向上する。
従って、上記とは逆に開閉弁(16)のON・OFF制御周期が短い場合は、長時間に亘って継続運転されると、開閉弁(16)の開閉動作回数が多く成り、開閉音に基づく騒音の問題と、開閉弁(16)の耐久性低下の問題が生じる。
【0008】
▲2▼ 潜熱回収型給湯機が短時間運転される場合
一方、炊事作業等のように給湯機が比較的短時間運転される場合は、開閉弁(16)のON・OFF制御の周期を短くするのが望ましい。上記ON・OFF制御の周期が短い場合は、その1周期当たりに生じるドレンの量が少なくなるから、これに応じて開閉弁(16)の開弁時間を短くして少量の水道水をドレンに添加すればよく、出湯開始直後に出湯停止操作がされても、無駄になる水の量が少なくなるからである。
【0009】
従って、上記とは逆に、短時間運時において開閉弁(16)のON・OFF制御の周期が長く設定されていると、ドレン稀釈用の水のうち、無駄になる水の量が多く成るという問題がある。
このように、上記先行技術のように開閉弁(16)のON・OFF制御の周期が一定になっている場合は、長時間運転時及び短時間運転時の何れの運転時に於いても、夫々の問題が残ってしまう。
【0010】
本発明は係る点に鑑みてなされたもので、
『熱交換器部分で設定時間当りに発生するドレンの平均PH値を基準PH値まで稀釈するのに必要な水の量を判断し、開閉弁を前記設定時間の周期でON・OFF制御することにより、該開閉弁から前記量の水を前記ドレンに添加する稀釈動作を実行する、潜熱回収型給湯機の制御方法』に於いて、
炊事作業等の短時間運転時にはドレンを稀釈する水の無駄な使用を抑え得るようにすると共に、湯張等の長時間運転時には開閉弁(16)が頻繁に開閉するのを抑えて騒音の抑制と開閉弁(16)の耐久性低下を防止し得るようにすることをその課題とする。
【0011】
【課題を解決するための手段】
[1項]
上記課題を解決する為の制御方法の発明の技術的手段は、
『前記熱交換器を加熱するガスバーナの燃焼開始初期に前記ドレンを稀釈する第1稀釈動作時の前記設定時間に比べて、その後の第2稀釈動作時の前記設定時間を長くした』ことである。
【0012】
上記技術的手段は次のように作用する。
ガスバーナが燃焼し始めた第1稀釈動作時には、これに対応して定められた設定時間の周期で開閉弁を開閉させる。即ち、後述の第2稀釈動作時より短い時間だけ開閉弁(16)を開弁させてドレンに少量の水を添加して該ドレンを稀釈する。従って、この場合には、ドレンに添加する水の量が少ないから、その後第1稀釈動作時内に運転停止操作がされても無駄になる上記水の量が多くならない。即ち、炊事作業のように比較的短時間で出湯操作と出湯停止操作が繰り返されるような場合でも、ドレンを稀釈する為の使用水の無駄を抑えることができる。
【0013】
一方、第2稀釈動作時の制御周期として定められた設定時間は第1稀釈動作時のそれに比べて長くなっている。従って、第1稀釈動作が終了した後の第2稀釈動作時には、上記第1稀釈動作時よりも長い設定時間の周期で開閉弁がON・OFF制御される。従って、前記第1稀釈動作時の制御周期で開閉弁を開閉させる場合に比べ、該開閉弁の開閉回数が少なくなる。よって、湯張りや温水暖房のように比較的長時間に亘って継続運転される場合でも、開閉弁が頻繁に開閉することがなく、該開閉弁の開閉に基づく騒音を抑制することができると共に、開閉弁の耐久性低下を防止することができる。
[2項]
前記1項に於いて、
『前記第1稀釈動作時の初期に開閉弁を開弁させる』ものでは、ガスバーナが燃焼し始める第1稀釈動作時の初期に開閉弁を開弁させてドレンの稀釈動作を行う。従って、例えば第1稀釈動作の中程や該第1稀釈動作の終期に開閉弁を開弁する場合には、第1稀釈動作の初期から開閉弁が開弁するまでの時間に潜熱回収型給湯機の運転停止操作がされると、開閉弁が開弁しない。従って、係る場合は、ドレンの稀釈動作が行われず熱交換器で発生した酸性度の高いドレンがそのまま排出される不都合がある。そして、このような極めて短時間の運転が繰り返されると、ドレンが全く稀釈されることなく下水道に排出される状態が継続する。これに対し、上記技術的手段によれば第1稀釈動作の初期に開閉弁を開弁させるから、ドレンが発生したときは必ず開閉弁が開弁する。従って、潜熱回収型給湯機の運転停止操作の時期に関わらず該ドレンが必ず稀釈される効果がある。
【0014】
【発明の効果】
上記請求項1〜請求項2の発明は次の特有の効果を有する。
炊事作業のように比較的短時間で出湯操作と出湯停止操作が繰り返されるような場合でも、ドレンを稀釈する為の使用水の無駄を抑えることができる。又、湯張りや温水暖房のように比較的長時間に亘って継続運転する場合でも、開閉弁が頻繁に開閉することがなく、該開閉弁の開閉に基づく騒音を抑制することができると共に、開閉弁の耐久性低下を防止することができる。
【0015】
請求項2のものでは、既述したように、ドレンが発生したときは必ず開閉弁が開弁するから、潜熱回収型給湯機の運転停止操作の時期に関わらず該ドレンが必ず稀釈される効果がある。
【0016】
【発明の実施の形態】
以下、本願発明の実施の形態を説明する。
図1は本発明の実施の形態に係る潜熱回収型給湯機の概略構成図である。
缶体(41)内は、その上端に位置する給気ファン(45)の接続部から下端近傍側壁の排気口(47)に繋がる燃焼用通気路(A) となっており、給気ファン(45)の接続部の近傍にはガスバーナ(21)が配設されている。又、ガスバーナ(21)へのガス回路(40)にはガス比例弁(43)とその上流側のガス元弁(44)が配設されている。
【0017】
缶体(41)内にはガスバーナ(21)の下方に位置する熱交換器(12)が設けられていると共に、該熱交換器(12)は、吸熱フィン(49)(49)群とこれらを貫通する通水路(11)とから構成されている。熱交換器(12)の上部域はガスバーナ(21)から生じる燃焼排気の顕熱を吸収する顕熱吸収部(121) となっている。一方、熱交換器(12)の下部域は燃焼排気の潜熱を吸収する潜熱吸収部(122) となっている。
【0018】
一方、通水路(11)に於ける熱交換器(12)の上流部と下流部はバイパス路(23)で連結されていると共に、該バイパス路(23)にはバイパス流量調節弁(25)が配設されており、該バイパス流量調節弁(25)を制御することにより、熱交換器(12)を通過した高温水にバイパス路(23)からの低温水を混合して調整した適温水が出湯蛇口(10)に供給できるようにしている。このようにすると、出湯蛇口(10)を閉じた出湯停止時に於いて熱交換器(12)部分に高温水が滞留する後沸き現象が生じても、再度出湯蛇口(10)を開放した時には上記高温水にバイパス路(23)からの低温水が混合されて適温水が出湯蛇口(10)側に供給できる。又、通水路(11)に於けるバイパス路(23)の分岐部の上流にはメイン流量調節弁(27)とその上流側の流量計(28)と入水温センサ(29)が配設されている。
【0019】
又、通水路(11)に於ける流量計(28)の上流から分岐した分岐路(15)にはON・OFF制御される電磁式の開閉弁(16)が配設されていると共に、分岐路(15)に於ける前記開閉弁(16)の下流側には水圧変化に関わらず流量を一定に保つ定流量弁(31)が配設されており、分岐路(15)の下流端はドレン稀釈タンク(20)内に開放している。
【0020】
上記定流量弁(31)等を具備する分岐路(15)の下流端は、ドレン稀釈タンク(20)に開放していると共に、該ドレン稀釈タンク(20)内には、ドレンを一時的に貯留する水封室(22)が形成されており、該水封室(22)内には缶体(41)の底壁(46)から引き出された一次側排液パイプ(61)の下端が挿入されている。又、ドレン稀釈タンク(20)の底壁からは二次側排液パイプ(62)が引き出されており、該二次側排液パイプ(62)とドレン稀釈タンク(20)と上記一次側排液パイプ(61)の組み合わせが排液路排出路(18)となっている。
【0021】
図2は、上記潜熱回収型給湯機の制御装置に組み込まれたマイクロコンピュータに格納されている制御プログラムの内容を示すフローチャートである。以下、図2のフローチャートに従って上記潜熱回収型給湯機の動作を説明する。
【0022】
ステップ(ST1) で出湯蛇口(10)が開放されたか否かを流量計(28)の出力に基づいて判断する。即ち、出湯蛇口(10)の開放によって通水路(11)内に所定量の水道水が流れて流量計(28)から所定値の流量信号が出力されるか否かをステップ(ST1) で監視する。そして、流量計(28)から上記流量信号が出力された場合(出湯蛇口(10)が開放されたと判断された場合)は、ステップ(ST2) で給気ファン(45)を作動させると共にガス元弁(44)を開弁し、更に図示しない点火装置を作動させてガスバーナ(21)を燃焼させる。又、後述のドレン稀釈動作中か否かを判断する為の稀釈動作フラグFを「0」にセットすると共に、第1回目の制御(ガスバーナ(21)の燃焼が開始してから最初に開閉弁(16)を開弁する制御)を行う必要があるか又は第2回目以降の稀釈制御を行う必要があるかを判断する為に使用する変数nの値を「1」にセットする。
【0023】
次に、ステップ(ST3) で、図示しない湯温設定器で設定されている設定温度の温水を沸かす為に燃焼させなければならないガスバーナ(21)の燃焼量P1 を演算する。即ち、上記湯温設定器で設定された設定温度と入水温センサ(29)が検知する入水温の差としての昇温量と、流量計(28)が計測する水の流量(1分当たりの出湯量)とを求め、これら昇温量と流量の積から加熱必要熱量たるガスバーナ(21)の1分当たりの燃焼量P1 を演算するのである。
【0024】
次に、ステップ(ST4) で上記演算した燃焼量P1 に基づいてガス比例弁(43)の開度調節を行い、これにより、燃焼量P1 でガスバーナ(21)が燃焼出来るようにする。又、バイパス流量調節弁(25)を所定の開度に設定する。
【0025】
次に、通水路(11)とバイパス路(23)の合流部(G) より下流に配設された出湯温センサ(S) の出力を監視し、該出湯温センサ(S) が検知する出湯温度と湯温設定器で設定された設定温度を比較して両温度の差が無くなるようにガスバーナ(21)の燃焼量P1 を補正する(ガス比例弁(43)の開度を微調整する)フィードバック制御を行う(ステップ(ST5) 参照)。
【0026】
ガスバーナ(21)が燃焼すると熱交換器(12)の潜熱吸収部(122) でドレンが発生すると共に、このドレンは缶体(41)の底壁(46)から一次側排液パイプ(61)を経て水封室(22)に流入し、該水封室(22)内のドレンがオーバーフローし始める。
【0027】
次にステップ(ST6) で稀釈動作フラグFの内容を判断し該稀釈動作フラグFの内容が0の場合(ドレン稀釈動作中でない場合)は、ステップ(ST7) が実行される。即ち、上記燃焼量P1 の燃焼に伴って発生する量のドレンの酸性度を基準PH値まで稀釈する為に必要な量の水道水をドレン稀釈タンク(20)に供給するのに要する開閉弁(16)の開弁時間が図3のグラフに基づいて求められる。
【0028】
図3の縦軸はガスバーナ(21)の燃焼量Pを示し、二本の横軸は1分当りのドレン発生量Qと、該ドレン発生量Qのドレンを上記基準PH値まで稀釈するのに必要な量の水道水を分岐路(15)から流出させるのに必要な1分当りの開閉弁(16)の開弁時間を示している。
【0029】
そして、ガスバーナ(21)の燃焼量Pと1分当りのドレン発生量Q等の関係を示す図3のグラフLを利用し、既述ステップ(ST3) で求めた1分当たりの燃焼量P1 に対応する1分当たりのドレン発生量Q1 及び、該ドレン発生量Q1 のドレンを基準PH値(PH5〜9)まで高める為にこれに混合する必要がある1分当りの水の量を流出させるのに要する開閉弁(16)の開弁時間t1 を求める。
【0030】
次に、ステップ(ST8) で制御装置の内蔵タイマーTを0にセットすると共に、ドレン稀釈動作が開始されたことを記憶する為に稀釈動作フラグFの内容を1に変更する。その後、ステップ(ST9) で変数nの内容が1であると判断された場合(ガスバーナ(21)の燃焼開始後に開閉弁(16)を初めて開弁すると判断した場合)は、ステップ(ST10)で変数nの内容を2に変更すると共に、制御周期T1 を第1稀釈動作時の制御周期たる1分(設定時間)に設定する。
【0031】
そして、ステップ(ST11)で開閉弁(16)を開弁させ、上記ステップ(ST8) で0にセットしたタイマーTの計測時間が既述の開弁時間t1 になるのを監視する(ステップ(ST12))。そして、開閉弁(16)を開弁状態に保持しているドレン稀釈動作中において、通水路(11)の上流端の水入口(110) に作用する給水圧が変動した場合には既述した定流量弁(31)の機能によって分岐路(15)を流れる水道水の流量が一定に保たれ、これにより、開弁時間t1 の時間に分岐路(15)からドレン稀釈タンク(20)に供給される水の量が上記給水圧に応じて変動するのが防止される。
【0032】
尚、開閉弁(16)を開弁させたドレン稀釈動作中は、ステップ(ST3) 〜(ST6) 及び(ST12)の制御を繰り返し、これにより、図示しない湯温設定器で設定温度が変更された場合でも、これに応じてガスバーナ(21)の燃焼量P1 を速やかに変更できるようにしている。
ステップ(ST12)でタイマーTの計測時間が開弁時間t1 以上になったことが確認されると、ステップ(ST13)で開閉弁(16)を閉弁させてドレン稀釈動作を終了させる。
【0033】
次に、ステップ(ST14)で既述タイマーTの計測時間が制御周期T1 (ガスバーナ(21)の燃焼後最初に開閉弁(16)をON・OFFさせた直後は既述ステップ(ST10)で第1稀釈動作時の制御周期たる1分に設定されている)以上になっているか否かをステップで判断し、タイマーTの計測時間が制御周期T1 より短い場合は、ステップ(ST3) 〜(ST6) 及びステップ(ST12)〜(ST14)を繰り返し、この間はドレン稀釈動作を行うことなくタイマーTの計測時間が制御周期T1 以上になるまで出湯制御を行う。そして、タイマーTの計測時間が制御周期T1 以上になると、ステップ(ST15)でFを0にセットし、再び制御動作をステップ(ST3) の工程に移行させ、その後、制御周期T1 を第2稀釈動作時の制御周期たる5分(設定時間)に変更して制御動作を継続する。
【0034】
制御周期T1 が5分に変更された後の制御動作時には、ステップ(ST9) を実行したときに変数nが2になっている(既に実行したステップ(ST10)で2にセットされている)から、かかる場合は、ステップ(ST16)で「t1 =t1 ×5」の演算をし、その演算結果を新たな開弁時間t1 として改めて記憶し直す。又、制御周期T1 の値を第2稀釈動作時の制御周期たる5分の値に設定する。その後、既述と同様にステップ(ST11)〜(ST15)が実行され、これにより、第2稀釈動作時の制御周期たる5分の間に開弁時間t1 だけ開閉弁(16)を開弁させ、これにより、上記5分間に発生する全ドレンの平均PH値を基準PH値まで稀釈するのに必要な量の水を該制御周期T1 の初期に供給する。従って、湯張時や温水暖房時等の長時間運転を行う場合には、第1稀釈動作時の制御周期たる1分間に開閉弁(16)を一回ON・OFFさせた後に第2稀釈動作時の制御周期たる5分間に一回だけ開閉弁(16)をON・OFFさせるドレン稀釈動作が行われるから、運転停止時まで開閉弁(16)のON・OFF制御周期を1分に画一化する場合に比べ、開閉弁(16)の開閉回数が少なくなり、騒音防止に有効であると共に開閉弁(16)の耐久性低下を抑制することができる。
【0035】
一方、潜熱回収型給湯機の運転開始初期には開閉弁(16)の制御周期が1分に設定されている。従って、上記第2稀釈動作時の制御周期たる5分周期で開閉弁(16)をON・OFF制御する場合に比べて、1周期当たりに使用される水道水の量が比較的少ない。従って、1分以下の比較的短時間で出湯蛇口(10)が閉じられることの多い炊事作業時には、短時間で出湯と出湯停止を繰り返すことがあっても、無駄になる水道水の量を抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る潜熱回収型給湯機の概略構造図
【図2】本発明の実施の形態に係る潜熱回収型給湯機の制御動作を説明するフローチャート
【図3】燃焼量Pとドレン発生量Q及び開閉弁(16)の開弁時間tの関係を示すグラフ
【図4】先行技術の説明図
【符号の説明】
(12)・・・熱交換器
(15)・・・分岐路
(16)・・・開閉弁
(21)・・・ガスバーナ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling a latent heat recovery type water heater in which the heat exchanger absorbs heat until the combustion exhaust gas from the gas burner falls below the dew point, and in particular, water from the water passage is added to the drain generated in the heat exchanger. The present invention relates to a method of controlling a latent heat recovery type hot water heater having a function of diluting it.
[0002]
[Prior art]
Japanese Patent Application No. 11-175223 already proposed by the applicant has been proposed as a latent heat recovery type hot water supply device having a function of diluting drain generated in a heat exchanger with water from a water channel (FIG. 4).
In the water passage (11) connected from the water inlet (19) to a hot water tap (not shown), the water temperature sensor (29), the flow meter (28), the heat exchanger (12), the hot water temperature sensor (S) and the amount of hot water are adjusted. Valves (17) are arranged in this order.
[0003]
The drain generated in the heat exchanger (12) is discharged from the tray (14) through the discharge passage (18) and branched from the upstream side of the water temperature sensor (29) in the water passage (11). The downstream end of (15) is connected to the discharge passage (18), and the branch passage (15) is provided with an on-off valve (16) that is ON / OFF controlled at a constant cycle. The gas circuit (40) to the gas burner (21) for heating the heat exchanger (12) is provided with a gas proportional valve (43) and an upstream gas source valve (44).
[0004]
In this case, when a hot water tap (not shown) is opened, the gas main valve (44) is opened and the gas burner (21) is combusted, and the combustion exhaust from the gas burner (21) contacts the heat exchanger (12). Then, it is cooled below the dew point, whereby drainage with high acidity is discharged from the tray (14) through the discharge passage (18). When the drain is discharged, the on-off valve (16) is ON / OFF controlled at a constant cycle, so that tap water is added to the drain discharged to the sewer to raise the average PH value to the reference PH value. I have to.
[0005]
The control for raising the drain PH value to the reference PH value will be further described.
In the above prior art, the amount of drain generated per unit time is calculated based on the combustion amount of the gas burner (21) determined from the output of the flow meter (28), the incoming water temperature sensor (29) and the hot water temperature setting device (not shown). The control device (1) executes the required calculation. Then, the valve opening time of the valve (16) for one cycle of the ON / OFF control of the on-off valve (16) is calculated according to the drain generation amount. Then, tap water flowing through the branch passage (15) is added to the drain in the discharge passage (18) when the on-off valve (16) is opened, and thereby the PH value of the drain discharged to the sewer is set to the one cycle. The average PH value averaged at is increased to the reference PH value.
[0006]
In this case, tap water of an amount corresponding to the amount of drain generated that varies depending on the amount of combustion of the gas burner (21) is added to the drain, so that the pH value of the drain is always kept at an appropriate value regardless of the amount of combustion. It is.
[0007]
[Problems to be solved by the invention]
However, in the above-mentioned conventional system, although the operating time of the latent heat recovery type hot water heater is not constant, the ON / OFF control cycle of the on-off valve (16) is always kept constant. Occurs.
(1) When the latent heat recovery type water heater is operated continuously for a long time When performing hot water filling to the bathtub or hot water heating, the water heater is continuously operated for a relatively long time. It is desirable to lengthen the ON / OFF control cycle of the on-off valve (16). When the ON / OFF control cycle is long, the number of opening / closing operations of the on-off valve (16) during operation decreases, and in such a case, noise during opening / closing of the on-off valve (16) can be suppressed, and the on-off valve (16 ), The durability of the on-off valve (16) is improved.
Therefore, contrary to the above, when the ON / OFF control cycle of the on-off valve (16) is short, if the on-off valve (16) is operated continuously for a long time, the number of on-off operations of the on-off valve (16) increases, resulting in an on-off sound. The problem of the noise based on this and the problem of durability reduction of an on-off valve (16) arise.
[0008]
(2) When the latent heat recovery type water heater is operated for a short time, on the other hand, when the water heater is operated for a relatively short time, such as cooking, the ON / OFF control cycle of the on-off valve (16) is shortened. It is desirable to do. When the ON / OFF control cycle is short, the amount of drain generated per cycle is reduced. Accordingly, the opening time of the on-off valve (16) is shortened accordingly, and a small amount of tap water is drained. This is because the amount of wasted water is reduced even if the hot water stop operation is performed immediately after the start of hot water.
[0009]
Therefore, contrary to the above, if the ON / OFF control cycle of the on-off valve (16) is set to be long during short-time operation, the amount of wasted water in the drain dilution water increases. There is a problem.
As described above, when the ON / OFF control cycle of the on-off valve (16) is constant as in the above prior art, each of the long-time operation and the short-time operation, respectively. The problem will remain.
[0010]
The present invention has been made in view of such points,
“Determine the amount of water required to dilute the average pH value of the drain generated per set time in the heat exchanger to the reference PH value, and control the ON / OFF of the on-off valve at the set time period In the method of controlling a latent heat recovery type water heater, performing a dilution operation of adding the amount of water from the on-off valve to the drain.
In the short-time operation such as cooking work, it is possible to suppress the wasteful use of the water that dilutes the drain, and in the long-time operation such as hot water filling, the open / close valve (16) is prevented from frequently opening and closing to suppress noise. An object of the present invention is to prevent the durability of the on-off valve (16) from being lowered.
[0011]
[Means for Solving the Problems]
[1]
The technical means of the invention of the control method for solving the above problems are as follows:
“The set time for the second dilution operation after that is longer than the set time for the first dilution operation in which the drain is diluted at the beginning of combustion of the gas burner for heating the heat exchanger”. .
[0012]
The technical means operates as follows.
At the time of the first dilution operation in which the gas burner starts to burn, the on-off valve is opened and closed at a set time period determined corresponding thereto. That is, the on-off valve (16) is opened for a shorter time than the second dilution operation described later, and a small amount of water is added to the drain to dilute the drain. Therefore, in this case, since the amount of water added to the drain is small, the amount of water that is wasted is not increased even if the operation is stopped during the first dilution operation. That is, even when the hot water operation and the hot water stop operation are repeated in a relatively short time such as cooking, waste of water used for diluting the drain can be suppressed.
[0013]
On the other hand, the set time defined as the control cycle during the second dilution operation is longer than that during the first dilution operation. Therefore, at the time of the second dilution operation after the first dilution operation is completed, the on-off valve is ON / OFF controlled at a cycle of a set time longer than that at the time of the first dilution operation. Therefore, the number of times of opening / closing the opening / closing valve is reduced as compared with the case of opening / closing the opening / closing valve in the control cycle during the first dilution operation. Therefore, even when the operation is continued for a relatively long time such as hot water filling or hot water heating, the on-off valve does not frequently open and close, and noise based on opening and closing of the on-off valve can be suppressed. Further, it is possible to prevent the durability of the on-off valve from being lowered.
[2]
In the above item 1,
In the method of “opening the opening / closing valve at the initial stage of the first dilution operation”, the opening / closing valve is opened at the initial stage of the first dilution operation at which the gas burner starts to burn, and the drain dilution operation is performed. Therefore, for example, when the on-off valve is opened in the middle of the first diluting operation or at the end of the first diluting operation, the latent heat recovery type hot water supply is from the initial stage of the first diluting operation to the time until the on-off valve is opened. When the machine is shut down, the on-off valve will not open. Therefore, in such a case, there is a disadvantage that the draining operation of the drain is not performed and the highly acidic drain generated in the heat exchanger is discharged as it is. And if such an extremely short time operation is repeated, the state in which the drain is discharged into the sewer without being diluted at all continues. On the other hand, according to the above technical means, the on-off valve is opened at the initial stage of the first dilution operation. Therefore, the on-off valve is always opened when drainage occurs. Therefore, there is an effect that the drain is always diluted regardless of the operation stop operation time of the latent heat recovery type water heater.
[0014]
【The invention's effect】
The inventions of claims 1 and 2 have the following specific effects.
Even when the hot water operation and the hot water stop operation are repeated in a relatively short time, such as cooking, waste of water used for diluting the drain can be suppressed. In addition, even when continuously operating for a relatively long time such as hot water filling or hot water heating, the on-off valve does not frequently open and close, and noise based on opening and closing of the on-off valve can be suppressed, It is possible to prevent the durability of the on-off valve from being lowered.
[0015]
As described above, since the on-off valve is always opened when the drain is generated, the drain is always diluted regardless of the operation stop operation time of the latent heat recovery type water heater. There is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is a schematic configuration diagram of a latent heat recovery type water heater according to an embodiment of the present invention.
The inside of the can (41) is a combustion air passage (A) connected from the connection portion of the air supply fan (45) located at the upper end to the exhaust port (47) in the side wall near the lower end. A gas burner (21) is disposed in the vicinity of the connecting portion 45). The gas circuit (40) to the gas burner (21) is provided with a gas proportional valve (43) and an upstream gas source valve (44).
[0017]
A heat exchanger (12) located below the gas burner (21) is provided in the can body (41), and the heat exchanger (12) includes the endothermic fins (49) and (49) and these groups. And a water passage (11) penetrating through. The upper region of the heat exchanger (12) is a sensible heat absorption part (121) that absorbs sensible heat of the combustion exhaust generated from the gas burner (21). On the other hand, the lower region of the heat exchanger (12) is a latent heat absorption part (122) that absorbs the latent heat of the combustion exhaust.
[0018]
On the other hand, the upstream portion and the downstream portion of the heat exchanger (12) in the water passage (11) are connected by a bypass passage (23), and the bypass passage control valve (25) is connected to the bypass passage (23). By controlling the bypass flow rate adjusting valve (25), the hot water having passed through the heat exchanger (12) is mixed with the cold water from the bypass passage (23) to adjust the warm water. Can be supplied to the tap (10). In this way, even when a boiling phenomenon occurs after high temperature water stays in the heat exchanger (12) at the time of hot water stop when the hot water tap (10) is closed, when the hot water tap (10) is opened again, the above-mentioned The hot water is mixed with the low temperature water from the bypass (23), and the appropriate temperature water can be supplied to the tap tap (10) side. In addition, a main flow rate control valve (27), a flow meter (28) on the upstream side thereof, and an incoming water temperature sensor (29) are arranged upstream of the branch portion of the bypass passage (23) in the water passage (11). ing.
[0019]
The branch passage (15) branched from the upstream of the flow meter (28) in the water passage (11) is provided with an electromagnetic on-off valve (16) that is controlled to be turned on and off. A constant flow valve (31) is provided downstream of the on-off valve (16) in the passage (15) to keep the flow rate constant regardless of changes in water pressure, and the downstream end of the branch passage (15) is Opened in the drain dilution tank (20).
[0020]
The downstream end of the branch passage (15) including the constant flow valve (31) and the like is open to the drain dilution tank (20), and the drain is temporarily stored in the drain dilution tank (20). A water sealing chamber (22) for storage is formed, and the lower end of the primary side drainage pipe (61) drawn from the bottom wall (46) of the can body (41) is formed in the water sealing chamber (22). Has been inserted. Further, a secondary side drainage pipe (62) is drawn out from the bottom wall of the drain dilution tank (20), and the secondary side drainage pipe (62), the drain dilution tank (20), and the primary side drainage pipe are drawn. The combination of the liquid pipe (61) is the drainage path discharge path (18).
[0021]
FIG. 2 is a flowchart showing the contents of a control program stored in a microcomputer incorporated in the controller of the latent heat recovery type hot water heater. Hereinafter, the operation of the latent heat recovery type water heater will be described with reference to the flowchart of FIG.
[0022]
In step (ST1), it is determined based on the output of the flow meter (28) whether or not the tap hot water tap (10) has been opened. That is, it is monitored in step (ST1) whether a predetermined amount of tap water flows into the water passage (11) by opening the tap tap (10) and a predetermined flow rate signal is output from the flow meter (28). To do. When the flow rate signal is output from the flow meter (28) (when it is determined that the tap tap (10) has been opened), the air supply fan (45) is activated and the gas source is turned on in step (ST2). The valve (44) is opened, and an ignition device (not shown) is operated to burn the gas burner (21). In addition, a dilution operation flag F for determining whether or not a drain dilution operation, which will be described later, is set to “0” and the first control (the first on-off valve after the combustion of the gas burner (21) starts) The value of the variable n used to determine whether it is necessary to perform (control to open (16)) or the second and subsequent dilution control is set to “1”.
[0023]
Next, in step (ST3), and calculates a combustion amount P 1 of the gas burner (21) that must be burned to boil hot water set temperature set by the hot water temperature setting device not shown. That is, the temperature rise as the difference between the set temperature set by the hot water setter and the incoming water temperature sensor (29) and the flow rate of water measured by the flow meter (28) (per minute) The amount of hot water discharged) is obtained, and the combustion amount P 1 per minute of the gas burner (21), which is the amount of heat required for heating, is calculated from the product of the temperature rise amount and the flow rate.
[0024]
Next, in step (ST4), the opening degree of the gas proportional valve (43) is adjusted based on the calculated combustion amount P 1 , thereby allowing the gas burner (21) to burn with the combustion amount P 1 . Further, the bypass flow rate control valve (25) is set to a predetermined opening degree.
[0025]
Next, the output of the hot water temperature sensor (S) disposed downstream from the junction (G) of the water passage (11) and the bypass channel (23) is monitored, and the hot water temperature detected by the hot water temperature sensor (S) is detected. Comparing the temperature and the set temperature set by the hot water temperature setting device and correcting the combustion amount P 1 of the gas burner (21) so that there is no difference between the two temperatures (fine adjustment of the opening of the gas proportional valve (43)) ) Perform feedback control (see step (ST5)).
[0026]
When the gas burner (21) burns, drainage is generated in the latent heat absorption part (122) of the heat exchanger (12), and this drainage from the bottom wall (46) of the can body (41) to the primary side drainage pipe (61) Then, it flows into the water sealed chamber (22), and the drain in the water sealed chamber (22) begins to overflow.
[0027]
Next, in step (ST6), the content of the dilution operation flag F is determined. If the content of the dilution operation flag F is 0 (when the drain dilution operation is not in progress), step (ST7) is executed. That is, the on-off valve required to supply the drain dilution tank (20) with an amount of tap water required to dilute the acidity of the amount of drain generated with the combustion amount P 1 to the reference PH value. The valve opening time of (16) is obtained based on the graph of FIG.
[0028]
The vertical axis in FIG. 3 indicates the combustion amount P of the gas burner (21), and the two horizontal axes indicate the drain generation amount Q per minute and the drain of the drain generation amount Q to dilute the drain to the reference PH value. It shows the opening time of the on-off valve (16) per minute necessary for the required amount of tap water to flow out from the branch (15).
[0029]
Then, using the graph L in FIG. 3 showing the relationship between the combustion amount P of the gas burner (21) and the drain generation amount Q per minute, etc., the combustion amount P 1 per minute determined in the above-described step (ST3). The amount of drain generated per minute Q 1 corresponding to 1 and the amount of water per minute that needs to be mixed to increase the drain of the drain generated amount Q 1 to a reference PH value (PH 5 to 9) A valve opening time t 1 of the on-off valve (16) required for the outflow is obtained.
[0030]
Next, in step (ST8), the built-in timer T of the control device is set to 0, and the content of the dilution operation flag F is changed to 1 in order to store that the drain dilution operation has started. After that, if it is determined in step (ST9) that the content of variable n is 1 (when it is determined that the on-off valve (16) is opened for the first time after the combustion of the gas burner (21) is started), in step (ST10) While changing the content of the variable n to 2, the control cycle T 1 is set to 1 minute (set time) as the control cycle during the first dilution operation.
[0031]
Then, in step (ST11), the on-off valve (16) is opened, and it is monitored that the measurement time of the timer T set to 0 in step (ST8) becomes the valve opening time t 1 described above (step (STEP (ST)). ST12)). When the water supply pressure acting on the water inlet (110) at the upstream end of the water passage (11) fluctuates during the drain dilution operation in which the on-off valve (16) is kept open, as described above. maintained at a flow rate of tap water flowing through the branch passage (15) by the function of the constant flow valve (31) is constant, thereby, from the branch path of the time valve opening time t 1 (15) to the drain dilution tank (20) It is possible to prevent the amount of supplied water from fluctuating according to the water supply pressure.
[0032]
During the drain dilution operation with the open / close valve (16) opened, the control in steps (ST3) to (ST6) and (ST12) is repeated, and the set temperature is changed by a hot water temperature setter (not shown). Even in this case, the combustion amount P 1 of the gas burner (21) can be quickly changed accordingly.
Step (ST12) measurement time of the timer T at that it became valve opening time t 1 or more is confirmed, by closed to terminate the drain dilution operation off valve (16) in step (ST13).
[0033]
Next, in step (ST14), the measurement time of the timer T described above is the control cycle T 1 (immediately after the on / off valve (16) is first turned ON / OFF after the combustion of the gas burner (21), whether or not it is first set in the control period serving 1 minute at dilution operation) or more is judged in step, when the measured time of the timer T is shorter than the control period T 1, the step (ST3) ~ (ST6) and step (ST12) repeatedly - the (ST14), during which performs hot water control until the time measured by the timer T is control cycle above T 1 without performing drain dilution operation. When the measured time of the timer T is control cycle above T 1, and set the F to 0 in step (ST15), is again shifts the control operation to step in step (ST3), then the control period T 1 second 2. Change to 5 minutes (set time), which is the control cycle for the dilution operation, and continue the control operation.
[0034]
During the control operation after the control cycle T 1 is changed to 5 minutes, the variable n is set to 2 when the step (ST9) is executed (it is set to 2 in the already executed step (ST10)). Therefore, in such a case, “t 1 = t 1 × 5” is calculated in step (ST16), and the calculation result is stored again as a new valve opening time t 1 . Further, the value of the control cycle T 1 is set to a value of 5 minutes which is the control cycle during the second dilution operation. Then be similar to the previously described step (ST11) ~ (ST15) is executed, thereby, between 5 minutes serving control period during the second dilution operation only opening time t 1 opens the on-off valve (16) Thus, an amount of water necessary to dilute the average PH value of all drains generated in the above 5 minutes to the reference PH value is supplied at the beginning of the control cycle T 1 . Therefore, when long-time operation such as hot water filling or hot water heating is performed, the second dilution operation is performed after the on-off valve (16) is turned ON / OFF once for one minute, which is the control cycle of the first dilution operation. Since the drain dilution operation is performed to turn the open / close valve (16) ON / OFF only once every 5 minutes, which is the control cycle of the hour, the ON / OFF control cycle of the open / close valve (16) is uniformly set to 1 minute until the operation stops. Compared to the case where the on / off valve is made, the number of times the on / off valve (16) is opened / closed is reduced, which is effective for noise prevention and suppresses a decrease in durability of the on / off valve (16).
[0035]
On the other hand, at the beginning of the operation of the latent heat recovery type water heater, the control cycle of the on-off valve (16) is set to 1 minute. Accordingly, the amount of tap water used per cycle is relatively small as compared with the case where the on-off valve (16) is ON / OFF controlled at a cycle of 5 minutes, which is the control cycle during the second dilution operation. Therefore, at the time of cooking work where the tap faucet (10) is often closed in a relatively short time of 1 minute or less, even if the hot water tap and hot water stop are repeated in a short time, the amount of wasted tap water is suppressed. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a latent heat recovery type water heater according to an embodiment of the present invention. FIG. 2 is a flowchart illustrating a control operation of the latent heat recovery type water heater according to an embodiment of the present invention. FIG. 4 is a graph showing the relationship between the amount P, the drain generation amount Q, and the valve opening time t of the on-off valve (16).
(12) ・ ・ ・ Heat exchanger
(15) ... Branch
(16) ・ ・ ・ Open / close valve
(21) ・ ・ ・ Gas burner

Claims (2)

熱交換器部分で設定時間当りに発生するドレンの平均PH値を基準PH値まで稀釈するのに必要な水の量を判断し、開閉弁を前記設定時間の周期でON・OFF制御することにより、該開閉弁から前記量の水を前記ドレンに添加する稀釈動作を実行する、潜熱回収型給湯機の制御方法に於いて、
前記熱交換器を加熱するガスバーナの燃焼開始初期に前記ドレンを稀釈する第1稀釈動作時の前記設定時間に比べて、その後の第2稀釈動作時の前記設定時間を長くした、潜熱回収型給湯機の制御方法。
By determining the amount of water required to dilute the average pH value of the drain generated per set time in the heat exchanger to the reference PH value, and controlling the on / off valve at the set time cycle In the method of controlling a latent heat recovery type water heater, performing a dilution operation of adding the amount of water from the on-off valve to the drain,
The latent heat recovery type hot water supply in which the set time in the subsequent second dilution operation is longer than the set time in the first dilution operation in which the drain is diluted at the beginning of combustion of the gas burner for heating the heat exchanger. How to control the machine.
請求項1に記載の潜熱回収型給湯機の制御方法に於いて、
前記第1稀釈動作時の初期に開閉弁を開弁させる、潜熱回収型給湯機の制御方法。
In the control method of the latent heat recovery type water heater according to claim 1,
A control method for a latent heat recovery type hot water heater, wherein an on-off valve is opened at an initial stage of the first dilution operation.
JP32286999A 1999-11-12 1999-11-12 Control method of latent heat recovery type water heater Expired - Fee Related JP3646031B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32286999A JP3646031B2 (en) 1999-11-12 1999-11-12 Control method of latent heat recovery type water heater
KR10-2000-0048105A KR100387178B1 (en) 1999-11-12 2000-08-19 Control method of latent heat collection type hot water supply system
CNB001283057A CN1159554C (en) 1999-11-12 2000-11-10 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32286999A JP3646031B2 (en) 1999-11-12 1999-11-12 Control method of latent heat recovery type water heater

Publications (2)

Publication Number Publication Date
JP2001141308A JP2001141308A (en) 2001-05-25
JP3646031B2 true JP3646031B2 (en) 2005-05-11

Family

ID=18148532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32286999A Expired - Fee Related JP3646031B2 (en) 1999-11-12 1999-11-12 Control method of latent heat recovery type water heater

Country Status (3)

Country Link
JP (1) JP3646031B2 (en)
KR (1) KR100387178B1 (en)
CN (1) CN1159554C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007721A (en) * 2000-07-18 2002-01-29 김철병 Condensed water diluting apparatus and method for condensing boiler
KR100361151B1 (en) * 2000-07-19 2002-11-18 주식회사 경동보일러 Water level controlling apparatus and method of siphon for condensing boiler
WO2005108876A1 (en) * 2004-05-11 2005-11-17 Noritz Corporation Heat exchanger and water heating device
JP6036430B2 (en) * 2013-03-18 2016-11-30 マツダ株式会社 Air conditioning control device for vehicles
JP6032073B2 (en) 2013-03-18 2016-11-24 マツダ株式会社 Air conditioning control device for vehicles
CN105865028A (en) * 2015-01-21 2016-08-17 芜湖美的厨卫电器制造有限公司 Condensation type gas water heater and control method thereof
JP6770447B2 (en) * 2017-01-17 2020-10-14 リンナイ株式会社 Heat source device
CN109579274A (en) * 2018-09-26 2019-04-05 中山市恒乐电器有限公司 A kind of water heater and its temprature control method with temperature control equipment

Also Published As

Publication number Publication date
CN1296157A (en) 2001-05-23
KR100387178B1 (en) 2003-06-12
KR20010050134A (en) 2001-06-15
CN1159554C (en) 2004-07-28
JP2001141308A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
AU2009202645A1 (en) Water heater
JP3646031B2 (en) Control method of latent heat recovery type water heater
JPH05149567A (en) Tap-controlled hot water supplying apparatus
JP5379083B2 (en) Hot water system
JP5143793B2 (en) Water heater
JP3862809B2 (en) Water heater with bypass valve
JP2001141302A (en) Latent heat recovery type hot water supply apparatus
JP4216981B2 (en) Automatic bath equipment
JP3161165B2 (en) Water heater
JP3698335B2 (en) Hot water heater with high temperature difference hot water function
JPH0530167Y2 (en)
JP3667526B2 (en) Hot water floor heater
JP6998783B2 (en) Immediate hot water discharge device
JP3129035B2 (en) Water heater
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JPH04350457A (en) Controlling method for bypass mixing
JP3922788B2 (en) Hot water supply method and hot water supply apparatus
JP2003121000A (en) Control method for hot-water supply device and hot- water supply device
JP4029249B2 (en) Circulating water heating control method and circulating water heating control device
JP2867758B2 (en) Operation control method of bath kettle with water heater
JP3719272B2 (en) Bath kettle with water heater
JPH06174303A (en) Hot water supplier
JP2003194357A (en) Hot water/cold water mixing unit for hot water supplier
JP3126434B2 (en) Water heater and its combustion control method
JPH10300197A (en) One-can two-waterway bath hot-water supplier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Ref document number: 3646031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees