JP3644429B2 - Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method - Google Patents

Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method Download PDF

Info

Publication number
JP3644429B2
JP3644429B2 JP2001368774A JP2001368774A JP3644429B2 JP 3644429 B2 JP3644429 B2 JP 3644429B2 JP 2001368774 A JP2001368774 A JP 2001368774A JP 2001368774 A JP2001368774 A JP 2001368774A JP 3644429 B2 JP3644429 B2 JP 3644429B2
Authority
JP
Japan
Prior art keywords
steel wire
layer
plating
galvanized steel
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001368774A
Other languages
Japanese (ja)
Other versions
JP2003166041A (en
Inventor
克洋 宇野
信昭 堤
丈治 内田
Original Assignee
竪川線材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竪川線材株式会社 filed Critical 竪川線材株式会社
Priority to JP2001368774A priority Critical patent/JP3644429B2/en
Publication of JP2003166041A publication Critical patent/JP2003166041A/en
Application granted granted Critical
Publication of JP3644429B2 publication Critical patent/JP3644429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)
  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、架空送電線用超厚亜鉛めっき鋼線とその製造方法、特に表面性状ならびに加工性良好な架空送電線用亜鉛めっき鋼線とその製造方法に関する。
【0002】
【従来の技術】
架空送電線は、鉄塔などの支柱に支持された電力搬送用の電線と雷遮蔽用の架空地線から構成されている。電線は、通常10本程度の鋼線を撚った抗張力用芯線の周りにアルミニウム等の導線を巻き付けて構成される。また、架空地線には鋼より線が使用されることが多い。
【0003】
これらに使用される鋼線には、すでに規格があり、亜鉛めっき鋼線と呼ばれている。
例えば、ASTM B498 には、Class Aとして亜鉛付着量260g/m2 以上、Class Bとして亜鉛付着量520g/m2 以上、Class Cとして亜鉛付着量780g/m2 以上の亜鉛めっき鋼線が規定されている。
【0004】
JIS にも同様の規格があり、JIS C3110 には、架空送電線に使用する鋼芯アルミニウムより線の鋼芯線として、例えば線径3.2mm の場合、鋼線の溶融亜鉛めっきあるいは電気亜鉛めっきによる亜鉛付着量は245g/m2 以上であることが規定されている。
【0005】
このように従来にあっても、すでに架空送電線用亜鉛めっき鋼線としては実際に各種のものが使用されていることが判る。
また、JIS G3548 では、亜鉛めっき鋼線としては、例えば線径3.2 〜4.Omm の場合、用途によって250g/m2 以上、230g/m2 以上あるいは50g/m2以上というように規定されている。同じく、JIS G3537 においては、亜鉛付着量を薄めっき、厚めっき、特厚めっきに区分し、例えば線径3.2mm の場合、薄めっきを亜鉛付着量160g/m2 以上、厚めっきを亜鉛付着量230g/m2 以上とし、特厚めっきについては規定していない。
【0006】
鋼線が亜鉛めっきを施して用いられるのは、大気中で使用されることから、所定の耐食性が必要とされるからである。
また、架空送電線用の鋼線は、複数の細い線を撚り合わせて太い撚り線として用いることから、めっき層も含めて加工性に優れていることが求められる。そのため、上述のJIS C3110 の規格によれば、巻き付け性として、溶融亜鉛めっきによるめっき鋼線では鋼線の径の15倍、電気亜鉛めっきによるめっき鋼線では鋼線の径の5倍の直径を有する円筒に緊密に6回以上巻き付けた時にめっき層に著しい亀裂が生じないことが求められている。
【0007】
その他、表面の平滑性も求められるが、これは、より線としたときの線同士の密着性や電気的な性能を高めるためであり、また、機械的外力によるめっき層の剥離の危険性を避けるためである。
【0008】
ところで、このような架空送電線用の鋼線に対するめっき層は、通常、その効果とコストを考慮して、溶融亜鉛めっきによって形成されている。
ここに、鋼線に施される溶融亜鉛めっき層の構造を説明すると、図1に模式的に示すように、基体である鋼素地10の上にFe−Zn合金層12が形成され、その上にZn層、例えば純Zn層14が設けられた構造となっている。電気亜鉛めっきの場合、この合金層12は生成しない。合金層12およびその外層部である純Zn層を含めた被覆層をめっき層と称する。
【0009】
【発明が解決しようとする課題】
しかしながら、最近になって、酸性雨等に代表されるように、大気中における各種腐食要因の増加が見られ、それに対して架空送電線にあっても、更なる耐食性の改善が求められるようになってきている。
【0010】
一方、撚り加工の高速化等の観点から、加工性についても更なる改善が求められるとともに、送電線の工事時に受ける機械的ダメージを極力小さくすることが求められる。
【0011】
そして、長距離にわたる超高圧送電が行われるようになり、めっき鋼線にも一層優れた経済性とその信頼性の更なる改善が求められるようになってきている。
ここに、本発明の課題は、より安価な手段で製造される、耐食性および加工性、耐剥離性に優れた信頼性の高い架空送電線用亜鉛めっき鋼線とその製造方法を提供することである。
【0012】
より具体的には、長距離にわたる超高圧送電を行う条件下での耐食性に優れ、高速撚り線加工に際して求められる加工性を満足し、さらに安価な手段により製造可能な信頼性の高い架空送電線用亜鉛めっき鋼線とその製造方法を提供することである。
【0013】
【課題を解決するための手段】
架空送電線用鋼線に溶融亜鉛めっきを行う場合、その厚さは高々300g/m2 であり、耐食性を改善するには十分ではない。しかしながら、単に耐食性を改善するのであれば、めっき層の厚さを厚くすればよいが、めっき層を厚くすると今度は加工性が十分でなくなるという二律背反的な問題がある。
【0014】
なお、電気めっきの場合、時間をかければめっき層を厚くできるが、溶融亜鉛めっきの場合、溶融めっき浴からの引上げ速度を大きくしても厚膜化には限度があるからである。
【0015】
ところで、JIS およびASTMの規格でも300g/m2 を超える溶融亜鉛めっきについては何ら規定していない。これは実際の問題としてそのような特厚めっきは製造できないのが実情であるためである。現在、溶融亜鉛めっき法による架空送電線用亜鉛めっき鋼線としては、通常200 〜300g/m2 のめっき付着量の鋼線が使用されているが、本発明者らの実験によれば、そのような溶融亜鉛めっき層を単純に厚膜化したときには、めっき浴からの引き上げ速度を単純に増加させることで厚膜化を図っていることから、その厚膜化、つまり引き上げ速度がある限界を越えると急激にその表面粗さが増大して、それに伴いめっき未着、コブ状の付着などの表面欠陥発生率も急激に増大して実用化できないことが判明した。
【0016】
図2において実線で示すグラフは、溶融亜鉛めっき層厚さとそのときに表面粗さとの関係を示すグラフである。溶融亜鉛めっき層厚さが440g/m2 を越えると表面粗さが急速に増大しているのが分かる。このように表面粗さが大きくなると、実用的とは言えない。通常、表面粗さは、Rmaxで50μm 以下とするのが好ましい。
【0017】
同じく、図3に実線で示すように、溶融亜鉛めっき層厚さが440g/m2 を越えると、表面欠陥の発生が多くなることが分かる。
このように、従来にあってFe−Zn合金層厚さを20μm 未満として、例えば付着量600g/m2 を得るには、純亜鉛部の付着量を450g/m2 以上確保することが必要となり、めっき表面粗さRmax50μm 超となる。
【0018】
一方、Fe−Zn合金層厚さが30μm を超えると、架空電線の撚り工程でめっきの割れや剥離が発生するようになる。
ここに、本発明者らは、かかる課題を解決するために、種々検討を重ね、その経済性を考えた場合、所要の耐食性を改善するためには、溶融亜鉛めっきが有効であることに着目し、溶融亜鉛めっきを厚膜化すること、およびそのように厚膜化したときの加工性の劣化 (表面粗さの増加) を如何に改善するかについてさらに種々検討を重ねた。
【0019】
そこで、まず、鋼線に溶融亜鉛めっきを行う場合の冶金学的構造を解析すべく、その生成機構を検討した。
すなわち、溶融亜鉛めっき法では、こうした厚亜鉛めっき鋼線を安定して製造するのは、使用するめっきラインの構成 (亜鉛めっき槽の浸漬距離等) に制約されて一般に非常に困難とされている。
【0020】
すでに述べたように、溶融亜鉛めっき鋼線のめっき層は、図1に示すごとく、Fe−Zn合金層とZn層、例えば純Zn層の2層から構成される。以下、純亜鉛層として説明する。
【0021】
Fe−Zn合金層は、溶融亜鉛めっき槽内での鋼線と溶融亜鉛との間での合金化反応で形成され、均一に被膜形成される。
なお、合金層厚さは亜鉛めっき槽内の浸漬時間と溶融亜鉛浴温度で決定される。
【0022】
純亜鉛層は、亜鉛めっき槽から鋼線を引き上げる過程で鋼線に付着して引き揚げられ、合金層の上に層状に固まり、外層としての純亜鉛層を形成する。
純亜鉛層は、層厚さが薄い場合は比較的に均一に形成されるが、厚くなるに従って不均一化する傾向にある。また、ドロス等の不純物をめっき層に巻き込む危険性がある。
【0023】
一方、Fe−Zn合金層は金属間化合物のため、硬度(HV:140)で非常に硬いが、純亜鉛層は硬度(HV:55) で延性に富む。
従って、Fe−Zn合金層が厚くなりすぎると架空線の撚り工程で合金層の割れが発生する危険性がある。
【0024】
そでここれらの点を実験的にも確認するために、溶融亜鉛めっき層に生じるFe−Zn合金層の厚さを厚くしためっき層を形成して、そのときの溶融亜鉛めっき層厚さと表面性状との関係を求めたところ、図2および図3の点線で示す結果が得られた。すなわち、Fe-Zn 合金層厚さを17μm から25μm へと増加させて溶融亜鉛めっきを行ったところ、合計亜鉛めっき層厚さを600g/m2 にまて増大させても表面粗さは増加しないことを見いだした。
【0025】
本発明におけるかかるめっき層厚さはJIS 規格の特厚めっき厚さを超えており、本明細書では、「超厚」めっき層と言う。
かかる知見は、Fe-Zn 合金層厚さを従来のような17μm 程度から25μm 程度にまで増加させることで、亜鉛めっき層を飛躍的に増加できることを意味するのである。
【0026】
よって、本発明者らは、架空送電線の厚亜鉛めっき鋼線を溶融亜鉛めっき法で製造するためには、Fe−Zn合金層と純亜鉛層に適切な比率があり、めっき付着量≧520g/m2 の溶融亜鉛めっき鋼線の場合、Fe−Zn合金層厚さが20〜30μm であることが重要であることを知り、本発明を完成した。
【0027】
ここに、本発明は次の通りである。
(1) めっき付着量が520g/m2 以上のめっき層を備えた溶融亜鉛めっき鋼線であって、当該めっき層におけるFe−Zn合金層厚さが20〜30μm で、外層部が亜鉛層で構成され、同じく当該めっき層のめっき表面層粗さがRmax50μm 以下であることを特徴とする架空送電線用亜鉛めっき鋼線。
【0028】
(2) 溶融亜鉛めっき槽に鋼線を連続的に浸漬し、所定速度で引き上げて第1溶融めっき層を形成し、該溶融めっき層が凝固してから、得られためっき鋼線を溶融亜鉛めっき槽に浸漬し、所定速度で引き上げる操作を1回または2回以上繰り返すことを特徴とする、上記(1) 記載の架空送電線用亜鉛めっき鋼線の製造方法。
【0029】
ここに、本発明の好適態様によれば、めっき付着量が520g/m2 以上、680g/m2 以下である。なお、上記Fe−Zn合金層厚さ20〜30μm は、めっき付着量換算で150 〜215g/m2 である。同じく、外層部を構成する亜鉛層、例えば純亜鉛層は、その残部でめっき付着量換算で450 〜385g/m2 である。
【0030】
【発明の実施の形態】
次に、本発明の実施の形態をさらに具体的に説明する。
本発明の特徴とするところは、架空送電線用亜鉛めっき鋼線において、合金層の厚さを20〜30μm とすることで、めっき付着量520g/m2 以上を確保することにある。
【0031】
このように、本発明にあっては、合金層厚さを20〜30μm とするが、これは、繰り返し溶融亜鉛めっきを行うことで溶融亜鉛めっき層の厚膜化と同時に実現するのである。
【0032】
ここに、本発明にかかる上述のようなめっき鋼線を製造する方法について簡単に説明する。
まず、所定線径の鋼線を用意し、これに溶融亜鉛めっきを行うが、そのときの浴通過速度 (引き上げ速度) とめっき厚さとの関係を予め求めておき、目的厚さのめっきが何回の浸漬で実現されるか予測し、そのときの温度条件と合計浸漬時間との関係から、合金層の形成厚さを予測する。簡単に云えば、浸漬( めっき) 回数に応じて合金層の厚さは増大するから、所定厚さの合金層が確保できる最少回数で目標とするめっき層厚さが達成できる浴通過速度を求めることで、所定の通過速度、および浸漬回数が決定される。なお、めっき処理自体はすでに慣用の操作を繰り返せばよい。本発明において特にその点において制限されることはない。
【0033】
次に、実施例によって本発明の作用効果をさらに具体的に説明する。
【0034】
【実施例】
本例では、JIS G3506SWRH67 Bを素材とした架空送電線用鋼線(直径3.15mm)を用意し、これに通常の溶融亜鉛めっき槽を使用して、溶融亜鉛めっきを行った。めっき槽の通過速度は29.5m/min.であり、そのときのめっき浴の温度は445 ℃であった。
【0035】
このようにして得られためっき鋼線に「鋼線の直径の5倍径の円筒」を用いて巻付け試験を行った。そのときのめっき層の割れの有無により加工性を評価した。また、合金層厚さは光学顕微鏡により測定し、表面粗さは表面粗さ計により測定した。
【0036】
JIS C3110 の規格では、溶融亜鉛めっき鋼線の巻付け試験は「鋼線の直径の15倍径の円筒」を用いて行うが、本発明の場合には、より過酷な試験条件となる「鋼線の直径の5倍径の円筒」を用いて行った。
【0037】
比較例として、めっき槽での通過速度、つまり引き上げ速度を36.5m/min.に上げて590g/m2 の付着量を確保した場合、および本発明に準じて複数回数の浸潰を行うことで600g/m2 の付着量を確保した場合を示す。
【0038】
結果を表1にまとめて示す。
【0039】
【表1】

Figure 0003644429
【0040】
表1に示す結果からも分かるように、本発明によれば、亜鉛付着量590g/m2 以上であって、めっき層の割れが見られず、表面粗さRmaxも35μm 以下に抑えることができた。
【0041】
なお、比較めっき鋼線1は、Fe-Zn 合金層厚さが17.5μm と小さいため、表面粗さがRmax60μm を越えている。また比較めっき鋼線2は、Fe-Zn 合金層厚さが30μm を越えているため、撚り線加工に際してめっき層の割れが見られ、加工性が十分とは言えない。
【0042】
【発明の効果】
本発明にかかるめっき鋼線は、架空送電線用厚めっき鋼板に要求される諸特性を有するのであって、本発明の実際上の意義が明らかである。
【図面の簡単な説明】
【図1】溶融亜鉛めっき鋼線のめっき層を示す模式的説明図である。
【図2】トータル亜鉛付着量と表面粗さの関係を示すグラフである。
【図3】トータル亜鉛付着量と表面欠陥発生率の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-thick galvanized steel wire for an overhead power transmission line and a method for producing the same, and more particularly to a galvanized steel wire for an overhead power transmission line having good surface properties and workability and a method for producing the same.
[0002]
[Prior art]
The overhead power transmission line is composed of an electric power carrying wire supported by a pillar such as a steel tower and an overhead ground wire for lightning shielding. An electric wire is usually formed by winding a conducting wire such as aluminum around a tensile strength core wire in which about 10 steel wires are twisted. Further, steel stranded wires are often used for overhead ground wires.
[0003]
The steel wires used for these already have a standard and are called galvanized steel wires.
For example, the ASTM B498, zinc coating weight 260 g / m 2 or more as a Class A, zinc coating weight 520 g / m 2 or more as a Class B, zinc coating weight 780 g / m 2 or more galvanized steel wire as Class C is defined ing.
[0004]
There is a similar standard in JIS, and JIS C3110 specifies that the steel core wire used for the overhead power transmission line is a steel core wire with a diameter of 3.2 mm. The amount of adhesion is specified to be 245 g / m 2 or more.
[0005]
Thus, even in the past, it can be seen that various types of galvanized steel wires for overhead power transmission lines are actually used.
In JIS G3548, for example, when the wire diameter is 3.2 to 4.Omm, galvanized steel wire is specified as 250 g / m 2 or more, 230 g / m 2 or more, or 50 g / m 2 or more depending on the application. . Similarly, in JIS G3537, the zinc adhesion amount is divided into thin plating, thick plating, and special thickness plating.For example, when the wire diameter is 3.2 mm, thin plating is zinc adhesion amount of 160 g / m 2 or more, and thick plating is zinc adhesion amount. and 230 g / m 2 or more, it does not define for especially thick plating.
[0006]
The reason why the steel wire is used after being galvanized is that it is used in the atmosphere, so that a predetermined corrosion resistance is required.
Moreover, since the steel wire for overhead power transmission lines is used as a thick stranded wire by twisting a plurality of thin wires, it is required to have excellent workability including a plating layer. Therefore, according to the above-mentioned standard of JIS C3110, the winding property is 15 times the diameter of the steel wire in the galvanized steel wire and 5 times the diameter of the steel wire in the electrogalvanized steel wire. It is required that the plating layer does not crack significantly when it is tightly wound around the cylinder it has six times or more.
[0007]
In addition, smoothness of the surface is also required, but this is to improve the adhesion and electrical performance of the wires when they are stranded, and to reduce the risk of peeling of the plating layer due to mechanical external force. This is to avoid it.
[0008]
By the way, the plating layer for the steel wire for such an overhead power transmission line is usually formed by hot dip galvanization in consideration of its effect and cost.
Here, the structure of the hot dip galvanized layer applied to the steel wire will be described. As schematically shown in FIG. 1, an Fe—Zn alloy layer 12 is formed on a steel substrate 10 as a base, In addition, a Zn layer, for example, a pure Zn layer 14 is provided. In the case of electrogalvanization, this alloy layer 12 is not generated. The coating layer including the alloy layer 12 and the pure Zn layer that is the outer layer portion thereof is referred to as a plating layer.
[0009]
[Problems to be solved by the invention]
However, recently, as represented by acid rain, etc., various corrosive factors in the atmosphere have been increased, and on the other hand, further improvement in corrosion resistance is required even for overhead transmission lines. It has become to.
[0010]
On the other hand, from the viewpoint of speeding up the twisting process and the like, further improvement is required for workability, and it is required to minimize the mechanical damage received during the construction of the transmission line.
[0011]
Then, ultra-high voltage power transmission over a long distance has been performed, and further improved economic efficiency and reliability of plated steel wires have been demanded.
Here, the object of the present invention is to provide a highly reliable galvanized steel wire for an overhead power transmission line that is manufactured by a cheaper means and has excellent corrosion resistance, workability, and peel resistance, and a method for manufacturing the same. is there.
[0012]
More specifically, it has excellent corrosion resistance under conditions of ultra-high-voltage power transmission over long distances, satisfies the workability required for high-speed stranded wire processing, and is a highly reliable overhead power transmission line that can be manufactured by inexpensive means. It is to provide a galvanized steel wire and its manufacturing method.
[0013]
[Means for Solving the Problems]
When hot dip galvanizing is performed on steel wires for overhead power transmission lines, the thickness is 300 g / m 2 at most, which is not sufficient to improve corrosion resistance. However, if the corrosion resistance is simply improved, the thickness of the plating layer may be increased. However, if the plating layer is increased, there is a trade-off problem that this time, the workability becomes insufficient.
[0014]
In the case of electroplating, the plating layer can be thickened over time, but in the case of hot dip galvanizing, there is a limit to increasing the film thickness even if the pulling rate from the hot dip bath is increased.
[0015]
By the way, the JIS and ASTM standards do not stipulate any hot dip galvanizing exceeding 300 g / m 2 . This is because such a special thickness plating cannot be manufactured as an actual problem. Currently, as galvanized steel wires for overhead power transmission lines by hot dip galvanizing, steel wires with a coating weight of 200 to 300 g / m 2 are usually used, but according to our experiments, When such a hot-dip galvanized layer is simply thickened, the film is made thicker by simply increasing the pulling rate from the plating bath. When it exceeds, the surface roughness suddenly increases, and as a result, the rate of occurrence of surface defects such as unplated and bumpy deposits increases rapidly, and it has been found that it cannot be put into practical use.
[0016]
The graph shown by the solid line in FIG. 2 is a graph showing the relationship between the hot-dip galvanized layer thickness and the surface roughness at that time. It can be seen that the surface roughness rapidly increases when the thickness of the hot dip galvanized layer exceeds 440 g / m 2 . When the surface roughness becomes large in this way, it cannot be said that it is practical. Usually, the surface roughness is preferably 50 μm or less in terms of Rmax.
[0017]
Similarly, as indicated by a solid line in FIG. 3, it can be seen that surface defects increase when the thickness of the hot dip galvanized layer exceeds 440 g / m 2 .
As described above, in order to obtain an adhesion amount of 600 g / m 2 , for example, in the conventional case where the Fe—Zn alloy layer thickness is less than 20 μm, it is necessary to secure an adhesion amount of pure zinc part of 450 g / m 2 or more. The plating surface roughness exceeds Rmax 50μm.
[0018]
On the other hand, if the Fe—Zn alloy layer thickness exceeds 30 μm, cracking or peeling of the plating occurs in the twisting process of the overhead electric wire.
Here, in order to solve such a problem, the present inventors have made various studies, and when considering the economical efficiency, attention is paid to the fact that hot dip galvanization is effective for improving the required corrosion resistance. Furthermore, various studies were made on how to increase the thickness of hot dip galvanizing and how to improve the deterioration of workability (increase in surface roughness) when increasing the thickness.
[0019]
In order to analyze the metallurgical structure in the case of hot dip galvanizing on steel wire, we first examined the mechanism of its formation.
In other words, in the hot dip galvanizing method, it is generally very difficult to stably manufacture such a thick galvanized steel wire due to the configuration of the plating line used (such as the immersion distance of the galvanizing tank). .
[0020]
As already described, the plated layer of the hot dip galvanized steel wire is composed of two layers of an Fe—Zn alloy layer and a Zn layer, for example, a pure Zn layer, as shown in FIG. Hereinafter, it demonstrates as a pure zinc layer.
[0021]
The Fe—Zn alloy layer is formed by an alloying reaction between the steel wire and the molten zinc in the hot dip galvanizing tank, and a uniform film is formed.
The alloy layer thickness is determined by the immersion time in the galvanizing tank and the molten zinc bath temperature.
[0022]
The pure zinc layer adheres to the steel wire in the process of lifting the steel wire from the galvanizing tank and is pulled up and solidifies into a layer on the alloy layer to form a pure zinc layer as an outer layer.
The pure zinc layer is formed relatively uniformly when the layer thickness is thin, but tends to become non-uniform as the thickness increases. In addition, there is a risk that impurities such as dross are caught in the plating layer.
[0023]
On the other hand, since the Fe-Zn alloy layer is an intermetallic compound, it is very hard in hardness (HV: 140), while the pure zinc layer is rich in ductility with hardness (HV: 55).
Therefore, if the Fe—Zn alloy layer becomes too thick, there is a risk of cracking of the alloy layer during the overhead wire twisting process.
[0024]
Therefore, in order to confirm these points experimentally, a plating layer with a thickened Fe-Zn alloy layer formed in the hot dip galvanized layer was formed, and the hot dip galvanized layer thickness and surface at that time were formed. When the relationship with the properties was determined, the results indicated by the dotted lines in FIGS. 2 and 3 were obtained. In other words, when hot dip galvanizing was performed with the Fe-Zn alloy layer thickness increased from 17 μm to 25 μm, the surface roughness did not increase even when the total galvanized layer thickness was increased to 600 g / m 2. I found out.
[0025]
The plating layer thickness in the present invention exceeds the special thickness plating thickness of the JIS standard, and is referred to as “ultra-thick” plating layer in this specification.
This finding means that the galvanized layer can be dramatically increased by increasing the thickness of the Fe—Zn alloy layer from about 17 μm to about 25 μm.
[0026]
Therefore, the present inventors have an appropriate ratio between the Fe-Zn alloy layer and the pure zinc layer in order to manufacture the thick galvanized steel wire of the overhead power transmission line by the hot dip galvanizing method, and the amount of plating adhesion ≧ 520 g In the case of a hot dip galvanized steel wire of / m 2 , it was found that the Fe—Zn alloy layer thickness was 20-30 μm, and the present invention was completed.
[0027]
Here, the present invention is as follows.
(1) A hot-dip galvanized steel wire with a plating layer with a coating weight of 520 g / m 2 or more, the Fe-Zn alloy layer thickness in the plating layer being 20-30 μm, and the outer layer part being a zinc layer A galvanized steel wire for an overhead power transmission line, characterized in that the plating surface layer roughness of the plating layer is Rmax 50 μm or less.
[0028]
(2) A steel wire is continuously immersed in a hot dip galvanizing tank, pulled up at a predetermined speed to form a first hot dip plating layer, and after the hot dip plating layer solidifies, the obtained galvanized steel wire is hot dip galvanized. The method for producing a galvanized steel wire for an overhead power transmission line according to (1) above, wherein the operation of immersing in a plating tank and pulling up at a predetermined speed is repeated once or twice or more.
[0029]
Here, according to a preferred embodiment of the present invention, the amount of plating deposition is 520 g / m 2 or more and 680 g / m 2 or less. The Fe—Zn alloy layer thickness of 20 to 30 μm is 150 to 215 g / m 2 in terms of the amount of plating. Similarly, a zinc layer constituting the outer layer portion, for example, a pure zinc layer, has a balance of 450 to 385 g / m 2 in terms of plating adhesion.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, the embodiment of the present invention will be described more specifically.
The feature of the present invention is to secure a plating adhesion amount of 520 g / m 2 or more by setting the thickness of the alloy layer to 20 to 30 μm in the galvanized steel wire for an overhead power transmission line.
[0031]
Thus, in the present invention, the alloy layer thickness is set to 20 to 30 μm, which is realized simultaneously with the thickening of the hot dip galvanized layer by repeatedly performing hot dip galvanizing.
[0032]
Here, a method for producing the above-described plated steel wire according to the present invention will be briefly described.
First, a steel wire having a predetermined wire diameter is prepared, and hot dip galvanizing is performed on this, and the relationship between the bath passage speed (pulling speed) and the plating thickness at that time is obtained in advance to determine what the desired thickness of plating is. The formation thickness of the alloy layer is predicted from the relationship between the temperature condition at that time and the total immersion time. Simply put, the thickness of the alloy layer increases with the number of immersions (plating). Therefore, the bath passage speed at which the target plating layer thickness can be achieved with the minimum number of times that an alloy layer with a predetermined thickness can be secured is obtained. Thus, a predetermined passing speed and the number of immersions are determined. In addition, what is necessary is just to repeat conventional operation already for the plating process itself. The present invention is not particularly limited in that respect.
[0033]
Next, the effects of the present invention will be described more specifically with reference to examples.
[0034]
【Example】
In this example, a steel wire for an overhead power transmission line (diameter 3.15 mm) made of JIS G3506SWRH67 B was prepared, and this was hot dip galvanized using a normal hot dip galvanizing tank. The passing speed of the plating tank was 29.5 m / min., And the temperature of the plating bath at that time was 445 ° C.
[0035]
A winding test was performed on the plated steel wire thus obtained using a “cylinder having a diameter 5 times the diameter of the steel wire”. The workability was evaluated based on the presence or absence of cracks in the plating layer. The alloy layer thickness was measured with an optical microscope, and the surface roughness was measured with a surface roughness meter.
[0036]
In the JIS C3110 standard, the galvanized steel wire winding test is performed using a “cylinder 15 times the diameter of the steel wire”, but in the case of the present invention, “steel” is a more severe test condition. This was carried out using a cylinder having a diameter 5 times the diameter of the wire.
[0037]
As a comparative example, when the passing speed in the plating tank, that is, the pulling speed is increased to 36.5 m / min. To secure an adhesion amount of 590 g / m 2 , and by performing multiple times in accordance with the present invention, The case where an adhesion amount of 600 g / m 2 is secured is shown.
[0038]
The results are summarized in Table 1.
[0039]
[Table 1]
Figure 0003644429
[0040]
As can be seen from the results shown in Table 1, according to the present invention, the zinc adhesion amount is 590 g / m 2 or more, no cracking of the plating layer is observed, and the surface roughness Rmax can be suppressed to 35 μm or less. It was.
[0041]
Incidentally, the comparative plated steel wire 1 has a surface roughness exceeding Rmax 60 μm because the Fe—Zn alloy layer thickness is as small as 17.5 μm. Moreover, since the comparative plated steel wire 2 has an Fe—Zn alloy layer thickness exceeding 30 μm, cracks in the plated layer are observed during stranded wire processing, and the workability cannot be said to be sufficient.
[0042]
【The invention's effect】
The plated steel wire according to the present invention has various characteristics required for a thick plated steel sheet for an overhead power transmission line, and the practical significance of the present invention is clear.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a plated layer of a hot dip galvanized steel wire.
FIG. 2 is a graph showing the relationship between total zinc adhesion and surface roughness.
FIG. 3 is a graph showing the relationship between total zinc adhesion and surface defect occurrence rate.

Claims (2)

めっき付着量が520g/m2 以上のめっき層を備えた溶融亜鉛めっき鋼線であって、当該めっき層におけるFe−Zn合金層厚さが20〜30μm で、外層部が亜鉛層で構成され、同じく当該めっき層のめっき表面層粗さがRmax50μm 以下であることを特徴とする架空送電線用亜鉛めっき鋼線。A hot-dip galvanized steel wire having a plating layer with a plating adhesion amount of 520 g / m 2 or more, wherein the thickness of the Fe-Zn alloy layer in the plating layer is 20 to 30 μm, and the outer layer portion is composed of a zinc layer, Similarly, a galvanized steel wire for an overhead power transmission line, wherein the plating layer has a surface roughness Rmax of 50 μm or less. 溶融亜鉛めっき槽に鋼線を連続的に浸漬し、所定速度で引き上げて第1溶融めっき層を形成し、該溶融めっき層が凝固してから、得られためっき鋼線を溶融亜鉛めっき槽に浸漬し、所定速度で引き上げる操作を1回または2回以上繰り返すことを特徴とする、請求項1記載の架空送電線用亜鉛めっき鋼線の製造方法。A steel wire is continuously immersed in a hot dip galvanizing tank, pulled up at a predetermined speed to form a first hot dip plating layer, and after the hot dip plating layer is solidified, the obtained galvanized steel wire is put into a hot dip galvanizing tank. The method for producing a galvanized steel wire for an overhead power transmission line according to claim 1, wherein the operation of dipping and pulling up at a predetermined speed is repeated once or twice or more.
JP2001368774A 2001-12-03 2001-12-03 Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method Expired - Fee Related JP3644429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368774A JP3644429B2 (en) 2001-12-03 2001-12-03 Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368774A JP3644429B2 (en) 2001-12-03 2001-12-03 Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003166041A JP2003166041A (en) 2003-06-13
JP3644429B2 true JP3644429B2 (en) 2005-04-27

Family

ID=19178310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368774A Expired - Fee Related JP3644429B2 (en) 2001-12-03 2001-12-03 Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3644429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109828A (en) * 2014-06-12 2014-10-22 国家电网公司 Hot-dip galvanized alloy plating for electric transmission line overhead ground wire and preparing process thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755909B2 (en) * 2018-08-24 2020-09-16 日亜鋼業株式会社 Manufacturing method and manufacturing system for galvanized deformed steel bars
CN113091679A (en) * 2021-04-21 2021-07-09 中钢集团郑州金属制品研究院有限公司 Method suitable for measuring thickness of soap powder on surface of steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109828A (en) * 2014-06-12 2014-10-22 国家电网公司 Hot-dip galvanized alloy plating for electric transmission line overhead ground wire and preparing process thereof

Also Published As

Publication number Publication date
JP2003166041A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP7359894B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same
JP3704311B2 (en) Plated steel wire with high corrosion resistance and excellent workability and manufacturing method thereof
KR102384674B1 (en) Plated steel sheet having excellent corrosion resistance, galling resistance, workability and surface property and method for manufacturing the same
JPWO2010082678A1 (en) Hot-dip Zn-Al-Mg-Si-Cr alloy-plated steel with excellent corrosion resistance
CN108018513A (en) A kind of dip galvanized aluminum magnesium clad steel sheet and its manufacture method
JP2001107213A (en) HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD
JP2004339530A (en) Mg-CONTAINING METAL COATED STEEL MATERIAL WITH EXCELLENT WORKABILITY, AND ITS MANUFACTURING METHOD
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
JPS63262451A (en) Highly corrosion resistant zinc-aluminum alloy-plated wire and stranded body using same
JPH0518903B2 (en)
JP3769199B2 (en) High corrosion resistance plated steel material and method for producing the same
WO2019054483A1 (en) Hot-dip plated checkered plate and manufacturing method thereof
JP3644429B2 (en) Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method
JP5467789B2 (en) Al-plated steel wire having good wire drawing workability and manufacturing method thereof
JP3737987B2 (en) Hot-dip galvanized steel wire with high corrosion resistance and excellent workability
JP2002047521A (en) Highly corrosion resistant plated steel and its production method
JP2769842B2 (en) Manufacturing method of alloy plated steel wire
JP2014232638A (en) Steel core aluminum twisted wire
JPH05230782A (en) Rope for operation
JP3769222B2 (en) Zinc alloy-plated steel with high corrosion resistance and excellent workability and method for producing the same
JP3009262B2 (en) Hot-dip zinc aluminum alloy plating coating with excellent fatigue properties
JP2003328101A (en) Hot dip coated steel wire and production method thereof
JP2001207250A (en) Hot-dip plated steel wire with high corrosion resistance, and its manufacturing method
JPS63134653A (en) Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3644429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees