JP3645013B2 - 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置 - Google Patents

光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置 Download PDF

Info

Publication number
JP3645013B2
JP3645013B2 JP25363795A JP25363795A JP3645013B2 JP 3645013 B2 JP3645013 B2 JP 3645013B2 JP 25363795 A JP25363795 A JP 25363795A JP 25363795 A JP25363795 A JP 25363795A JP 3645013 B2 JP3645013 B2 JP 3645013B2
Authority
JP
Japan
Prior art keywords
laser
optical fiber
light
optical
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25363795A
Other languages
English (en)
Other versions
JPH08167754A (ja
Inventor
一樹 久場
彰 石森
公治 安井
健二 熊本
邦明 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25363795A priority Critical patent/JP3645013B2/ja
Priority to GB9520850A priority patent/GB2294126B/en
Priority to GB9726180A priority patent/GB2318882B/en
Priority to DE19539558A priority patent/DE19539558C2/de
Priority to DE19549531A priority patent/DE19549531B4/de
Publication of JPH08167754A publication Critical patent/JPH08167754A/ja
Priority to US08/714,304 priority patent/US5815626A/en
Application granted granted Critical
Publication of JP3645013B2 publication Critical patent/JP3645013B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00958Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20553Beam shaping or redirecting; Optical components therefor with special lens or reflector arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、加工用や医療用等の目的に使用される集束性の良好なレーザ光を伝送するための光伝送装置、該光伝送装置を備えた固体レーザ装置、及び該光伝送装置や該固体レーザ装置を組み込んだレーザ加工装置に関するものである。
【0002】
【従来の技術】
図35は、例えば、特公平2−55157号公報に示された従来の光伝送装置を示す構成図であり、図において、8は集光レンズ、90はレーザ光の導光路としての光ファイバ、10はレーザ発振器、70はレーザ発振器10から外部に取り出されたレーザビーム、101はレンズホルダ、102は光ファイバホルダである。
【0003】
次に動作について説明する。
図において、レーザ発振器10から取り出されたレーザビーム70は集光レンズ8によって光ファイバ90の入射端面へ集光照射され、光ファイバ内へ導光される。レンズホルダ101、光ファイバホルダ102の片方、もしくは両方は移動ステージで構成されており、レーザビーム70は、光ファイバ90の入射端面の中心に集光されるように位置設定される。
【0004】
一般に損失なく、例えば散乱ロス等の損失なく、光伝送を行うには、光ファイバ90への入射角θinは、θin<sin-1 (NA)でなければならない。ここで、NAは光ファイバ固有の数値であり、すなわちファイバコア中心の屈折率をn0 、クラッドの屈折率をn1 としたときに(n0 2−n1 21/2 で表される。一方、光ファイバ90を介してレーザビームを伝送すると、一般にレーザ光の集束性は劣化する。レーザビームの集束性はレーザのビームウェイスト直径をd、ビーム開き角を2θと置いたときに、dθを指標として表すことができる。光ファイバを伝送した光はファイバのコア部全体に広がり、出射ビームのビーム径はほぼファイバのコア径となる。よって、集束性の良いレーザビームを光ファイバから取り出すためには、光ファイバからのレーザビームの出射角を小さくすればよいことがわかる。
【0005】
ここで、レーザビームの集束性を表す指標について整理しておく。ビーム径には様々な定義があるが、ここではエネルギーが86.5%(すなわち1−e-2)に集中している径をレーザビーム径として表す。一般にレーザビームで最も集束性の良いビームはTEM00、すなわちガウシアンビームと呼ばれるものである。ガウシアンビームのビームウェイスト半径をω0 、ビーム開き角をθ0 とすると、以下の関係が成り立つ。
【0006】
【数1】
Figure 0003645013
【0007】
ただし、λはレーザビームの波長、nは屈折率であり、θ0 はπより充分小さいとする。空気中の場合、n=1と置いて、θ0 =λ/πω0 =2λ/πφ0 となる。なお、φ0 =2ω0 はレーザビームウェイスト直径である。
【0008】
また、レーザビームの集束性を表す指標としてM2 値が知られている。図36はレーザビームの集束性の指標M2 を示する説明図である。図36に示すように、波長λ、ビームウェイスト直径φ0 、ビームの開き角(全角)2θのビーム(実線)のM2 値は、同じ波長のガウスビーム(破線)を同じ直径に絞った場合の開き角(全角)2θ0 に対する比で表される。すなわち、θ=M2 θ0 となる。したがって、ガウスビームと該ビームが焦点距離fのレンズに同じ径でコリメートされて入射したとき、該ビームの集光点でのビーム径、すなわちビームウェイスト径はガウスビームのM2 倍となる。これより明らかなように、M2 値が小さいほど高集束のビームである。これとは逆に、ガウスビームとビーム開き角が等しい場合はビームウェイスト径がM2 倍となる。また、ガウスビームのM倍のビームウェイスト径を持つ場合はレーザビーム開き角もガウスビームのM倍となる。θ=M2 θ0 をθ0 の表式に代入してM2 について解くと、M2 =πφ0 θ/2λとなる。ゆえに、同じ開き角を持つならばビームウェイスト直径の小さい方がM2 値が小さく、集束性の良いビーム、あるいは別の言い方をするならば、高輝度のビームであるといえる。
【0009】
図37は図35と同様に特公平2−55157号公報に示された光ファイバへの入射角θinと出射角θout との関係を示す説明図であり、ファイバコアの屈折率が一定の値を示すステップインデックスファイバについて成り立つものである。この図から明らかなように、入射角が小さいほど出射角が小さくなり、その結果、集束性の良い出射ビームが得られるが、6度から8度程度に出射角の下限があることがわかる。これより、従来の光伝送装置では長焦点距離のレンズで入射角2θinが8度以下となるようにしている。
【0010】
【発明が解決しようとする課題】
従来の光伝送装置は以上のように構成されているので、出射角の限界によりいくら集束性のよいレーザビームを入射しても光ファイバから出射されるビームの集束性には限界があるという課題があった。集束性を上げるためにファイバのコア径の小さいものを選ぶことも有効だが、コア径の小さい光ファイバでは大出力のレーザ光を伝送することができない。YAGレーザ光を例にとると、一般に500Wのレーザ光を伝送するためには0.4mm以上、それ以上のパワーのレーザ光を伝送するためには0.6mm以上を有する光ファイバのコア径が必要とされている。図35によると出射角2θout の最小値はせいぜい6度程度であり、前述の式より0.4mmのコア径のファイバから出射されるビームのM2 値は最小でも30程度、0.6mmのコア径では46程度である。このため、いくら集束性の良いビームを光ファイバに入射しても、ファイバ伝送された出射光の集束性には限界があるという課題があった。
【0011】
さらに、従来の光伝送装置ではステップインデックスファイバを用いた場合に、集束性の高い出射レーザビームを得る設計基準を与えているが、グレーデッドインデックス光ファイバを用いて集束性の高いレーザ出射ビームを得るための設計基準については明らかになっていなかった。即ち、レーザ学会編「レーザーハンドブック」p66 〜p67 、オーム社,1982での記載に見られるように、グレーデッドインデックス光ファイバは原理的には集光レンズが隙間なく連なった配列状態と等価であり、理想的な集光レンズ配列を考えれば入射レーザ光の集束性は保存されるはずである。しかしながら、現在までにそれに関する報告はなく、光ファイバ内を伝送されたレーザビームは元々有していた、つまり入射前の集束性を失うというのが一般的な認識であった。また、上記文献、レーザ学会編「レーザーハンドブック」p66 〜p67 (オーム社,1982)の記載においては、光通信に用いるような小出力の基本モードのレーザビーム、言い換えるとTEM00モードのレーザビームに対する解析がされているが、加工用の大出力レーザ、特に固体レーザに関してはマルチモードでの発振が一般的であり、マルチモードビームに対して集束性を保ったまま光ファイバ伝送を行う技術については記載がなく、これまでに全く明らかになっていないという課題があった。
【0012】
この発明は、上記のような課題を解決するためになされたもので、グレーデッドインデックス光ファイバを用いて入射ビームの集束性のレベルを変化させることなく、きわめて良好に保存して伝送することのできる光伝送装置を得ることを目的とする。
【0013】
またこの発明は、入射レーザビームの集束性のレベルをきわめて良好に保存し、かつレーザ光の光ファイバ端面への光軸を自動的に調整できることができる光伝送装置を得ることを目的とする。
【0014】
さらにこの発明は、出射レーザビームの集束性のレベルを容易に制御することができる光伝送装置を得ることを目的とする。
【0015】
さらにこの発明は、発振されたレーザビームの集束性のレベルをきわめて良好に保存したまま光ファイバ伝送を行い出射することのできる固体レーザ装置を得ることを目的とする。
【0016】
さらにこの発明は、発振されたレーザビームの集束性のレベルを容易に制御することができる固体レーザ装置を得ることを目的とする。
【0017】
さらにこの発明は、集束性のレベルの良いレーザビームを、集束性のレベルを良好に保存したまま、あるいは出射レーザビームの集束性のレベルを制御しつつ光ファイバ伝送して加工のできるレーザ加工装置を得ることを目的とする。
【0018】
【課題を解決するための手段】
請求項1記載の発明に係る光伝送装置は、グレーデッドインデックス光ファイバから構成され、前記光ファイバのコア径がφc 、コア中心での屈折率がn0 、コア中心とコア周囲部の屈折率差が△nの光ファイバと、レーザ光のビームウェイストでの直径がφ0 、前記レーザ光のビーム開き角が2θである時、前記レーザ光が前記光ファイバの入射端面上または前記光ファイバの入射端面近傍に最小集光点を持ち、前記最小集光点での直径φinが、
0.5φs ≦φin1.5φs
ただし、
φs =(φc φ0 θ(2n0 Δn)-1/21/2
となるような光ファイバ入射光学系とを備えており、集束性の劣化なく維持しながらマルチモードレーザビームを用いたレーザ光を光ファイバを介して外部へ出射するものである。
【0019】
請求項記載の光伝送装置は、レーザ光の波長をλとした時に、前記レーザ光の集束性πθφ0 /λの値が100以下となるように設定したものである。
【0020】
請求項記載の発明に係る光伝送装置は、光ファイバの入射端面近傍に、開口部の直径が光ファイバのコア径φc よりも小さく、かつφs よりも大きな値を有するアパーチャを設け、このアパーチャにより光ファイバの入射端面でのレーザ光の光軸ずれの影響を最小限にとどめ、光ファイバ内でのレーザ光の集束性の劣化を起こすことなくレーザ光を伝送するものである。
【0021】
請求項記載の発明に係る光伝送装置は、光ファイバの出射端面近傍に、開口部の直径が光ファイバのコア径φc よりも小さく、かつφs よりも大きな値を有するアパーチャを備え、光ファイバの出射端側における反射ビームがクラッド等に照射されるのをこのアパーチャで防止し反射ビームの影響を最小限にとどめるものである。またレーザ光のモニタを容易にしつつ光ファイバ内でのレーザ光の集束性の劣化を起こすことなくレーザ光を伝送するものである。
【0022】
請求項記載の発明に係る光伝送装置は、光ファイバ入射光学系は集光レンズを有しており、この集光レンズは二枚または二組の集光レンズにより構成されており、この集光レンズの位置を調整することによって、レーザビームのビーム特性に合わせて光ファイバの入射端面でのレーザ光の直径を容易に調整するものである。
【0023】
請求項記載の発明に係る光伝送装置は、光ファイバに近接している側の集光レンズをグレーデッドインデックスレンズで構成している。このグレーデッドインデックスレンズを光ファイバに近接または密着して設置し、グレーデッドインデックスレンズの少しの位置調整により広い範囲のビーム特性に合わせて光ファイバの入射端面でのレーザ光のビーム直径を容易に調整するものである。
【0024】
請求項記載の発明に係る光伝送装置は、グレーデッドインデックスレンズの入射端近傍にアパーチャを備え、このアパーチャによりグレーデッドインデックスレンズならびに光ファイバの入射端面周辺への思わぬレーザ光照射を防止し、容易に光ファイバ内でのレーザ光の集束性の劣化を起こすことなくレーザ光を伝送するものである。
【0025】
請求項記載の発明に係る光伝送装置は、光ファイバの入射端面でのレーザ光を計測する入射ビームモニタ装置、及び光ファイバ入射光学系の位置を移動させる移動手段を備え、入射ビームモニタ装置からの出力をもとに光ファイバ入射光学系の位置を調整する。入射ビームモニタ装置により、光ファイバ入射端面でのビーム位置、ビーム直径をモニタし、これらが最適となるように集光レンズの位置を集光レンズ移動手段により制御するものである。
【0026】
請求項記載の発明に係る光伝送装置は、光ファイバから出射される出射ビームを計測する出射ビームモニタ装置、及び光ファイバ入射光学系の位置を移動させる移動手段を備え、出射ビームモニタ装置からの出力をもとに光ファイバ入射光学系の位置を調整する。出射ビームモニタ装置により光ファイバから出射されたビームの集光特性が最適となるように集光レンズの位置を集光レンズの移動手段により制御するものである。
【0027】
請求項10記載の発明に係る光伝送装置では、出射ビームモニタ装置はパワーセンサにより構成され、光ファイバの入射端面近傍にアパーチャを設置し、パワーセンサで検知されるレーザビームの出力が最大になるようにファイバ入射光学系を移動する。パワーセンサにより出射ビームをモニタし、例えば入射側に設置したアパーチャと組み合わせて出射ビームパワーが最大となるように集光レンズの位置を制御させるものである。
【0028】
請求項11記載の発明に係る光伝送装置では、出射ビームモニタ装置は、光ファイバの出射側の光軸からずれた位置に設置したフォトダイオードで構成され、フォトダイオードの出力が最小になるようにファイバ入射光学系を移動させるものである。
【0029】
請求項12記載の発明に係る光伝送装置では、出射ビームモニタ装置は、光ファイバの出射側に設置したアパーチャと前記アパーチャを通過したレーザビームを検知するパワーセンサにより構成され、アパーチャを通過するレーザビームのパワーが最大になるようにファイバ入射光学系を移動させるものである。
【0030】
請求項13記載の発明に係る光伝送装置は、レーザ発振器と、集光レンズと、集光レンズで収束されたレーザ光を光ファイバの入射端面に集光し、光ファイバで伝送する光ファイバ入射光学系を有する光伝送装置において、光ファイバをグレーデッドインデックス光ファイバで構成し、さらに光ファイバ入射光学系と光ファイバの入射端面の片方または両方の位置を移動させる移動手段を備え、光ファイバ入射光学系と前記光ファイバの入射端面の片方または両方の位置を移動させることによって光ファイバから出射するレーザビームの集束性を制御するものである。そして、集光レンズ、光ファイバ入射端面の片方もしくは両方の位置を最適な集光位置から故意にずらすことにより光ファイバの出射ビームの集光特性を任意に変化するものである。
【0031】
請求項14記載の発明に係る固体レーザ装置は、この発明に係る光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、レーザ共振器内に少なくともミラーと集光レンズとの組み合わせで構成される像転写光学系と、ミラーと集光レンズとをレーザ共振器の光軸方向に移動させる移動手段とを備え、ミラーと集光レンズの片方または両方を移動することにより光ファイバの入射端面に入射されるレーザビームのビーム直径を調節するものである。そして、レーザ共振器内部の像転写光学系により高集束性を持つレーザビームを発振し、そのビーム品質を保ったまま光ファイバを介して外部へレーザ光を出射するものである。
【0032】
請求項15記載の発明に係る固体レーザ装置は、光ファイバから出射される出射レーザビームのパワーの大きさを計測する出射ビームモニタ装置を備え、出射ビームモニタ装置からの出力をもとにミラーと集光レンズの片方または両方を移動し、出射ビームの集束性が最も良くなるよう共振器内部の像転写光学系の位置を制御するものである。
【0033】
請求項16記載の発明に係る固体レーザ装置は、この発明に係る光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、レーザ媒質から発生された光をレーザ光として取り出すレーザ共振器と、レーザ共振器内に置かれたアパーチャ及びアパーチャの開口部の直径を増減する調節手段とから構成され、固体素子を励起するためのレーザ励起入力を一定に保ったままで、アパーチャの開口直径を増減することにより、レーザ光のパワーを調節するものである。換言すると、レーザ共振器内のアパーチャの開口直径を増減させることによりレーザ発振器からのレーザ光の出力の制御を行い、あらゆるレーザ出力に対し、常にレーザビームのビーム質を保ったまま光ファイバ伝送し、出力できるものである。
【0034】
請求項17記載の発明に係る固体レーザ装置は、この発明に係る光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、レーザ共振器内に置かれたアパーチャ及びアパーチャをレーザ共振器の光軸方向に移動させる移動手段とから構成され、レーザ共振器内でレーザ励起入力一定のままで、アパーチャの位置を移動することによりレーザ光のパワーを調節するものである。換言すると、レーザ共振器内のアパーチャを移動させることによりレーザ発振器の出力制御を行い、あらゆるレーザ出力に対し、常にレーザ光のビーム質を保ったまま光ファイバ内を伝送させ外部へ出力するものである。
【0035】
請求項18記載の発明に係る固体レーザ装置は、固体素子と、レーザ共振器と、レーザ光としてマルチモードレーザビームを用い、レーザ光を伝送する光ファイバとからなる光伝送装置を備えた固体レーザ装置において、光ファイバをコア径φc 、コア中心での屈折率がn0 で、コア中心とコア周囲部の屈折率差が△nのグレーデッドインデックス光ファイバで構成し、レーザ共振器を曲率の等しい全反射ミラーと出力ミラーで構成し、固体素子は、全反射ミラーと出力ミラー間の中心近傍に配置されたいわゆる対称型共振器内に置かれ、ある出力レベルにおけるレーザ光のビームウェイストの直径がφc およびレーザ光のビーム開き角が2θである時、レーザ光が光ファイバの入射端面上あるいはそのごく近傍に最小集光点を持ち、最小集光点における出力レベルのレーザ光の直径φin
0.5φs ≦φin1.5φs
ただし、
φs =(φc φ0 θ(2n0 △n)-1/21/2
となるようなファイバ入射光学系を備えているものである。φ0 θの大きな出力レベルにおいて、ファイバ入射端面のごく近傍に最小集光点を持ちその直径が
(φc φ0 θ(2n0 △n)-1/21/2 ±50%
となるようにレーザ光を集光し、レーザ出力が変化しても収束性の変化が少ないレーザビームを光ファイバから外部へ出射するものである。
【0036】
請求項19記載の発明に係る固体レーザ装置は、固体素子と、レーザ共振器と、光伝送装置とを備えた固体レーザ装置において、光伝送装置内の光ファイバをコア径φc 、コア中心での屈折率がn0 でコア中心とコア周囲部の屈折率が△nのグレーデッドインデックス光ファイバで、また固体素子を薄板状のスラブ形状で構成する。レーザ共振器から取り出されたレーザ光は、x軸y軸2つの方向で集光特性の異なる異方性を持っており、x軸方向y軸方向のそれぞれにおいてレーザ光のビームウェイストの直径がφ0x、φ0y、レーザ光のビーム開き角が2θx 、2θy である時、レーザ光が光ファイバの入射端面上あるいはそのごく近傍にx軸方向、y軸方向それぞれにおいて最小集光点を持ち、最小集光点での直径φinx 、φiny がそれぞれ
0.5φsx≦φinx 1.5φsx、0.5φsy≦φiny 1.5φsy
ただし、
φsx=(φc φ0xθx (2n0 △n)-1/21/2
φsy=(φc φ0yθy (2n0 △n)-1/21/2
となるようなファイバ入射光学系を備え、x方向とy方向で集光性能が異なる発振器に対しファイバ伝播後も全体として集光特性が保存されたレーザビームを出射するものである。
【0037】
請求項20記載の発明に係る固体レーザ装置は、固体素子と、レーザ共振器と、光伝送装置を備えた固体レーザ装置において、光伝送装置内の光ファイバをコア径φc 、コア中心での屈祈率がn0 でコア中心とコア周囲部の屈折率差が△nのグレーデッドインデックス光ファイバで、また固体素子を薄板状のいわゆるスラブ形状で構成する。レーザ共振器から取り出されたレーザ光はx軸y軸の2つの方向で集光特性の異なる異方性を持っておりx軸方向y軸方向のそれぞれにおいて、レーザ光のビームウェイストの直径がφ0x、φ0y、レーザ光のビーム開き角が2θx 、2θy である時、レーザ光が光ファイバ入射端面上あるいはそのごく近傍に最小集光点を持ち、φ0xθx とφ0yθy の大きな方の軸の最小集光点での直径φin
0.5φs ≦φin1.5φs
ただし、
φs =(φc φ0 θ(2n0 △n)-1/21/2
また、 φ0 θ= MAX(φ0xθx ,φ0yθy
となるようなファイバ入射光学系を備えたものであり、非常に簡単なレンズ構成で、光ファイバ伝播後も全体として集光性能が大きく損なわれないレーザビームを出射するものである。
【0038】
請求項21記載の発明に係るレーザ加工装置は、この発明に係る光伝送装置、または固体レーザ装置と、光伝送装置または固体レーザ装置から出射されたレーザ光を集光する集光光学系とから構成され、集光光学系で集光されたレーザ光を集束性を保ったまま被加工物に照射し高精度のレーザ加工を行なうものである。
【0039】
請求項22記載の発明に係るレーザ加工装置は、この発明に係る光伝送装置または固体レーザ装置から構成され、光伝送装置または固体レーザ装置から出射されたレーザ光を集束性を保ったまま被加工物に直接照射し、レーザ焼き入れなどの比較的広い面積の加工を行なうものである。
【0040】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る光伝送装置を示す構成図である。図において、8、10、70、101、102で示した構成要素は図35に示した従来の光伝送装置の構成要素の構成および機能と同一なので、同一の参照番号を用い、その説明を省略する。9はコアの屈折率分布がほぼ二乗分布となっている光ファイバ(グレーデッドインデックス光ファイバ)である。101は集光レンズホルダであり光軸方向へ手動で位置調整できる移動ステージと径方向へ手動で位置調整できる十字動ステージの組み合わせから構成されている。光ファイバ入射に際して、図35に示した従来例の光伝送装置では、集光レンズ(光ファイバ入射光学系)8に長焦点レンズを用いて入射角度θinを8度以下に規定していたのに対し、この実施の形態1の光伝送装置では、光ファイバ9の入射端面上あるいはそのごく近傍にレーザビーム70の最小集光点を持ちその直径φin
0.5φs ≦φin1.5φs
ただし、
φs =(φc φ0 θ(2n0 Δn)-1/21/2
となるように集光レンズ8の焦点距離及び位置を設定している。ここで、φc 、n0 、Δnはそれぞれ光ファイバ9のコア直径、コア中心での屈折率、コアとクラッドの屈折率差であり、φ0 、θはレーザ発振器10から発生したレーザビーム70のビームウェイスト直径およびビーム開き角(半角)を示す。なお、図に示す実施の形態1の光伝送装置では、レーザ発振器10のレーザ出口近傍にレーザビーム70のビームウェイストがあるとしている。
【0041】
次に動作について説明する。
レーザ発振器10から出射されたレーザビーム70は、集光レンズホルダ101の位置調整によってレーザビームが光ファイバ入射端面の中心に集光するように、集光レンズ8により集光される。
【0042】
図2は、光ファイバ内でのレーザビームの伝播状況を示す説明図である。図において、光ファイバ9内でのレーザビームの伝播状況は、図2に示すように概念的に表すことができる。即ち、光ファイバ9の入射端面で最小集光点を持つようにレーザビーム70が集光された場合、図2の最下段に示すように最小集光点における径φinがある値φs よりも大きいときには(φin>>φs )、光ファイバ9内で一旦入射径よりも小さな直径に集光され、以下発散、集光を繰り返しながら光ファイバ9内を伝送される。
【0043】
一方、図2の最上段に示すように最小集光点における径φinがφs よりも小さいときには(φin<<φs )、レーザビーム70は光ファイバ9内でまず発散し、以下集光、発散を繰り返しながら伝送される。
これらに対し、図2の中段に示すように最小集光点における径φinがφs にほぼ一致する場合は(φin=φs )、光ファイバ9内でレーザビーム径がほとんど変化することなく伝送される。
【0044】
グレーデッドインデックス光ファイバを純粋の集光レンズの集合配列として考察すると、図2に示す3つのどの伝送形態でも集束性が理論的には保存されるが、実際上、グレーデッドインデックス光ファイバをレンズとして考えた場合の収差成分やビームの分散などから、図2の最上段や最下段の伝送形態では集束性が失われることが予想される。
【0045】
また、大出力ファイバ伝送では光ファイバの破壊も考慮に入れる必要があり、光ファイバ内に集光点を持つ伝送形態では耐伝送パワー特性に問題が生ずることが予想される。
以上の考察より、高集束性レーザビームの伝送には図2の中段に示すレーザビームの伝送形態が有利であると結論づけられる。
【0046】
なお、「レーザーハンドブック」(p66 〜p67 、日本レーザ学会編、オーム社)に記載されてるように、光通信に用いるような小出力の基本モードのレーザビーム、換言すると、TEM00モードのレーザビームに対するφs については解析的に導出できることが知られている。
【0047】
しかし、加工に用いる大出力レーザ、特に固体レーザではマルチモードでの発振が一般的であり、マルチモードレーザビームに対して集束性を保ったまま光ファイバ伝送を行う技術はこれまでに明らかになっていなかった。
【0048】
我々はこの高集束ビーム光ファイバ伝送の研究を進め、前述のM2 値を用いて一般のビームに対するφs を導出する方法を開発し、さらにレーザビームのビームウェイスト径とビーム開き角からのφs の導出式を見いだした。
【0049】
まず、M2 値で集束性が表現されているレーザビームを、TEM00モードのレーザビームと同等に計算するために以下の近似を行う。ただし、ここでは一応エネルギーが86.5%集中している径をビーム直径として計算を行う。ビーム開き角θを波長λ1 とM2 値の関数としてθ(λ1 ,M2 )と表すと、前述のように
θ(λ1 ,M2 )=M2 ・θ(λ1 ,1)
となる。
【0050】
一方、異なる波長の2つのガウスビームを同じ直径に絞ると、開き角は波長に比例するので、
θ(λ2 ,1)=(λ2 /λ1 )・θ(λ1 ,1)
となる。ここでλ2 =M2 ・λ1 とおくと、
θ(λ1 ,M2 )=θ(λ2 ,1)
となる。これより、M2 値で集束性が定義されているビームの挙動は波長をM2 ・λ1 に置き換えたガウスビームによって近似できること明らになった。
【0051】
上記した近似を用いて、M2 値で集束性が表現されるレーザビームに対するφs の導出を行う。なお、以下の導出式においてM2 =1とすると、従来から知られているガウスビームに対するφs となる。グレーデッドインデックス光ファイバは二乗屈折率分布を持っており、例えば単行本(「Optical Electronics ,4th Edition 」、A Yariv 著、Saunders College Publishing,harcourt Brace Jovanovich College Publishers ,p42 ,1991)に示されているように、屈折率を以下のように表現できる。
【0052】
【数2】
Figure 0003645013
【0053】
ここで、n(r)はコア中心からrの位置での屈折率、n0 はコア中心での屈折率、k=2πn/λ0 は波数、k2 は屈折率分布に応じた定数である。長さlのグレーデッドインデックス光ファイバの光線行列は
【0054】
【数3】
Figure 0003645013
【0055】
で表される。ガウスビームの伝播は、qという指標と光線行列によって記述できることが知られており、ガウスビームの曲率をR、ビーム半径をω、波長をλ、光ファイバの屈折率をnとすると、
【0056】
【数4】
Figure 0003645013
【0057】
と表される。この式を、前節の近似を用いてマルチモードビームに拡張して考えると、
【0058】
【数5】
Figure 0003645013
【0059】
となる。ここで、グレーデッドインデックス光ファイバ内でビーム径が変化しないωの条件を求めるには、任意の長さのグレーデッドインデックス光ファイバの入射端に平面波を入射し、出射端で同じビーム径の平面波が得られる条件を求めればよい。平面波の場合にはR=∞、すなわち1/R=0なので、上式の第二項のみを考えればよいことになる。ある光学系に入射するビームと出射するビームの指標をそれぞれq1 、q2 とおくと、
【0060】
【数6】
Figure 0003645013
【0061】
であるので、q1 =q2 =−i(πnωs 2/M2 λ)と置いて、ωs について解き、以下の解を得る。
【0062】
【数7】
Figure 0003645013
【0063】
グレーデッドインデックス光ファイバのコア径をφc 、コア中心とコア端部間の屈折率差をΔnとすると、
【0064】
【数8】
Figure 0003645013
【0065】
となる。この式をωs の表式に代入して、nがn0 にほぼ等しいことを考慮すると、
【0066】
【数9】
Figure 0003645013
【0067】
となるので、結局マルチモードビームに対するφs =2ωs は次式で表現される。
【0068】
【数10】
Figure 0003645013
【0069】
以上より、M2 で集束性が表現されているビームに対する高集束光ファイバ伝送のためのファイバ入射径の基準となるφs が求められた。
【0070】
次に、通常レーザビームの集束性の指標として用いられているビームウェイスト径、ビーム開き角θによるφs の表式を導出する。前述のように、ビームウェイスト径φ0 、ビーム開き角θとM2 値の間には、M2 =πφ0 θ/2λの関係がある。これをφs の表式に代入すると、
【0071】
【数11】
Figure 0003645013
【0072】
となる。これにより、ビームウェイスト径とビーム開き角によって集束性が表現されているビームに対する、高集束光ファイバ伝送のための光ファイバ入射径の基準となるφs が求められた。
【0073】
ここでφs の計算例を示す。例えば、n0 =1.473、Δn=0.021コア径400μmのグレーデッドインデックス光ファイバにM2 値が20のNd:YAGレーザビーム(波長λ=1.064μm)を伝播させることを考えると、φs は148μmとなる。このときファイバへの入射角度2θinは約10.5度となる。
【0074】
図3は、グレーデッドインデックス光ファイバ9の入射端に最小集光点を持つようにレーザビーム70を集光し、集光レンズの焦点距離を変化させて出射ビームのM2 値(M2 out)を測定した実験結果を示す。図に示す実験条件では入射ビームの直径φinは入射角度2θinの逆数に比例する。図により入射ビーム径をφs 付近にすると出射ビームのM2 値(M2 out)が入射ビームのM2 値(M2 in )とほとんど同じ値で出射され、最も集束性の良いレーザビームが得られることがわかる。また、図35に示した従来の光伝送装置の例で説明したレーザビーム70及び光ファイバ90を用いて入射角度2θinを8度以下にすると、光ファイバ90からの出射ビームの集束性が悪化し、従来例で説明した理想的なステップインデックスファイバに対する入出射特性の検討結果とは全く異なるものとなっている。
【0075】
さらに、図3に示す実験結果では、入射ビームの直径φinがφs ±50%の範囲(即ち、0.5φs ≦φin1.5φs )では入射ビームの集束性をあまり劣化させることなく光ファイバ伝送可能であることがわかる。
【0076】
また、上記実験結果よりレーザビームの集光位置がファイバコア中心からずれると出射ビームの集束性が劣化すること、ならびにグレーデッドインデックス光ファイバからの出射ビームの集束性がよいほど出射ビームのビーム開き角θout (半角)が小さく、ほぼM2 out値の平方根に比例することがわかった。
【0077】
以上のように、この実施の形態1においては、ファイバ入射端面のごく近傍に最小集光点を持ち、その直径がφs ±50%の範囲となるように集光レンズ8の焦点距離及び位置を設定しているので、これまでの議論から明らかなように、光ファイバ9内で集束性を保ったままレーザビーム伝送が行われる。その結果、レーザ発振器で発生された集束性の良いレーザビームが、その集束性を保ったまま光ファイバ9から出射される。
【0078】
なお、実施の形態の光伝送装置は、上述したようにガウスビームだけでなく、M2 が1以上のマルチモードビームに対しても集束性を保ったまま光ファイバ伝送が可能な構成を示すものであるが、M2 <50、望ましくはM2 <40のマルチモードビームに対して特に有効である。換言すれば、M2 =πφ0 θ/2λの関係から、πφ0 θ/λが100以下、のぞましくは80以下のレーザビームに対して特に有効である。
【0079】
また、実施の形態1の光伝送装置では、レーザ発振器10のレーザ出口近傍にレーザビーム70のビームウェイストがあるとしたが、この条件からはずれる場合でも、あらかじめ任意の焦点距離f1 を持つ集光レンズで集光したときのビームウェイスト径φ1 とビーム開き角θ1 を測定すれば、容易にφs ならびにφs を与える焦点距離fs を求めることができる。すなわち、ビームウェイスト径とビーム開き角の積がレンズ系を通過しても不変である性質を利用して、φ1 θ1 =φ0 θを用いてφs を導出し、φ=2fθからfs =f1 φs /φ1 となる。また、ビームウェイストがレーザ発振器10内にある場合、ビーム開き角が極端に大きくなければレーザ出口でのビーム直径を用いて計算しても誤差は少ないので、カタログデータのビーム径、ビーム開き角から計算しても良い。
【0080】
また、実施の形態1の光伝送装置では、集光レンズホルダ101の構成としてZ軸移動ステージと十字動ステージの組み合わせを用いたが、若干の調整機能があれば他の形態のホルダを用いても良い。
【0081】
さらに、実施の形態1の光伝送装置では、集光レンズホルダ101に調整機構を設けているが、光ファイバホルダ102に調整機構を設けても良い。
また、集光レンズ8により、レーザビーム70を光ファイバ9の入射端面上またはその近傍に最小集光点を持つように集光し、かつ最小集光点でのレーザビーム径が所定値となるようにしていたが、集光レンズ8の変わりに、ミラー等により同様の機能を実現してもよい。
【0082】
実施の形態2.
図4は、この発明の実施の形態2に係る光伝送装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、11は開口直径がφs よりも大きく、ファイバコア直径φc よりも小さくなるように設定されているアパーチャであり、開口中心がファイバ9のコア中心とほぼ一致し、光ファイバ9の入射端面に近い位置に設置されている。
なお、図では詳細を省略しているが、集光レンズホルダ101は実施の形態1の光伝送装置の場合と同様に、光軸方向へ手動で位置調整できる移動ステージと径方向へ手動で位置調整できる十字動ステージとを組み合わせた構成となっている。
【0083】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8によりアパーチャ11を通過して光ファイバ入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送し、光ファイバ9の出射端より出力される。また、光ファイバ9の中心からずれたレーザビームはアパーチャ11によって遮断される。
【0084】
以上のように、この実施の形態2においては、図で示したように光ファイバ9へのレーザビーム70の光軸調整の際に、極端にレーザビームの位置ずれが生じた際、光ファイバ9のクラッドや被覆等にレーザビーム70が照射されることをアパーチャ11によって防止できる。また、光ファイバ9の中心からのレーザビームの位置ずれや、集光レンズ8と光ファイバ9の入射端の距離の誤差が生じたときに、アパーチャ11に当たって光ファイバ9へ入射されるレーザビームの出力が減少するので、光ファイバ出射端にパワーメータ等を設置して出射レーザビームのパワーをモニタし、パワーメータの出力に基づいて容易に集光レンズ8の位置調整を行うことができる。
【0085】
実施の形態3.
図5は、この発明の実施の形態3に係る光伝送装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。
【0086】
図において、12は開口直径がφs よりも大きく、ファイバコア直径φc よりも小さくなるように設定されているアパーチャであり、開口中心が光ファイバ9のファイバコア中心とほぼ一致し、光ファイバ9の出射端に近い位置に設置されている。
【0087】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送され、光ファイバ9の出射端よりアパーチャ12を通過して外部へ出力される。
【0088】
以上のように、この実施の形態3においては、光ファイバ9からの出射光を例えば加工等に用いた場合に、加工対象物からレーザビームが光ファイバ9の出射端へ反射された場合でも、アパーチャ12により光ファイバ9のクラッドや他の思わぬ場所へのレーザビームの照射が防げられ、光ファイバ9の損傷を防止することができる。また、光ファイバ9の中心からのレーザビーム70の位置ずれや集光レンズ8と光ファイバ9の入射端の距離の誤差が生じた場合に、光ファイバ9から出射されるレーザビームの開き角が大きくなってアパーチャ12に当たる。これによりアパーチャ12を通過するレーザビームの出力が減少するので、アパーチャ12の出力側にパワーメータ等を設置して出射されるレーザビームのパワーをモニタし、モニタの結果をもとに容易に集光レンズ8の位置調整を行うことができる。
【0089】
実施の形態4.
図6は、この発明の実施の形態4に係る光伝送装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、81、82はそれぞれ集光レンズ(光ファイバ入射光学系)であり、101はそれぞれの集光レンズ81、82を搭載した集光レンズホルダである。
【0090】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ81、82により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送し、光ファイバ9の出射端より外部へ出力される。
【0091】
以上のように、この実施の形態4においては、2つの集光レンズ81、82間の距離を調整することにより光ファイバ9の入射端面でのレーザビームの直径を容易に変更できるので、既存の集光レンズを用いて安価に光伝送装置を得ることができる。また、レーザ発振器10から出射されたレーザビーム70のビームウェイスト径やビームウェイストの位置、ビーム開き角が変化した場合でも、容易にφs ±50%の範囲のビーム直径φinを得ることができる。
【0092】
なお、本実施の形態4の光伝送装置では、集光レンズホルダ101を2つに分離した形の場合を示したが、一体型としても良い。
【0093】
実施の形態5.
図7は、この発明の実施の形態5に係る光伝送装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、83は光ファイバ9の入射端面に近接もしくは密着して設置されたグレーデッドインデックスレンズであり、グレーデッドインデックスレンズ83の両端面はレーザビーム70の波長に対して無反射のコーティングが施されている。103はグレーデッドインデックスレンズホルダである。グレーデッドインデックスレンズ83は、その中心軸が光ファイバ9のコア中心に一致するように設置されている。
【0094】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8によりグレーデッドインデックスレンズ83の端面に集光され、さらにグレーデッドインデッスクレンズ83により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。
【0095】
以上のように、この実施の形態5においては、前述した実施の形態4の光伝送装置に比べ、二枚の集光レンズ8および83のうちの一つに、焦点距離の短いものが実現できるグレーデッドインデックスレンズ83を用いるため、径を大きく変化させることができ、従って、集光レンズ8とグレーデッドインデックスレンズ83の位置を少し動かすだけで光ファイバ9の入射端面でのレーザビーム70のビーム径を大きく変化させることができる。この結果、レーザ発振器10から出射されたレーザビーム70の集束性の変化があった場合でも容易に対応できる。
【0096】
なお、上記した実施の形態5の光伝送装置では、単にグレーデッドインデックスレンズ83を光ファイバ9の入射端面の近接もしくは密接配置としたが、グレーデッドインデックスレンズ83と光ファイバ9とをオプティカルコンタクトを用いて結合させてもよい。また、グレーデッドインデックスレンズ83と光ファイバ9との間にインデックスマッチング液を介して結合させてもよい。この場合、グレーデッドインデックスレンズ83と光ファイバ9の間の端面での反射損失をなくすことができ、伝送効率がさらに上昇するという効果がある。
【0097】
実施の形態6.
図8は、この発明の実施の形態6に係る光伝送装置を示す構成図である。図において、図5に示す実施の形態3の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、13はアパーチャであり、その開口中心はグレーデッドインデックスレンズ83の光軸とほぼ一致し、グレーデッドインデックスレンズ83に近接して設置されている。
【0098】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8によりアパーチャ13を通過してグレーデッドインデックスレンズ83端面に集光され、さらにグレーデッドインデッスクレンズ83により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送し、その後光ファイバ9の出射端より外部へ出力される。また、本アパーチャ13によりグレーデッドインデックスレンズ83の光軸からずれたレーザビームは遮断される。
【0099】
以上のように、この実施の形態6においては、グレーデッドインデックスレンズ83へのレーザビームの光軸調整の際に、極端にレーザビーム70の位置ずれが生じた場合でも光ファイバ9のクラッドや被覆等に該レーザビーム70が照射されることを防止できる。また、グレーデッドインデックスレンズ83の光軸中心からレーザビーム70の位置ずれや集光レンズ8と光ファイバ9の入射端の距離の誤差が生じた際に、アパーチャ13にレーザビームが当たり、その分光ファイバ9へ入射されるレーザビームのパワーが減少する。この場合、光ファイバ9の出射端にパワーメータ等を設置して出射されたレーザビームのパワーをモニタすることにより、容易に集光レンズ8の位置調整を行うことができる。
【0100】
実施の形態7.
図9は、この発明の実施の形態7に係る光伝送装置を示す構成図である。図において、図8に示す実施の形態6の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図においては、グレーデッドインデックスレンズ83および光ファイバ9のそれぞれの入射端近傍にアパーチャ13および11を設置した構成を示す。
【0101】
次に動作について説明する。
レーザ発振器10から出射された、ビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8によりアパーチャ13を通過してグレーデッドインデックスレンズ83の端面に集光され、さらにグレーデッドインデッスクレンズ83によりアパーチャ11を通過して光ファイバ入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。
【0102】
以上のように、この実施の形態7においては、アパーチャ11を設けたことにより、グレーデッドインデックスレンズ83の光軸および光ファイバ9のコア中心からずれたレーザビームは遮断される。この実施の形態7の光伝送装置によると、グレーデッドインデックスレンズ83の光軸と光ファイバ9のコア中心の両方に光軸が合致したレーザビームのみが光ファイバ9内を伝送されるので、光軸ずれによる光ファイバ9の損傷防止の機能がより完全なものとなる。また、光ファイバ9の出射端にパワーメータ等を設置して出射されるレーザビームのパワーモニタをすることにより、容易に集光レンズ8又はグレーデッドインデックスレンズ83の位置調整を行うことができる。
【0103】
実施の形態8.
図10は、この発明の実施の形態8に係る光伝送装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、14はレーザビーム70のごく一部のパワーを反射させるビームスプリッタ、15はビーム検出面とビームスプリッタ14間の距離が光ファイバ9の入射端面とビームスプリッタ14間との距離に等しくなるように設置された入射ビームモニタ装置であり、例えば、スリットを走査させ、スリット透過後のレーザビーム70のパワーを検出することにより、レーザビーム70の位置及びビーム直径を算出する装置である。104は入射ビームモニタ装置15で検知されるレーザビーム径及びビーム位置が設計値になるようにレンズホルダ101を移動させるレンズホルダ移動装置(移動手段)である。
【0104】
なお、図の光伝送装置には明示していないが、レンズホルダ移動装置104はDCモータあるいはピエゾ素子から構成されており、例えば実施の形態1の光伝送装置内のレンズホルダ101を構成する移動ステージおよび十字動ステージに直接に接続され自動的に集光レンズ8の位置の調整を行うことができるように構成されている。
【0105】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8によりそのほとんどのパワーはビームスプリッタ14を透過して光ファイバ9の入射端面に集光される。ビームスプリッタ14でごく一部反射されたレーザビームは入射ビームモニタ装置15上に光ファイバ9の入射端面と同じ直径で集光される。入射ビームモニタ装置15ではビーム直径およびビーム位置を算出し、ここで得られたデータをレンズホルダ移動装置104へ送信し、これを元にレンズホルダ移動装置104はDCモータあるいはピエゾ素子などで集光レンズホルダ101を移動させる。具体的には、例えばレーザビーム70のビーム位置に関しては所定の設定値におけるXY方向からのずれ量によってレンズホルダ101の移動量を決定する。また、光軸方向の最適位置に関しては、レンズホルダ101内の移動ステージを移動させてビーム直径が最小となる点を探索する。この結果、レーザビーム70は光ファイバ9の入射端面の中心に、φs ±50%の範囲のビーム直径φinに集光され、このレーザビームは光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。
【0106】
以上のように、この実施の形態8においては、レーザビーム70の最適な集光が自動的に行われるとともに、レーザビーム70の方向が仮に変化してもそれに追随して光軸調整が自動的に行われる。
【0107】
実施の形態9.
図11は、この発明の実施の形態9に係る光伝送装置900を示す構成図である。図において、図6および図10に示す実施の形態4および8の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、図10に示した実施の形態8の光伝送装置の集光レンズ8の代わりに、図6に示した実施の形態4の光伝送装置の構成と同様に、81および82で示される2個あるいは2組の集光レンズを用いている。
【0108】
次に動作について説明する。
この実施の形態9の光伝送装置によると、光ファイバ9の入射端面でのレーザビーム70のビーム直径とビーム位置をモニタしながら、入射ビームモニタ装置15からの出力を基にレンズホルダ移動装置104により2つの集光レンズ81、82の位置を変えることが可能である。
【0109】
以上のように、この実施の形態9においては、ビームウェイストやビームの集束性が仮に変化しても、自動的に追随して光ファイバ9の入射端面でのビーム径がφs ±50%の範囲内に入るようにしてコア中心に集光させることができる。
【0110】
実施の形態10.
図12は、この発明の実施の形態10に係る光伝送装置を示す構成図である。図において、図10に示す実施の形態8の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、15は、図10に示した実施の形態8の光伝送装置と同様、入射ビームモニタ装置を示すが、この実施の形態10の光伝送装置では、例えばCCDカメラのような画像入力装置を備えており、光ファイバ9の入射端面を直接観測している。
【0111】
次に動作に関しては、入射ビームモニタ装置15で、光ファイバ9に入射するレーザビーム70のパワーを観測する以外の動作は実施の形態8の光伝送装置の動作と同様であるのでここでは説明を省略する。
【0112】
以上のように、この実施の形態10においては、実施の形態8の光伝送装置と同様、光軸調整を自動的に行うことができる。さらに、この実施の形態10の光ファイバ9の入射端面を直接観測しているので、ファイバ9の端面の損傷などのモニタも同時に行うことができ、安全装置としても用いることができる。
【0113】
実施の形態11.
図13は、この発明の実施の形態11に係る光伝送装置を示す構成図である。図において、図11に示す実施の形態9の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、14は光ファイバ9から出射されたレーザビームのごく一部を反射させるビームスプリッタであり、16は光ファイバ9から出射されたレーザビームをモニタする出射ビームモニタ装置で、例えば、スリットを走査させ、出射ビームのスリット透過後のパワーを検出することにより、ビーム直径を測定するモニタである。
【0114】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ81、82により光ファイバ9の入射端面で、φs ±50%の範囲のビーム直径φinに集光され、このレーザビーム70は光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。光ファイバ9から出射されたビームの大部分はビームスプリッタ14を透過して加工等に用いられるが、ごく一部のパワーはビームスプリッタ14により反射されて出射ビームモニタ装置16に入射される。出射ビームモニタ装置16は出射ビームのビーム直径を計測し、そのデータをレンズホルダ移動装置104に出力する。レンズホルダ移動装置104は、出射ビームモニタ装置16から送られてきたデータを受け取り、出射ビームモニタ装置16で計測されるビーム直径が最小となるように集光レンズ81、82の位置を調節する。
【0115】
以上のように、この実施の形態11においては、前述のように、レーザビームの集束性が良いほどビーム開き角が小さく、その結果出射ビームモニタ装置16で計測されるビーム直径が小さくなるので、上記の手法で最適な入射条件が設定可能となる。また、上記の実施の形態11の光伝送装置では、同時に出射ビームの集束性が概略常時モニタできる利点がある。なお、この実施の形態11の光伝送装置では、出射ビームを直接ビームスプリッタ14へ入射したが、光ファイバ9の出射側に集光レンズを設置し、一旦レーザビームをコリメートしてからビームスプリッタ14に入射しても良い。
【0116】
実施の形態12.
図14は、この発明の実施の形態12に係る光伝送装置を示す構成図である。図において、図13に示す実施の形態11の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、11は開口直径がφs よりも大きく、ファイバコア直径φc よりも小さくなるように設定されているアパーチャであり、その開口中心がファイバ9のコア中心とほぼ一致し、光ファイバ9の入射端に近い位置に設置されている。14は光ファイバ9から出射されたレーザビームのごく一部を反射させるビームスプリッタ、161はパワーセンサである。
【0117】
次に動作について説明する。
レーザ発振器10から出射された、ビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ81、82によりアパーチャ11を通過して光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送し、その後光ファイバ9の出射端より外部へ出力される。また、アパーチャ11を配置したことにより光ファイバ9の中心からずれたレーザビームはこのアパーチャ11により遮断される。光ファイバ9からの出力の大部分はビームスプリッタ14を透過し、ごく一部のパワーのみ反射されパワーセンサ161に入射される。出射レーザビームのパワーのデータはレンズホルダ移動装置104にフィードバックされ、出射レーザビームのパワーが最大になるように集光レンズ81、82の位置が調整される。
【0118】
以上のように、この実施の形態12においては、図に示すような簡単な構成で集光レンズの位置調整を自動的に行うことができる。また、図には明示していないが、出射レーザビームのパワーが極端に落ちたときにレーザ発振器10を停止するフィードバックを行うことにより、光ファイバを損傷から守るための安全装置にもなる。
【0119】
実施の形態13.
図15は、この発明の実施の形態13に係る光伝送装置を示す構成図である。図において、図13に示す実施の形態11の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、162は光ファイバ9の出射側の光ファイバ9の光軸からずれた位置に設置されたフォトダイオードである。
【0120】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ81、82により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送され、光ファイバ9の出射端より外部へ出力される。光ファイバ9へのレーザビーム70の入射条件が設定された値の範囲内にある場合、光ファイバ9から出射されたレーザビームはほとんどフォトダイオード162に検知されないが、光ファイバ9への入射条件が設定値よりもずれている場合には出射ビームの開き角が大きくなる。このためフォトダイオード162に入力されるレーザビームのパワーが増大する。フォトダイオード162からの出力はレンズホルダ移動装置104に入力され、レンズホルダ移動装置104はフォトダイオード162の出力が最小になるように集光レンズ81、82の位置を調整制御する。
【0121】
以上のように、この実施の形態13においては、実施の形態12と同様に図に示した簡単な構成でファイバ9の入射端の光軸調整を自動的に行うことができる。
【0122】
実施の形態14.
図16は、この発明の実施の形態14に係る光伝送装置を示す構成図である。図において、図13に示す実施の形態11の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、17は光ファイバ9の出射端近くに設置したアパーチャ、161はパワーセンサである。
【0123】
次に動作について説明する。
アパーチャ17の直径は、レーザビーム70が光ファイバ9の中心に入射し、レーザビームの直径がφs ±50%の範囲であるときにわずかにレーザビームを遮断するように設定している。
【0124】
以上のように、この実施の形態14においては、入射ビーム70の位置ずれ等が生じたときにアパーチャ17で遮断されるパワーが増大し、パワーセンサ161の出力が減少するため、パワーセンサ161の出力が最大となるようにレンズホルダ移動装置104により集光レンズ81、82の位置を調整制御することにより、図に示した簡単な構成でファイバ9の入射端面でのレーザビーム径の調整、ビーム位置の調整ができる。
【0125】
実施の形態15.
図17は、この発明の実施の形態15に係る光伝送装置を示す構成図である。図において、図10に示す実施の形態8の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、18は集束性設定機構であり、例えばボリューム、回転スイッチ、あるいはディジタル入力機器などで構成され、これによりM2 を設定するものである。
【0126】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角θを持つレーザビーム70は、集光レンズ8により光ファイバ入射端面に、φs ±50%の範囲のビーム直径φinに集光される。この条件を満足するようにレーザビームが集光された場合、これまでの他の実施の形態の説明で述べたように光ファイバ9の中心にレーザビーム70が入射したときは集束性を保って光ファイバ9内を伝送されるが、中心からずれた位置にレーザビーム70が入射した場合は集束性の劣化が生ずる。
【0127】
図18は、コア直径φc =400μm、中心の屈折率n0 =1.473、コアとクラッドの屈折率差Δn=0.021のグレーデッドインデックス光ファイバにM2 値が20のNd:YAGレーザビーム(波長λ=1.064μm)を伝播させた実験における、光ファイバ9の入射端面での径方向のレーザビームの位置ずれ量△xと出射ビームの集束値M2 outとの関係を示す説明図である。この条件では前述のようにφs が148μmとなるので、入射されたレーザビームの位置が光ファイバ9のコア中心から80μmずれた場合であってもレーザビームのすべてがこの光ファイバ9のコア内に導入さる。よって、この位置ずれによる光ファイバ9からの出射されるレーザビームのパワーの減少は無い。これより、この実施の形態15では、レーザビーム70の入射位置を80μmの範囲で移動させることにより出射レーザビームの集束性を制御することができ、M2 値で言うと20から50の範囲の出射レーザビームを得ることができる。
【0128】
そこで、この実施の形態15の光伝送装置では、集束性設定機構18で指定した値に従い、あらかじめ求めてあるずれ量(△x)と出射レーザビーム集束性(M2 値)の関係に基づいてレンズホルダ移動装置104、レンズホルダ101により集光レンズ8の位置を移動させ、その結果、光ファイバ9より集束性設定機構18で指定した集束性を持つビームを出射させる。
【0129】
以上のように、この実施の形態15においては、容易に出射レーザビームの集束性を変化させることができ、溶接、切断など用途に応じて最適なパワーの出射レーザビームを容易に得ることができる。
【0130】
なお、この実施の形態15の光伝送装置では光ファイバ9の入射端面での径方向のレーザビームのずれ量△xと出射レーザビームのM2 out値との関係を示したが、レーザビーム70の最小集光点が光ファイバ9の軸方向にずれた場合にも、出射レーザビームのM2 out値が変化する。よってこれを利用して、集束性設定機構18で指定した値に従い、あらかじめ得られている軸方向のずれ量と出射レーザビームの集束性(M2 値)との関係に基づいて、レンズホルダ移動装置104、レンズホルダ101により集光レンズ8の位置を軸方向に移動させ、その結果、集束性設定機構18で指定した集束性を持つレーザビームを光ファイバ9から出射させてもよい。
【0131】
また、この実施の形態15の光伝送装置では集光レンズ8により光ファイバ9の入射端面、またはその近傍で、φs ±50%の範囲のビーム直径φinにレーザビームを集光した例を示したが、この条件を満たさないレーザビームに対しても、この実施の形態15と同様にして集光性の制御が行える。
【0132】
実施の形態16.
図19は、この発明の実施の形態16に係る光伝送装置を示す構成図である。図において、図17に示す実施の形態15の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、105は光ファイバホルダ移動装置(移動手段)であり、該光ファイバホルダ移動装置105上に光ファイバホルダ102を搭載し、光ファイバホルダ102の位置を移動調整する。
【0133】
次に動作について説明する。
上記した実施の形態15の光伝送装置では、レンズホルダ移動装置104及びレンズホルダ101により集光レンズ8の位置を移動させ、その結果光ファイバ9より集束性設定機構18で指定した集束性を持つレーザビームを光ファイバ9から外部へ出射させていたが、図に示すこの実施の形態16の光伝送装置では、光ファイバホルダ移動装置105及び光ファイバホルダ102によりファイバ9の入射端面の位置を移動させ、その結果集束性設定機構18で指定した集束性を持つレーザビームを光ファイバ9から出射させる。
【0134】
以上のように、この実施の形態16においては、集光レンズ8と光ファイバ9の入射端面の両方の位置をレーザレンズホルダ101および光ファイバホルダ移動装置105により移動させることによって、光ファイバ9から出射するビームの集束性を制御できる。
【0135】
実施の形態17.
図20は、この発明の実施の形態17に係る固体レーザ装置を示す断面構成図である。同図において、1は全反射ミラー(レーザ共振器)、2は部分反射コーティングが施された出力ミラー(レーザ共振器)、3は活性固体媒質を含む固体素子で、ヤグレーザを例にとれば活性固体媒質としてNdをドーピングしたNd:YAG(Yttrium Aluminium Garnet)、4は光源であって、例えばアークランプで形成されている。5は光源4を点灯する電源、6は光源4の集光器であって、例えば断面形状が楕円状で内面は光反射面より構成されている。7は全反射ミラー1、部分反射ミラー2で構成されたレーザ共振器内に発生したレーザ光、100はレーザ共振器を搭載する基台である。その他の構成要素9、101、102は図1に示した光伝送装置の構成要素と同一なのでその説明は省略する。
【0136】
次に動作について説明する。
光源4と固体素子3は内面が光源4に対して反射体、例えば白色セラミックで構成された集光器6の中に収納配置される。電源5で点灯された光源4からの光が投光され、投光された光は、直接もしくは集光器6内で反射された後、間接的に固体素子3に導かれる。固体素子3に導かれた光の一部は固体素子3内に吸収され、固体素子3を励起してレーザ媒質となる。レーザ媒質より発生された自然放出光は全反射ミラー1と部分反射ミラー2で構成されるレーザ共振器内を往復する間に増幅されてレーザ光7となり、所定値以上の大きさに達するとビームウェイスト径がφ0 、ビーム開き角が2θのレーザビーム70としてレーザ共振器の外部に放出される。外部へ取り出されたレーザビーム70は、集光レンズ8により、光ファイバ9の入射端面のごく近傍に最小集光点を持ちその直径がφs ±50%の範囲内のレーザビーム70となるように集光され、光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。
【0137】
なお、上記説明では出力ミラー2を平面あるいは両面の曲率の絶対値が等しいメカニズム構造、すなわちレンズとしてのパワーを持たない構造として説明したが、出力ミラー2の透過特性が焦点距離fのレンズと同様の特性を持ち、かつビームウェイストがレーザ共振器内にある場合は、光ファイバ9の入射端面での基準ビーム直径の計算に用いるφ0 またはθの値を焦点距離fとビームウェイストの出力ミラーからの距離から計算して修正する必要がある。修正については簡単な幾何光学計算により行うことができ、一般的に公知の事項なのでここではその説明を省略する。
【0138】
以上のように、この実施の形態17においては、レーザ発振器で増幅されたレーザ光7の集束性を保持したままレーザビーム70を光ファイバ9内を通じて伝送し、外部へ出力できる固体レーザ装置を得ることができる。
【0139】
実施の形態18.
図21は、この発明の実施の形態18に係る固体レーザ装置を示す断面構成図である。図において、図20に示す実施の形態17の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、21は集光レンズ、22は部分反射ミラー、106は部分反射ミラー移動させるための部分反射ミラー移動装置(移動手段)、107は集光レンズを移動させるための集光レンズ移動装置(移動手段)である。ここで、集光レンズ21と部分反射ミラー22は像転写光学系を構成している。すなわち、集光レンズ21の焦点距離fr と部分反射ミラー22の曲率半径を同じ値に設定し、両者間の距離を2fr (1+△)としている。この像転写光学系においては△の値によって全体として非常に広い曲率の可変範囲をもつ可変曲率ミラーとして機能する。
【0140】
次に動作について説明する。
集光レンズ21及び部分反射ミラー22の微細な位置調整によってレーザビーム70のビームウェイスト位置およびビーム開き角を広い範囲にわたって調節することができる。
【0141】
以上のように、この実施の形態18においては、光ファイバ9の入射端面近傍に最小集光点を持ち、そのビーム直径がφs ±50%の範囲となるようなレーザビームを容易に調節できる。また、レーザ光7の出力を調整するために光源4への電気入力を変化させたときに生じる固体素子3内での活性固体媒質の熱レンズの変化に対しても対応でき、上記のレーザビーム70の光ファイバ9への入射条件を保つことができる。
【0142】
図22は、この発明の実施の形態19に係る固体レーザ装置を示す断面構成図である。図において、図21に示す実施の形態18の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。この実施の形態19の固体レーザ装置では、実施の形態18の固体レーザ装置像転写光学系に加えて、図16に示す実施の形態14の光伝送装置内のアパーチャ17およびパワーセンサ161を構成要素に加えている。
【0143】
次に動作について説明する。
図における固体レーザ装置では、光ファイバ9から出射されたレーザビームを受けて、出射レーザビームのパワーを計測するパワーセンサ161からの出力に基づいて集光レンズ21と部分反射ミラー22の片方もしくは両方の位置を調整する。
【0144】
以上のように、この実施の形態19においては、実際に光ファイバ9の出射端から出射されたレーザビームの集束性をパワーセンサ161でモニタしながらレーザ共振器の調整を行うことができ、固体媒質の熱レンズ変化に対応してもビームウェイスト位置、ビーム直径の調整をより確実に、また自動的に行うことができる。また、光ファイバ9からの出射レーザビームの集束性が常時モニタできる効果がある。
【0145】
実施の形態20.
図23は、この発明の実施の形態20に係る固体レーザ装置を示す断面構成図である。図において、図20に示す実施の形態17の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、19は開口直径を外部から調節できる開口可変アパーチャ、20はレーザ光7の出力の設定を行う出力設定機構であり、例えばボリューム、回転スイッチ、あるいはディジタル入力機器等のいずれかで構成されている。開口可変アパーチャ19はレーザ共振器の内部に設置されている。
【0146】
次に動作について説明する。
この実施の形態20の固体レーザ装置において、集光レンズ8の焦点距離および位置は、最大出力のレーザビーム70を得るための条件の電気入力に対し、レーザビーム70が光ファイバ9の入射端面のごく近傍に最小集光点を持ち、その直径がφs ±50%の範囲となるように設定されている。レーザビーム70の出力の調節は、出力設定機構20の指示に従って機械的あるいは電気的に開口可変アパーチャ19の開口径を調節することによって行う。この際、光源4への電気入力の変化はないので、固体素子の熱レンズ効果は不変であり、共振器の光学的な条件はアパーチャ19によるレーザビームの外縁の遮蔽のみである。この結果、レーザビームのビームウェイストの位置も変化しない。アパーチャ19の開口直径の変化によってレーザビーム70の出力、ビーム径、M2 値、ビーム開き角は変化するが、一方ビームウェイストの位置とミラーの曲率は変化しない。この条件下ではビーム径、ビーム開き角がいずれもM2 値の平方根に比例することが知られている。また、集光レンズ8により集光レンズ8の左側のビームウェイストでの像を光ファイバ9の入射端近傍へ結像しているので、ビームウェイストの位置が変わらなければ、結像位置も倍率も変わらない。よって、光ファイバ9の入射端近傍でのレーザビーム70のビームウェイスト径はM2 値の平方根に比例する。一方、φs もM2 値の平方根に比例する。したがって、アパーチャ19の開口直径の変化でレーザビームのパワー調整をした場合、レーザビーム70は必ず光ファイバ9の入射端面のごく近傍に最小集光点を持ち、その直径はφs ±50%の範囲となる。
【0147】
以上のように、この実施の形態20においては、図に示すように簡単な構成でどのようなパワーを有するレーザビームに対しても集束性を保ったまま光ファイバ9内を通じて外部へ伝送できる。なお、この実施の形態20の固体レーザ装置では、従来型の共振器を用いた構成について説明したが、共振器内部に像転写光学系を含んだ固体レーザに適用してもよく同様の効果を得ることができる。
【0148】
実施の形態21.
図24は、この発明の実施の形態21に係る固体レーザ装置を示す構成断面図である。図において、図21に示す実施の形態18の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、191は像転写光学系を構成する集光レンズ21と部分反射ミラー22との間に配置されたアパーチャ、108はアパーチャ191を光軸方向に移動させるアパーチャ移動装置(調節手段)である。集光レンズ8の焦点距離、位置は最大出力のレーザビームを取り出す条件の電気入力に対し、レーザビームが、光ファイバ9の入射端面のごく近傍に最小集光点を持ちその直径がφs ±50%の範囲となるように設定している。
【0149】
次に動作について説明する。
この実施の形態21の固体レーザ装置において、レーザビーム70の出力の調節は、出力設定機構20の指示に従って、アパーチャ移動装置108によりアパーチャ191を光ファイバ9の光軸方向に移動してレーザ光7の外縁を遮断して行う。
【0150】
以上のように、この実施の形態21においては、前述した実施の形態20の固体レーザ装置と同様に、光源4へ供給される電気入力は変化しないので、固体素子の熱レンズ効果は不変であり、実施の形態20の固体レーザ装置と同様、どのような出力のレーザビームに対しても集束性を保ったまま光ファイバ9内を通じて外部へ伝送できる。なお、この実施の形態21の固体レーザ装置は、共振器内部に像転写光学系を含んだ共振器について説明したが、従来型の共振器で構成される固体レーザに適用してもよく同様の効果を得ることができる。
【0151】
実施の形態22.
図25は、この発明の実施の形態22に係る固体レーザ装置を示す構成断面図である。図において、図20に示す実施の形態17の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図の固体レーザ装置において、光源4と固体素子3は内面が光源4に体して反射体、例えば白色セラミックで構成された集光器6の中に配置されている。
【0152】
次に動作について説明する。
電源5からの電圧の供給により点灯された光源4から光が投光され、投光された光は、直接もしくは集光器6内で反射後間接的に固体素子3に導かれる。固体素子3に導かれた光の一部は固体素子3内に吸収され、固体素子3を励起してレーザ媒質となる。レーザ媒質より発生された自然放出光は全反射ミラー1と部分反射ミラー2で構成されるレーザ共振器間を往復する間に増幅されてレーザ光7となり、所定値以上の大きさに達するとビームウェイスト径φ0 、ビーム開き角2θのレーザビーム70としてレーザ共振器の外部に放出される。外部へ取り出されたレーザビーム70は、集光レンズ8によってファイバ入射端面のごく近傍に最小集光点を持ちその直径がφs ±50%の範囲となるように集光される。光ファイバホルダ移動装置105、光ファイバホルダ101は、集束性設定機構18で指定した値に従いあらかじめ求めてあるずれ量と出射レーザビーム集束性の関係に基づいて光ファイバ9の入射端面の位置を移動させ、その結果光ファイバ9より集束性設定機構18で指定された集束性を持つレーザビームを外部へ出射させる。
【0153】
以上のように、この実施の形態22においては、光ファイバ9から出射される出射レーザビームの集束性を容易に変化させることができ、溶接、切断など用途に応じて最適なパワーを有するレーザビームを出射する固体レーザ装置を得ることができる。なお、この実施の形態22の固体レーザ装置では、光ファイバホルダ移動装置105により光ファイバ9の入射端面の位置を移動させたが、集光レンズホルダ移動装置を設けて集光レンズ8の位置を移動させても良く、同様の効果を得ることができる。また、この実施の形態22の固体レーザ装置では、従来型の共振器について説明したが、共振器内部に像転写光学系や、パワー調整のためのアパーチャを組み込んだ固体レーザ装置に使用してもよく、この場合も同様の効果を得ることができる。
【0154】
実施の形態23.
図26は、この発明の実施の形態23に係る固体レーザ装置を示す構成図である。図において、図25に示す実施の形態22の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図の固体レーザ装置において、レーザ共振器を構成する全反射ミラー1と出力ミラー2は、同じ曲率を持ち、固体素子3が共振器のほぼ中央に位置するいわゆる対称型共振器として構成されている。光源4と固体素子3は内面が光源4に対して反射体、例えば白色セラミックで構成された集光器6の中に配置される。
【0155】
次に動作について説明する。
電源5から電圧が供給されて点灯された光源4からの光が投光され、投光された光は、直接もしくは集光器6内で反射後間接的に固体素子3に導かれる。固体素子3に導かれた光の一部は固体素子3内に吸収され、固体素子3を励起してレーザ媒質と変える。このレーザ媒質より発生された自然放出光は全反射ミラー1と部分反射ミラー2で構成されるレーザ共振器間を往復する間に増幅されてレーザ光7となり、所定値以上の大きさに達するとビームウェイスト径φ0 、ビーム開き角2θのレーザビーム70としてレーザ共振器の外部に放出される。この構成を有する共振器では非常に安定なレーザ発振が可能であるが、レーザ出力レベルによってビームウェイスト径、ビーム開き角が大きく変化するという特性も有する。その結果、φ0 θの値も大きく変化し、これに比例するM2 値も大きく変化する。
【0156】
図27は、ある対称型共振器構成における入射ビームとレーザ出力と出射レーザビームのM2 値との関係を示す説明図である。図において、レーザ出力とM2 値との間係は細線で示されている。レーザ出力が小さいほどM2 値の小さなレーザビームが発生している。これから明らかなように、それぞれの出力レベルによって高輝度ビームファイバ伝播のための入射ビーム直径が異なる。
【0157】
以上のように、この実施の形態23においては、最大のM2 値での300W出力におけるφ0 θを基準として、外部へ取り出されたレーザビーム70が集光レンズ8によって光ファイバ9の入射端面のごく近傍に最小集光点を持ち、その直径が
(φc φ0 θ(2n0 △n)-1/21/2 ±50%
となるように集光し、他の出力レベルにおいても光学系を移動させずにレーザビーム70をそのまま伝播させる。
【0158】
図の固体レーザ装置によると、レーザ出力300W時以外ではビーム直径等の変化によりファイバ伝描後のM2 値が増加するが、もともとのビームのM2 値が300W時より小さいため、レーザ出力によるM2 値の変化量がむしろ縮小され、レーザビームの出力が変化した場合であっても集束性の変化が少ないレーザビームを出射する固体レーザ装置を得ることができる。
【0159】
図27の説明図内での太線は、細線で示されるビームを300W時のφ0 θに合わせてレーザビームの入射ビーム径を調整してファイバ9内を伝播させた実験結果を示している。図によると、入射ビームのM2 値の変化が5から21なのに対し、出射ビームのM2 値が15から22となっている。よって、実際にレーザビームの出力が変化しても集束性の変化が少ないレーザビームを出射する固体レザ装置を得ることができる。
【0160】
実施の形態24.
図28は、この発明の実施の形態24に係る固体レーザ装置を示す構成図であり、(b)は(a)の平面図である。図において、図25、26に示す実施の形態22、23の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図の固体レーザ装置において、固体素子3は、薄板状のいわゆるスラブレーザ媒質で構成されている。スラブレーザ媒質は厚み方向(以下y方向)と幅方向(以下x方向)で大きさが異なるため、通常の球面レンズで共振器を構成すると、x方向でのφ0xθx とy方向でのφ0yθy との値が大きく異なる。また、集光レンズとして、シリンドリカルレンズ84、85を用いている。
【0161】
次に動作について説明する。
図に示すこの実施の形態24では、シリンドリカルレンズ84、85を用いてx方向とy方向を独立に集光させる。すなわち、外部へ取り出されたレーザビーム70を、x方向に関してはシリンドリカルレンズ84によってファイバ9の入射端面のごく近傍に最小集光点を持ちその直径が
(φc φ0xθx (2n0 △n)-1/21/2 ±50%
y方向に関してはシリンドリカルレンズ85によってファイバ入射端面のごく近傍に最小集光点を持ちその直径が
(φc φ0yθy (2n0 △n)-1/21/2 ±50%
となるようにレーザビーム70を集光する。
【0162】
以上のように、この実施の形態24においては、光ファイバ9から出射される出射レーザビームのM2 値は光ファイバ9に入射される入射レーザビームのx方向のM2 値とy方向のM2 値との間の値をとり、x方向とy方向で集光性能が異なる発振器に対しファイバ9内を伝播後も全体として集光性能が保存されたレーザビームを出射する固体レーザ装置を得ることができる。さらにまた、ファイバ伝播の過程でビームの異方性が改善されるという効果も併せてもつ。
【0163】
実施の形態25.
図29は、この発明の実施の形態25に係る固体レーザ装置を示す構成図である。図29の(b)は(a)の平面図である。図において、図25、26、28に示す実施の形態22、23、24の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図の固体レーザ装置において、固体素子3はスラブレーザ媒質で構成されており、またレーザ共振器は、x方向については安定型、y方向については一次元不安定型のいわゆるハイブリッド共振器として構成されている。また、集光レンズはシリンドリカルレンズ84,85で構成されている。
【0164】
次に動作について説明する。
図の固体レーザ装置内で用いられている共振器では、原理的に集光性能の優れたレーザビームを発生される。一般には、不安定型共振器の方が集光性能の良いレーザビームを得やすいが、x方向でのφ0xθx とy方向でのφ0yθy と値が大きく異なりその関係はφ0xθx <φ0yθy となる。この実施の形態25の固体レーザ装置においても、前記した実施の形態24の固体レーザ装置と同様に、シリンドリカルレンズ84、85を用いてレーザビーム70のx方向とy方向を独立に集光させる。すなわち、外部へ取り出されたレーザビーム70を、x方向に関してはシリンドリカルレンズ84によってファイバ9の入射端面のごく近傍に最小集光点を持ちその直径が
(φc φ0xθx (2n0 △n)-1/21/2 ±50%
y方向に関してはシリンドリカルレンズ85によってファイバ入射端面のごく近傍に最小集光点を持ちその直径が
(φc φ0yθy (2n0 △n)-1/21/2 ±50%
となるように集光する。
【0165】
以上のように、この実施の形態25においては、前述した実施の形態23、24の固体レーザ装置と同様、光ファイバ9から出射される出射レーザビームのM2 値は、光ファイバ9に入射される入射レーザビームのx方向のM2 値とy方向のM2 値との間の値をとり、光ファイバ9内を伝播後も集光性能の優れたレーザビームを出射する固体レーザ装置を得ることができる。
【0166】
実施の形態26.
図30は、この発明の実施の形態26に係る固体レーザ装置を示す構成図である。図30の(b)は(a)の平面図である。図において、図25、26、28、29に示す実施の形態22、23、24、25の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、固体素子3はスラブレーザ媒質で構成され、レーザ共振器はハイリッド共振器として構成されている。集光レンズ8は通常の球面レンズで構成されている。
【0167】
次に動作について説明する。
レーザビーム70の光ファイバ9の入射端への集光は通常の集光レンズ8で行う。そして、y方向に関してファイバ入射端面のごく近傍に最小集光点を持ち、最小集光点の直径が
(φc φ0yθy (2n0 △n)-1/21/2 ±50%
となるようにレーザビーム70を集光する。一方、X方向については最小集光点の位置、最小集光点の直径が最適値からかなりずれることが予想される。しかしながらこの実施の形態26の固体レーザ装置内の共振器は、φ0xθx <φ0yθy の関係を有し、出射レーザビームのM2 値は、入射レーザビームのx方向のM2 値とy方向のM2 値との間の値をとる。したがって、x方向についての最小集光点の位置、最小集光点の直径が少々最適値からずれた場合であっても、光ファイバ9から出射される出射レーザビームのM2 値はy方向の入射ビームのM2 値程以下となり、その結果、全体として優れた集光性能を保存したまま光ファイバ9内の伝播が可能である。
【0168】
以上のように、この実施の形態26においては、x方向とy方向で集光性能が異なる発振器を用いた場合であっても、図に示したように非常に簡単なレンズ構成で、光ファイバ9内の伝播後も全体として集光性能が大きく損なわれないレーザビームを出射できる固体レーザ装置を得ることができる。さらにまた、光ファイバ9内の伝播過程でレーザビームの異方性が改善されるという効果も有する。
【0169】
実施の形態27.
図31は、この発明の実施の形態27に係るレーザ加工装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、23は集光レンズ(集光光学系)、800は被加工物、810は加工ノズル、820は加工ガスの導入口である。
【0170】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角2θを持つレーザビーム70は、集光レンズ8により光ファイバ9の入射端面でφs ±50%の範囲のビーム直径に集光され、光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。このレーザ光は集光レンズ23によりさらに集光され、この集光されたレーザビームを用いて被加工物800はレーザ加工される。
【0171】
以上のように、この実施の形態27においては、光ファイバ9から出射する集束性の保たれたレーザビームをさらに集光レンズ23で集光しているので、被加工物800の切断、溶接等において、きわめて高精度なレーザ加工が可能である。
【0172】
なお、この実施の形態27のレーザ加工装置の説明においては、図1に示した実施の形態1に係る光伝送装置を用いたが、図4に示した実施の形態2に係る光伝送装置、から図16に示した実施の形態14に係る光伝送装置、ならびに図20に示した実施の形態17に係る固体レーザ装置から図24に示した実施の形態21に係る固体レーザ装置を用いた場合にも同様の効果を得ることができる。
【0173】
実施の形態28.
図32は、この発明の実施の形態28に係るレーザ加工装置を示す断面構成図である。図において、図25に示す実施の形態22の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、光源4と固体素子3は、内面が光源4に体して反射体、例えば白色セラミックで構成された集光器6の中に配置される。
【0174】
次に動作について説明する。
電源5からの電圧の供給により点灯された光源4から光が投光され、投光された光は、直接もしくは集光器6内で反射後間接的に固体素子3に導かれる。固体素子3に導かれた光の一部は固体素子3に吸収され、固体素子3を励起してレーザ媒質となる。レーザ媒質より発生された自然放出光は全反射ミラー1と部分反射ミラー2で構成されるレーザ共振器間を往復する間に増幅されてレーザ光7となり、所定値以上の大きさに達するとビームウェイスト径φ0 、ビーム開き角2θのレーザビーム70としてレーザ共振器の外部に放出される。外部へ放出されたレーザビーム70は集光レンズ8によって光ファイバ9の入射端面のごく近傍に最小集光点を持ち、その直径がφs ±50%の範囲となるように集光される。集束性設定機構18で指定した値に従って、あらかじめ設定されているずれ量と出射レーザビーム集束性との関係に基づいて、光ファイバ9の入射端面の位置を光ファイバホルダ移動装置105、光ファイバホルダ102により移動させる。その結果、光ファイバ9より集束性設定機構18で指定した集束性を持つレーザビームを出射させる。このレーザビームは集光レンズ23によりさらに集光され、この集光されたレーザビームを用いて被加工物800のレーザ加工を行なう。
【0175】
以上のように、この実施の形態28においては、光ファイバ9によるレーザビーム70の伝送を、集束性を保った状態から集束性を変化させた状態に故意に変えることが可能なので、容易に出射ビームの集束性を変化させることができ、溶接、切断などにおいて、高精度なレーザ加工、広い面積の加工等が自由に選択可能であり、用途に応じて最適な出射ビームを容易に得ることができる。
【0176】
なお、この実施の形態28のレーザ加工装置の説明においては、図25に示した実施の形態22に係る固体レーザ装置を用いたが、図17に示した実施の形態15に係る光伝送装置または図19に示した実施の形態16に係る光伝送装置を用いた場合にも同様の効果を得ることができる。
【0177】
実施の形態29.
図33は、この発明の実施の形態29に係るレーザ加工装置を示す構成図である。図において、図1に示す実施の形態1の光伝送装置および図31に示す実施の形態27のレーザ加工装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。
【0178】
次に動作について説明する。
レーザ発振器10から出射されたビームウェイスト径φ0 、ビーム開き角2θを持つレーザビーム70は、集光レンズ8から光ファイバ入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送され、その後光ファイバ9の出射端より外部へ出力される。図においては、この比から出射されたレーザビームを集光せずに、そのまま直接に被加工物800に照射しレーザ加工を行なう。
【0179】
以上のように、この実施の形態29においては、光ファイバ9によるレーザビームの伝送が集束性を保ったまま行なわれるので、光ファイバ9の出射端から出射されるレーザビームの開き角が従来に比較して小さく、例えばレーザ焼き入れなどの比較的照射面積の大きなレーザ加工であれば、図31、32に示した実施の形態27、28での集光レンズ23を用いることなしに、図に示すように非常に簡単な構成で行うことができる。
【0180】
なお、この実施の形態29においては、図1に示した実施の形態1に係る光伝送装置を用いて説明を行ったが、図4に示した実施の形態2の光伝送装置から図19に示した実施の形態16に係る光伝送装置を用いた場合にも同様の効果を得ることができる。図4に示した実施の形態2の光伝送装置を用いた場合、ビーム開き角2θを持つレーザビーム70は、集光レンズ8からアパーチャ11を介して光ファイバ9の入射端面でφs ±50%の範囲のビーム直径φinに集光され、光ファイバ9内を集束性を保ったまま伝送されし、図33に示す様に光ファイバ9の出射端より外部へ出力される。
【0181】
実施の形態30.
図34は、この発明の実施の形態30に係るレーザ加工装置を示す構成断面図である。図において、図20に示す実施の形態17の固体レーザ装置の説明で用いられている番号と同一の番号は同一の構成要素を示し、ここではその説明を省略する。図において、光源4と固体素子3は内面が光源4に対して反射体、例えば白色セラミックで構成された集光器6の中に配置されている。
【0182】
次に動作について説明する。
電源5からの電圧の供給により点灯された光源4からの光が投光され、投光された光は、直接もしくは集光器6内で反射後間接的に固体素子3に導かれる。固体素子3に導かれた光の一部は固体素子3に吸収され、固体素子3は励起されレーザ媒質となる。レーザ媒質より発生された自然放出光はミラー1と2で構成されるレーザ共振器間を往復する間に増幅されてレーザ光7となり、所定値以上の大きさに達するとビームウェイスト径φ0 、ビーム開き角2θのレーザビーム70としてレーザ共振器の外部に放出される。外部へ取り出されたレーザビーム70は集光レンズ8によって光ファイバ9の入射端面のごく近傍に最小集光点を持ち、その直径がφs ±50%の範囲のビーム直径φinを有するレーザビーム70に集光され、光ファイバ9内を集束性を保ったまま伝送され、光ファイバ9の出射端より外部へ出力される。この光ファイバ9から出射されたレーザビームを集光せずにそのまま直接の被加工物に照射、加工物のレーザ加工を行なう。
【0183】
以上のように、この実施の形態30においては、光ファイバ9によるレーザビームの伝送が集束性を保ったまま行なわれるので、光ファイバ9の出射端から出射されるレーザビームの開き角が従来に比較して小さく、例えばレーザ焼き入れなどの比較的照射面積の大きなレーザ加工が図34に示されるように非常に簡単な構成で実行できる。なお、この実施の形態30のレーザ加工装置においては、図20に示した実施の形態17に係る固体レーザ装置を用いて説明を行ったが、図21に示した実施の形態18に係る固体レーザ装置から図25に示した実施の形態22に係る固体レーザ装置を用いた場合にも同様の効果を得ることができる。
【0184】
【発明の効果】
以上のように、請求項1記載の発明によれば、光ファイバをグレーデッドインデックス光ファイバで構成し、光ファイバのコア径φc 、コア中心での屈折率n0 、コア中心とコア周囲部の屈折率差△n、レーザ光のビームウェイストでの直径φ0 、レーザ光のビーム開き角2θである時、レーザ光が光ファイバの入射端面上または光ファイバ入射端面近傍に最小集光点を持ち、最小集光点での直径φin
0.5φs ≦φin1.5φs
ただし、
φs =(φc φ0 θ(2n0 Δn)-1/21/2
となるようなファイバ入射光学系を備えたので、レーザ共振器で発生された高集束性のレーザビームを集束性のレベルの減少なく光ファイバの出射端から出射できる効果がある。
【0185】
請求項記載の発明によれば、レーザ光の波長をλとした時に、πθφ0 /λの値が100以下となるように設定されるので、集束性のレベルが低下することなく光ファイバの出射端からレーザビームを出射できる効果がある。
【0186】
請求項記載の発明によれば、光ファイバの入射端近傍にアパーチャを設置したので、光ファイバの入射端付近の不要な場所へのレーザ照射を防止でき、光ファイバを保護できる効果がある。
【0187】
請求項記載の発明によれば、光ファイバの出射端近傍にアパーチャを設置したので、出射側で反射される反射ビームがクラッド等に照射されるのをアパーチャにより防止でき、反射ビームの影響を最小限にとどめ、光ファイバを保護できる効果がある。
【0188】
請求項記載の発明によれば、二枚もしくは二組の集光レンズを用いてファイバ入射光学系を構成したので、レーザ光のビーム特性に合わせて光ファイバ入射端面でのビーム直径を容易に調整することができる効果がある。
【0189】
請求項記載の発明によれば、集光レンズの1つとしてグレーデッドインデックスレンズを用い、光ファイバの近接位置に配置したので、グレーデッドインデックスレンズの位置を少し調整することにより、広い範囲のレーザビームのビーム特性に合わせながら、光ファイバの入射端面でのビーム直径を容易に調整することができ、様々な応用が可能となる効果がある。
【0190】
請求項記載の発明によれば、グレーデッドインデックスレンズの入射端近傍にアパーチャを設置したので、このアパーチャによりグレーデッドインデックスレンズならびに光ファイバの入射端面周辺への思わぬレーザ光照射を防止でき、これらを保護できる効果がある。
【0191】
請求項記載の発明によれば、入射ビームモニタ装置と集光レンズのための移動手段を設置したので、レーザビームの最適な集光を自動的にできる効果がある。
【0192】
請求項記載の発明によれば、出射ビームモニタ装置と集光レンズための移動手段を設置したので、レーザビームの最適な集光を自動的にできるとともに出射ビームの集束性を常時モニタでき、装置の状態を随時監視できる効果がある。
【0193】
請求項10記載の発明によれば、光ファイバの入射側に設置したアパーチャと出射側に設置したパワーセンサとで出射ビームモニタ装置を構成したので、非常に簡単な構成でレーザビームの自動的な最適集光が可能となる効果がある。
【0194】
請求項11記載の発明によれば、光ファイバの出射側の光軸よりずれた位置に設置したフォトダイオードにより出射ビームモニタ装置を構成したので、レーザビームの自動的な最適集光が可能となり、装置の状態を随時監視できる効果がある。
【0195】
請求項12記載の発明によれば、光ファイバの出射側に設置したアパーチャとパワーセンサにより出射ビームモニタ装置を構成したので、非常に簡単な構成でレーザビームの最適な集光を自動的に行うことができ、出射ビームの集束性を常時モニタできる効果がある。
【0196】
請求項13記載の発明によれば、集光レンズと光ファイバの入射端面の片方もしくは両方の位置を移動させる移動手段を設置して双方の位置関係を最適な集光位置に移動できるようにしたので、集束性を任意に変化できる光伝送装置を容易に得られる効果がある。
【0197】
請求項14記載の発明によれば、レーザ媒質となる固体素子、レーザ共振器及びこの発明の光伝送装置により固体レーザ装置を構成し、さらにレーザ共振器内にミラーと集光レンズからなる像転写光学系、及びそれらの移動手段を備えたので、共振器内部の像転写光学系により高集束性を持つビームを発振すると同時に、光ファイバの入射端面のビーム直径をφs ±50%の範囲となるように容易に調整可能であり、高集束性のレーザビームを得ることができる効果がある。
【0198】
請求項15記載の発明によれば、光ファイバからの出射ビームを計測するモニタ装置を備えたのでレーザ共振器のレーザ光の集束性のレベルを自動調整でき、これにより集束性のレベルを保持したまま光ファイバ伝送を行うことができる効果がある。
【0199】
請求項16記載の発明によれば、レーザ共振器内にアパーチャならびにアパーチャ開口直径の調節手段を設けたので、レーザ光学系を調節することなくあらゆるレーザ出力の要求に対し常にレーザ光の集束性のレベルを保ったまま光ファイバを介してレーザ光を出射できる効果がある。
【0200】
請求項17記載の発明によれば、レーザ共振器内にアパーチャならびにアパーチャの光軸方向の移動手段を設けたので、レーザ光学系を調節することなくあらゆるレーザ出力の要求に対し常にレーザ光の集束性を保ったまま光ファイバを介してレーザ光を出射できる効果がある。
【0201】
請求項18記載の発明によれば、対称型共振器において外部へ取り出されたレーザ光を、φ0 θの大きな出力レベルにおいてファイバ入射端面のごく近傍に最小集光点を持ちその直径が
(φ c φ 0 θ(2n 0 △n) -1/2 1/2
となるように集光したので、レーザ出力が変化しても集束性の変化が少ないレーザビームを出射できる固体レーザ装置を得られる効果がある。
【0202】
請求項19記載の発明によれば、固体素子3がスラブレーザ媒質で構成され、外部へ取り出されたレーザ光を、x方向とy方向で独立に集光し、それぞれファイバ入射端面のごく近傍に最小集光点を持ちその直径が
(φ c φ 0x θ x (2n 0 △n) -1/2 1/2
(φ c φ 0y θ y (2n 0 △n) -1/2 1/2
となるように集光したので、x方向とy方向で集光性能が異なるレーザ発振器に対しファイバ伝播後も全体として集光性能が保存されたレーザビームを出射できる固体レーザ装置を得ることができる効果がある。
【0203】
請求項20記載の発明によれば、固体素子3がスラブレーザ媒質で構成され、φ0 θの大きい方向に関してファイバ入射端面のごく近傍に最小集光点を持ち、最小集光点の直径が
(φ c φ 0 θ(2n 0 △n) -1/2 1/2
となるように集光したので、x方向とy方向で集光性能が異なる発振器に対し非常に簡単なレンズ構成で、ファイバ伝播後も全体として集光性能が大きく損なわれないレーザビームを出射できる固体レーザ装置を得ることができる効果がある。
【0204】
請求項21記載の発明によれば、この発明の光伝送装置または固体レーザ装置から出射されたレーザ光を、さらに集光するための集光光学系で集光し被加工物に照射しレーザ加工を行なうようにしたので、光ファイバ伝送を行ったにも関わらず極めて高精度のレーザ加工ができる効果がある。
【0205】
請求項22記載の発明によれば、この発明の光伝送装置または固体レーザ装置から出射されたレーザ光を直接被加工物に照射しレーザ加工を行なうようにしたので、集光レンズなしの非常に簡単な構成でレーザ焼き入れ等の加工が可能である効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による光伝送装置を示す構成図である。
【図2】 グレーデッドインデックス光ファイバ内でのレーザビームの伝播状況を示す説明図である。
【図3】 集光レンズの焦点距離を変化させて出射ビームのM2 値(M2 out)を測定した実験結果を示す説明図である。
【図4】 この発明の実施の形態2による光伝送装置を示す構成図である。
【図5】 この発明の実施の形態3による光伝送装置を示す構成図である。
【図6】 この発明の実施の形態4による光伝送装置を示す構成図である。
【図7】 この発明の実施の形態5による光伝送装置を示す構成図である。
【図8】 この発明の実施の形態6による光伝送装置を示す構成図である。
【図9】 この発明の実施の形態7による光伝送装置を示す構成図である。
【図10】 この発明の実施の形態8による光伝送装置を示す構成図である。
【図11】 この発明の実施の形態9による光伝送装置を示す構成図である。
【図12】 この発明の実施の形態10による光伝送装置を示す構成図である。
【図13】 この発明の実施の形態11による光伝送装置を示す構成図である。
【図14】 この発明の実施の形態12による光伝送装置を示す構成図である。
【図15】 この発明の実施の形態13による光伝送装置を示す構成図である。
【図16】 この発明の実施の形態14による光伝送装置を示す構成図である。
【図17】 この発明の実施の形態15による光伝送装置を示す構成図である。
【図18】 グレーデッドインデックス光ファイバにおける光ファイバ入射端でのレーザビームの位置ずれと出射ビームの集束値との関係を示す説明図である。
【図19】 この発明の実施の形態16による光伝送装置を示す構成図である。
【図20】 この発明の実施の形態17による固体レーザ装置を示す構成図である。
【図21】 この発明の実施の形態18による固体レーザ装置を示す構成図である。
【図22】 この発明の実施の形態19による固体レーザ装置を示す構成図である。
【図23】 この発明の実施の形態20による固体レーザ装置を示す構成図である。
【図24】 この発明の実施の形態21による固体レーザ装置を示す構成図である。
【図25】 この発明の実施の形態22による固体レーザ装置を示す構成図である。
【図26】 この発明の実施の形態23による固体レーザ装置を示す構成図である。
【図27】 図26に示す実施の形態23における入射ビームと出射ビームのM2 値との関係を示す説明図である。
【図28】 この発明の実施の形態24による固体レーザ装置を示す構成図である。
【図29】 この発明の実施の形態25による固体レーザ装置を示す構成図である。
【図30】 この発明の実施の形態26による固体レーザ装置を示す構成図である。
【図31】 この発明の実施の形態27によるレーザ加工装置を示す構成図である。
【図32】 この発明の実施の形態28によるレーザ加工装置を示す構成図である。
【図33】 この発明の実施の形態29によるレーザ加工装置を示す構成図である。
【図34】 この発明の実施の形態30によるレーザ加工装置を示す構成図である。
【図35】 従来の光伝送装置を示す構成図である。
【図36】 レーザビームの集束性の指標M2 を示す説明図である。
【図37】 光ファイバへの入射角と出射角との関係を示す説明図である。
【符号の説明】
1 全反射ミラー(レーザ共振器)、2 出力ミラー(レーザ共振器)、3 固体素子、4 光源、7 レーザ光、8、81、82 集光レンズ(光ファイバ入射光学系)、9 光ファイバ(グレーデッドインデックス光ファイバ)、10 レーザ発振器、11,12,13,17,191 アパーチャ、15 入射ビームモニタ装置、16 出射ビームモニタ装置、20 出力設定機構(調節手段)、21 集光レンズ(像転写光学系)、22 部分反射ミラー(像転写光学系)、23 集光レンズ(集光光学系)、70 レーザビーム、83 グレーデッドインデックスレンズ、84、85 シリンドリカルレンズ(光ファイバ入射光学系)、104 レンズホルダ移動装置(移動手段)、105 光ファイバホルダ移動装置(移動手段)、106 部分反射ミラー移動装置(移動手段)、107 集光レンズ移動装置(移動手段)、108 アパーチャ移動装置(調節手段)、161 パワーセンサ、162 フォトダイオード、800 被加工物。

Claims (22)

  1. グレーデッドインデックス光ファイバから構成され、前記光ファイバのコア径がφc 、コア中心での屈折率がn0 、コア中心とコア周囲部の屈折率差が△nの光ファイバと、レーザ光のビームウェイストでの直径がφ0、前記レーザ光のビーム開き角が2θである時、前記レーザ光が前記光ファイバの入射端面上または前記光ファイバの入射端面近傍に最小集光点を持ち、前記最小集光点での直径φin
    0.5φs ≦φin1.5φs
    ただし、
    φs =(φc φ0 θ(2n0 Δn)-1/21/2
    となるような光ファイバ入射光学系とを備えたマルチモードレーザビームを用いたレーザ光を光ファイバで伝送する光伝送装置。
  2. レーザ光の波長をλとした時に、前記レーザ光の集束性πθφ0 /λの値が100以下となることを特徴とする請求項1記載の光伝送装置。
  3. 光ファイバの入射端面近傍に、開口部の直径が光ファイバのコア径φc よりも小さく、かつφs よりも大きな値を有するアパーチャを備えたことを特徴とする請求項1から請求項2のうちのいずれか1項記載の光伝送装置。
  4. 光ファイバの出射端面近傍に、開口部の直径が光ファイバのコア径φc よりも小さく、かつφs よりも大きな値を有するアパーチャを備えたことを特徴とする請求項1から請求項2のうちのいずれか1項記載の光伝送装置。
  5. 光ファイバ入射光学系は集光レンズを有しており、前記集光レンズは二枚または二組の集光レンズにより構成されたことを特徴とする請求項1から請求項4のうちのいずれか1項記載の光伝送装置。
  6. 光ファイバに近接している側の集光レンズはグレーデッドインデックスレンズから構成されており、前記グレーデッドインデックスレンズを前記光ファイバに近接または密着して設置したことを特徴とする請求項5記載の光伝送装置。
  7. グレーデッドインデックスレンズの入射端近傍にアパーチャを備えたことを特徴とする請求項6記載の光伝送装置。
  8. 光ファイバのレーザ光入射端面でのレーザビームの大きさを計測する入射ビームモニタ装置、及び光ファイバ入射光学系の位置を移動させる移動手段をさらに備え、前記入射ビームモニタ装置からの出力をもとに前記光ファイバ入射光学系の位置を調整することを特徴とする請求項1から請求項7のうちのいずれか1項記載の光伝送装置。
  9. 光ファイバからの出射ビームを計測する出射ビームモニタ装置、及び光ファイバ入射光学系の位置を移動させる移動手段をさらに備え、前記出射ビームモニタ装置からの出力をもとに前記光ファイバ入射光学系の位置を調整することを特徴とする請求項1から請求項7のうちのいずれか1項記載の光伝送装置。
  10. 出射ビームモニタ装置はパワーセンサにより構成され、光ファイバの入射端面近傍にアパーチャを設置し、前記パワーセンサで検知されるレーザビームの出力が最大になるようにファイバ入射光学系を移動することを特徴とする請求項9記載の光伝送装置。
  11. 出射ビームモニタ装置は、光ファイバの出射側の光軸からずれた位置に設置したフォトダイオードで構成され、前記フォトダイオードの出力が最小になるようにファイバ入射光学系を移動することを特徴とする請求項9記載の光伝送装置。
  12. 出射ビームモニタ装置は、光ファイバの出射側に設置したアパーチャと前記アパーチャを通過したレーザビームを検知するパワーセンサにより構成され、前記アパーチャを通過するレーザビームのパワーが最大になるようにファイバ入射光学系を移動することを特徴とする請求項9記載の光伝送装置。
  13. レーザ光を発振するレーザ発振器と、前記レーザ発振器から発振されたレーザ光を集光する集光レンズと、前記集光レンズで収束された前記レーザ光を光ファイバの入射端面に集光し、前記光ファイバで伝送する光ファイバ入射光学系を有する光伝送装置において、前記光ファイバはグレーデッドインデックス光ファイバから構成され、さらに前記光ファイバ入射光学系と前記光ファイバの入射端面の片方または両方の位置を移動させる移動手段を備え、前記光ファイバ入射光学系と前記光ファイバの入射端面の片方または両方の位置を移動させることによって前記光ファイバから出射するレーザビームの集束性を制御することを特徴とする請求項1から請求項12のうちのいずれか1項記載の光伝送装置。
  14. 請求項1から請求項13のうちのいずれか1項記載の光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、前記レーザ共振器内に少なくともミラーと集光レンズとの組み合わせで構成される像転写光学系と、前記ミラーと前記集光レンズとを前記レーザ共振器の光軸方向に移動させる移動手段とを備え、前記ミラーと前記集光レンズの片方または両方を移動することにより前記光ファイバの入射端面に入射されるレーザビームのビーム直径を調節することを特徴とする固体レーザ装置。
  15. 光ファイバから出射される出射レーザビームのパワーの大きさを計測する出射ビームモニタ装置をさらに備え、前記出射ビームモニタ装置からの出力をもとにミラーと集光レンズの片方または両方を移動することを特徴とする請求項14記載の固体レーザ装置。
  16. 請求項1から請求項13のうちのいずれか1項記載の光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生された光をレーザ光として取り出すレーザ共振器と、前記レーザ共振器内に置かれたアパーチャ及び前記アパーチャの開口部の直径を増減する調節手段とから構成され、前記固体素子を励起するためのレーザ励起入力を一定に保ったままで、前記アパーチャの開口直径を増減することにより、前記レーザ光のパワーを調節することを特徴とする固体レーザ装置。
  17. 請求項1から請求項13のうちのいずれか1項記載の光伝送装置と、光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、該レーザ共振器内に置かれたアパーチャ及び該アパーチャをレーザ共振器の光軸方向に移動させる移動手段とから構成され、前記レーザ共振器内でレーザ励起入力一定のままで、前記アパーチャの位置を移動することにより前記レーザ光のパワーを調節することを特徴とする固体レーザ装置。
  18. 光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、前記レーザ光としてマルチモードレーザビームを用い、前記レーザ光を伝送する光ファイバとからなる光伝送装置を備えた固体レーザ装置において、前記光ファイバは、コア径φc 、コア中心での屈折率がn0 で、前記コア中心とコア周囲部の屈折率差が△nのグレーデッドインデックス光ファイバから構成されており、前記レーザ共振器は曲率の等しい全反射ミラーと出力ミラーとから構成され、 前記固体素子は、前記全反射ミラーと前記出力ミラー間の中心近傍に配置されたいわゆる対称型共振器内に置かれ、ある出力レベルにおける前記レーザ光のビームウェイストの直径がφc 、前記レーザ光のビーム開き角が2θである時、前記レーザ光が前記光ファイバの入射端面上あるいはそのごく近傍に最小集光点を持ち、前記最小集光点での前記出力レベルでのレーザ光の直径φin
    0.5φs ≦φin1.5φs
    ただし、
    φs =(φc φ0 θ(2n0 △n)-1/21/2
    となるようなファイバ入射光学系を備えていることを特徴とする固体レーザ装置。
  19. 光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、前記レーザ光を伝送する光ファイバとから成る光伝送装置とを備えた固体レーザ装置において、前記光ファイバは、コア径φc 、コア中心での屈折率がn0 でコア中心とコア周囲部の屈折率差が△nのグレーデッドインデックス光ファイバから構成され、前記固体素子は、薄板状のスラブ形状で構成され、前記レーザ共振器から取り出されたレーザ光は、x軸y軸2つの方向で集光特性の異なる異方性を持っており、x軸方向y軸方向のそれぞれにおいて前記レーザ光のビームウェイストの直径がφ0x、φ0y、前記レーザ光のビーム開き角が2θx 、2θy である時、前記レーザ光が前記光ファイバの入射端面上あるいはそのごく近傍にx軸方向、y軸方向それぞれにおいて最小集光点を持ち、前記最小集光点での直径φinx 、φiny がそれぞれ
    0.5φsx≦φinx 1.5φsx、0.5φsy≦φiny 1.5φsy
    ただし、
    φsx=(φc φ0xθx (2n0 △n)-1/21/2
    φsy=(φc φ0yθy (2n0 △n)-1/21/2
    となるようなファイバ入射光学系を備えたことを特徴とする固体レーザ装置。
  20. 光源から投光された光で励起されてレーザ媒質となり、光を発生する固体素子と、前記レーザ媒質から発生した光をレーザ光として取り出すレーザ共振器と、前記レーザ光を伝送する光ファイバから成る光伝送装置を備えた固体レーザ装置において、前記光ファイバは、コア径φc 、コア中心での屈祈率がn0 でコア中心とコア周囲部の屈折率差が△nのグレーデッドインデックス光ファイバから構成され、前記固体素子は、薄板状のいわゆるスラブ形状で構成され、前記レーザ共振器から取り出された前記レーザ光がx軸y軸の2つの方向で集光特性の異なる異方性を持っており、x軸方向y軸方向のそれぞれにおいて、前記レーザ光のビームウェイストの直径がφ0x、φ0y、前記レーザ光のビーム開き角が2θx 、2θy である時、前記レーザ光は、光ファイバ入射端面上あるいはそのごく近傍に最小集光点を持ち、φ0xθx とφ0yθy の大きな方の軸の前記最小集光点での直径φin
    0.5φS ≦φin1.5φS
    ただし、
    φS =(φc φ0 θ(2n0 △n)-1/21/2
    ただし、
    φ0 θ= MAX(φ0xθ x 、φ0yθy
    となるようなファイバ入射光学系を備えていることを特徴とする固体レーザ装置。
  21. 請求項1から請求項13のうちのいずれか1項記載の光伝送装置、または請求項14から請求項20のうちのいずれか1項記載の固体レーザ装置と、前記光伝送装置または前記固体レーザ装置から出射されたレーザ光を集光する集光光学系とから構成され、前記集光光学系で集光された前記レーザ光を被加工物に照射し、レーザ加工を行なうことを特徴とするレーザ加工装置。
  22. 請求項1から請求項13のうちのいずれか1項記載の光伝送装置、または請求項14から請求項20のうちのいずれか1項記載の固体レーザ装置から構成され、前記光伝送装置または前記固体レーザ装置から出射されたレーザ光を被加工物に直接照射しレーザ加工を行なうことを特徴とするレーザ加工装置。
JP25363795A 1994-10-14 1995-09-29 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置 Expired - Fee Related JP3645013B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25363795A JP3645013B2 (ja) 1994-10-14 1995-09-29 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置
GB9520850A GB2294126B (en) 1994-10-14 1995-10-11 Optical transmission and solid state laser devices using graded index optical fiber
GB9726180A GB2318882B (en) 1994-10-14 1995-10-11 Optical transmission and solid state laser devices using graded index optical fiber
DE19539558A DE19539558C2 (de) 1994-10-14 1995-10-16 Optische Übertragungsvorrichtung
DE19549531A DE19549531B4 (de) 1994-10-14 1995-10-16 Festkörperlaservorrichtung und Laserbearbeitungsvorrichtung
US08/714,304 US5815626A (en) 1994-10-14 1996-09-18 Optical transmission device, solid state laser device, and laser beam processing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24945994 1994-10-14
JP6-249459 1994-10-14
JP25363795A JP3645013B2 (ja) 1994-10-14 1995-09-29 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置

Publications (2)

Publication Number Publication Date
JPH08167754A JPH08167754A (ja) 1996-06-25
JP3645013B2 true JP3645013B2 (ja) 2005-05-11

Family

ID=26539300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25363795A Expired - Fee Related JP3645013B2 (ja) 1994-10-14 1995-09-29 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置

Country Status (2)

Country Link
JP (1) JP3645013B2 (ja)
GB (1) GB2294126B (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883077B2 (ja) * 2000-02-02 2007-02-21 富士電機システムズ株式会社 固体レーザ装置およびファイバへのレーザ光入光方法
JP4162876B2 (ja) * 2001-07-30 2008-10-08 松下電器産業株式会社 レーザ装置
JP4987199B2 (ja) * 2001-09-05 2012-07-25 株式会社東芝 光伝送装置、レーザ光発生・伝送装置及びレーザ加工装置
JP2007072134A (ja) * 2005-09-06 2007-03-22 Mitsubishi Electric Corp 波長変換レーザ装置
DE112005000610B4 (de) * 2005-09-14 2010-02-04 Mitsubishi Denki K.K. Stabförmiges Festkörper-Lasersystem
JP2007109978A (ja) * 2005-10-14 2007-04-26 Konica Minolta Opto Inc 半導体光源モジュール
JP2007136477A (ja) * 2005-11-16 2007-06-07 Disco Abrasive Syst Ltd レーザー加工装置
JP5045187B2 (ja) * 2007-03-30 2012-10-10 コニカミノルタアドバンストレイヤー株式会社 光学素子ユニット
JP5332571B2 (ja) * 2008-12-08 2013-11-06 株式会社ジェイテクト レーザ光と光ファイバとの光軸調整方法及びレーザ光と光ファイバとの光軸調整装置
DE202010006047U1 (de) * 2010-04-22 2010-07-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Strahlformungseinheit zur Fokussierung eines Laserstrahls
PL3693122T3 (pl) * 2010-12-16 2022-10-31 Bystronic Laser Ag Urządzenie do obróbki wiązką laserową zawierające pojedynczą soczewkę do skupiania światła
BE1020754A3 (fr) * 2012-06-14 2014-04-01 Centre Rech Metallurgique Dispositif de focalisation et de centrage d'un faisceau lumineux destine a l'optimisation de systemes spectrometriques.
US9865921B2 (en) 2013-01-28 2018-01-09 Bae Systems Plc Directional multi-band antenna
EP2760081A1 (en) * 2013-01-28 2014-07-30 BAE Systems PLC Directional multi-band antenna
US9468368B2 (en) * 2014-08-26 2016-10-18 Novartis Ag Optical coupling efficiency detection
JP5926340B2 (ja) 2014-09-12 2016-05-25 株式会社フジクラ Ldモジュール
DE102015205163B4 (de) * 2015-03-23 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optisches System für eine Laserbearbeitungsmaschine, mit einem optischen Element in einem Stecker eines Lichtleitkabels
US9572629B1 (en) * 2015-08-31 2017-02-21 Novartis Ag Sub-micron alignment of a monitoring fiber for optical feedback in an ophthalmic endo-illumination system
JP6704200B2 (ja) * 2016-03-09 2020-06-03 株式会社アマダ ファイバカップリング装置及びファイバレーザ加工機
JP6145194B2 (ja) * 2016-04-21 2017-06-07 株式会社フジクラ Ldモジュール
EP3281598A1 (en) * 2016-08-09 2018-02-14 Koninklijke Philips N.V. Light based skin treatment device and method
US10732365B2 (en) 2016-11-29 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Core adjustment method
US11333833B2 (en) 2016-12-06 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Alignment method
EP3683000B1 (en) * 2017-09-11 2023-05-24 Panasonic Intellectual Property Management Co., Ltd. Laser device
JP7065346B2 (ja) * 2018-05-25 2022-05-12 パナソニックIpマネジメント株式会社 ダイレクトダイオードレーザ加工装置およびその制御方法
WO2020054043A1 (ja) * 2018-09-13 2020-03-19 株式会社ニコン 光学装置および顕微鏡
CN114786865A (zh) * 2019-12-13 2022-07-22 松下知识产权经营株式会社 激光装置以及激光装置的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155379B1 (de) * 1984-03-02 1993-03-10 Siemens Aktiengesellschaft Koppelanordnung zum Ankoppeln eines Lichtwellenleiters an einen Halbleiterlaser und Verfahren zur Herstellung einer solchen Anordnung
DE3733019A1 (de) * 1987-09-30 1989-04-13 Siemens Ag Koppelanordnung zum einkoppeln von licht einer halbleiterlaserdiode in eine multimode-glasfaser
JPH02216111A (ja) * 1989-02-17 1990-08-29 Nec Corp 半導体レーザモジュール

Also Published As

Publication number Publication date
GB9520850D0 (en) 1995-12-13
GB2294126B (en) 1998-08-26
JPH08167754A (ja) 1996-06-25
GB2294126A (en) 1996-04-17

Similar Documents

Publication Publication Date Title
JP3645013B2 (ja) 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置
US5815626A (en) Optical transmission device, solid state laser device, and laser beam processing device
JP6140072B2 (ja) レーザ装置および加工装置
EP2561586B1 (en) Laser beam analysis apparatus
JP3265173B2 (ja) 固体レーザ装置
US6757310B2 (en) Solid-state laser for customized cornea ablation
US20030215181A1 (en) Method of coupling a laser signal to an optical carrier
US20130188178A1 (en) Method of and material processing apparatus for optimising the focus of a fibre laser; method of measuring changes in the focus of a fibre laser
US20050002607A1 (en) Method for manufacturing of an optical fiber with a decoupling interface for scattered light, use of an optical fiber and device for monitoring of the light power guided through an optical fiber
US20020126724A1 (en) Laser-diode-pumped solid-state laser apparatus and status diagnostic method of the same
US20100142565A1 (en) Laser light source
KR101587941B1 (ko) 레이저 빔조사 장치
JPH06152018A (ja) 固体レーザ装置ならびにレーザ加工装置
US20230238766A1 (en) Dual beam single spatial mode laser for handheld libs instruments and similar applications
JP4544014B2 (ja) レーザ装置およびファイバカップリングモジュール
JP2000164958A (ja) Ld励起レーザ発振方法とレーザ発振器、これによるレーザ加工装置
WO2019225174A1 (ja) 加工ヘッド
JP7291501B2 (ja) レーザ加工装置
JP2020060725A (ja) レーザ発振器及びそれを用いたレーザ加工装置
JP2003285189A (ja) レーザ加工装置
JPH0936462A (ja) 固体レーザ励起方法及び固体レーザ装置
JP2000340868A (ja) 固体レーザ装置及びこれを用いたレーザ加工装置
EP0636282B1 (en) Laser device
JP3404296B2 (ja) レーザ発振装置
JP3767318B2 (ja) Ld励起固体レーザ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees