JP3642404B2 - Hydroforming method and hydroforming mold - Google Patents

Hydroforming method and hydroforming mold Download PDF

Info

Publication number
JP3642404B2
JP3642404B2 JP2000049476A JP2000049476A JP3642404B2 JP 3642404 B2 JP3642404 B2 JP 3642404B2 JP 2000049476 A JP2000049476 A JP 2000049476A JP 2000049476 A JP2000049476 A JP 2000049476A JP 3642404 B2 JP3642404 B2 JP 3642404B2
Authority
JP
Japan
Prior art keywords
tool
die cavity
hydraulic
material tube
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049476A
Other languages
Japanese (ja)
Other versions
JP2001239329A (en
Inventor
井 寛 桜
村 淳 二 片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000049476A priority Critical patent/JP3642404B2/en
Priority to DE10014619A priority patent/DE10014619B4/en
Priority to US09/534,261 priority patent/US6415638B1/en
Publication of JP2001239329A publication Critical patent/JP2001239329A/en
Application granted granted Critical
Publication of JP3642404B2 publication Critical patent/JP3642404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車用部材として用いられ、とくに四角以上の多角形断面を備えた中空部材の液圧成形方法および液圧成形型に関するものである。
【0002】
【発明が解決しようとする課題】
上記のような液圧成形方法としては、例えば、第48回塑性加工連合講演会講演論文集、第373頁に発表された方法が知られている。
【0003】
すなわち、前記論文集に記載された成形方法は、成形型内にセットした素材管に軸力を加えて軸方向に圧縮変形させつつ、素材管の内部に液体の圧力を作用させることによって目的とする型の形状に管材がなじむまで拡管成形する方法である。つまり、液圧による拡管成形だけでは、素材の初期管径に対して成形すべき目的の断面寸法が大きい場合、材料の伸びが大きくなるために板厚減少が大きくなって割れが発生しやすくなるため、素材管に軸力を加えて軸方向に材料の移動を発生させ、板厚減少を抑制することによって成形性を確保し、所望形状の部品の成形を行おうとするものである。
【0004】
しかしながら、このような従来の液圧成形にあっては、拡管成形が前提となっていたため、多角形断面部材の各辺の板厚は素材管の初期板厚に比して減少する。特に部材の中心から離れた部位の板厚減少が著しく、割れが発生しやすくなる。つまり、部材に与えられる板厚分布は、拡管による材料の伸びの発生にまかせた成形のままの板厚分布となり、断面内の各辺の板厚を制御して所望の板厚分布を得ることは困難である。液圧成形における軸押しは、部材全体の板厚を増加差せるのには有効ではあるが、多角形断面部材の断面内の特定の辺(面)の板厚を増加する手段にはなり得ず、このような問題点を解消することが従来の液圧成形における課題となっていた。
【0005】
【発明の目的】
本発明は、従来の液圧成形における上記課題に着目してなされたものであって、多角形断面を備えた中空部材を液圧成形するに際して、多角形断面における特定の辺の板厚を素材管の初期板厚よりも厚くすることができ、板厚増加と成形による加工硬化とによって成形品の機械的強度を向上させることができる液圧成形方法、およびこのような成形に用いる液圧成形型を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の請求項1に係わる液圧成形方法は、ダイキャビティ内に保持された金属素材管に自由バルジしない程度の初期液圧を作用させながら、ダイキャビティ内で工具を前記素材管に対して相対移動させて素材管を多角形断面を備えた部材に成形する液圧成形方法において、前記素材管を挟んで相対向して配置されると共に、素材管に当接する成形面の少なくとも一方の端部にダイキャビティの工具との摺接面に対して鈍角をなす傾斜面をそれぞれ備えた二つの工具を同時に移動させて、多角形断面部材の少なくとも一部の一定断面形状部分を成形前素材管の断面周長よりも短く成形し、多角形断面部材の隣接する少なくとも2辺の成形品板厚を素材管の初期板厚よりも増加させる構成とし、請求項2に係わる液圧成形方法においては、隣接する少なくとも2辺の板厚を素材管の初期板厚に対して3%以上増加させる構成としたことを特徴としており、液圧成形方法におけるこのような構成を前述した従来の課題を解決するための手段としている。
【0007】
本発明の請求項3に係わる液圧成形型は、金属素材管を収容するダイキャビティを備えたダイと、ダイキャビティ内に収容された前記素材管を挟んで相対向する位置に配置されて素材管に対してダイキャビティ内を相対的に移動すると共に、素材管に当接する成形面の少なくとも一方の端部に傾斜面をそれぞれ備えた二つの工具を有し、該工具の傾斜面がダイキャビティの工具との摺接面に対して135〜165°の範囲の角度をなしている構成とし、請求項4に係わる液圧成形型においては、工具の横断面における前記傾斜面の長さLと前記素材管の初期板厚tとの比D(L/t)が4〜7.5の範囲であると共に、前記工具の傾斜面とダイキャビティの工具との摺接面のなす角度θが(10D+68)°以上である構成とし、請求項5に係わる液圧成形型においては、両工具が成形面の両側端部に傾斜面をそれぞれ備えている構成としており、液圧成形型におけるこのような構成を前述した従来の課題を解決するための手段としたことを特徴としている。
【0008】
【発明の作用】
本発明の請求項1に係わる液圧成形方法は、液圧成形によって金属素材管を多角形断面を備えた部材に成形するに際して、素材管に当接する成形面に傾斜面を有し、素材管の両側に対向して配置された二つの工具を同時に作動させて、成形される多角形断面部材の少なくとも一部の一定断面形状部分が素材管の断面周長よりも短くなるように成形するようにしているので、工具の押し込みによって、工具に当接する素材管の一部の材料面内に圧縮力が作用して当該部分の板厚が増加すると共に、素材管の両側に位置する両工具を同時に作動させるようにしているので、工具に当接しない素材管部分にも圧縮力が作用するため当該部分の板厚も増加することになる。したがって、板厚増加と加工硬化による耐力の向上によって、多角形断面部材の機械的特性が改善されることになる。このとき、工具の押し込みに伴って素材管の内部容積が減少するため、素材管内の液圧が初期液圧に比して上昇することから押し込み成形に起因する素材の座屈が抑制され、板厚増加の限界が向上することになる。
【0009】
本発明に係わる液圧成形方法の実施の一形態として、請求項2に係わる成形方法においては、成形される多角形断面部材の各辺のうちの少なくとも1辺の板厚を素材の初期板厚に対して3%以上増加させるようにしているので、板厚増加と加工硬化による多角形断面部材の機械的特性の向上幅が十分なものとなる。
【0010】
本発明の請求項に係わる液圧成形型は、本発明に係わる多角形断面部材の液圧成形に好適なものであって、ダイと、ダイキャビティの両側に配置された二つの工具を備え、これら工具が、ダイキャビティの工具との摺接面に対して135〜165°の範囲の角度をなす傾斜面を成形面の端部に備え、ダイキャビティ内の素材管に対して両側から圧接する構造を備えたものであるから、当該工具の傾斜面に当接する部分の板厚が増加すると共に、工具に当接することなくダイキャビティ壁面によって成形される部分の板厚が増加し、機械的特性の優れた多角形断面部材が容易に成形されることになる。また、本発明に係わる液圧成形型の一実施形態として、請求項に係わる液圧成形型においては、工具の横断面における傾斜面の長さLと素材管の初期板厚tとの比D(L/t)が4〜7.5の範囲、前記傾斜面とダイキャビティの工具との摺接面のなす角度θが(10D+68)°以上となるようにしてあるので、しわや座屈が生じたり、目的以外の部分の板厚を増加させたりすることなく、工具成形面の傾斜面に押されて成形される部分の板厚がより確実に増加することになる。さらに、請求項に係わる液圧成形型においては、両工具が成形面の両側端部に傾斜面をそれぞれ備えていることから、例えば8角形断面のような対象形状断面を備えた中空部材の成形に好適なものとなる。
【0011】
【発明の効果】
本発明の請求項1に係わる多角形断面部材の液圧成形方法においては、上記構成としたものであるから、工具の押し込みによって素材管内の液圧が上昇するため、素材に座屈が生じることがなく、工具によって成形される部分と、工具に当接することなくダイキャビティによって成形される部分の材料面内に圧縮力が作用することから、多角形断面部材の隣接する少なくとも2辺の板厚が増加することになり、板厚増加とこのときの加工硬化によって耐力が向上して、機械的特性に優れた多角形断面部材を成形することができるという極めて優れた効果をもたらすものである。
【0012】
本発明の請求項2に係わる液圧成形方法においては、成形された多角形断面部材の隣接する少なくとも2辺の板厚を素材の初期板厚に対して3%以上増加させるようにしているので、板厚増加と加工硬化に基づく多角形断面部材の機械的特性の向上を確実かつ十分なものとすることができる。
【0013】
本発明の請求項3に係わる液圧成形型は、ダイと二つの工具を備え、該工具がその成形面にダイキャビティの工具との摺接面に対して135〜165°の範囲の角度をなす傾斜面を備えると共に、ダイキャビティ内に収納された素材管に対して両側から成形作動するようになっているので、本発明に係わる液圧成形方法に適用することができ、工具に当接する部分と、工具に当接することなくダイキャビティによって成形される部分の素材板厚を確実に増加させて、成形品の強度を向上させることができ、請求項4に係わる液圧成形型においては、前記工具成形面の傾斜面の長さと素材の初期板厚との比を所定の範囲に特定すると共に、成形面とダイキャビティの工具との摺接面とのなす角度を前記比との関係で定めたものであるから、しわや座屈を発生させることなく所望部分の板厚をより確実に増加させることができ、さらに請求項5に係わる液圧成形型においては、二つの工具が成形面の両側端部に傾斜面をそれぞれ備えていることから、対象形状の断面を備えた中空部材の成形に適用することができるという優れた効果がもたらされる。
【0014】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
【0015】
実施例1
図1(a)および(b)は、この実施例に用いた液圧成形型の全体形状を示すそれぞれ斜視図および縦断面図であって、図に示す液圧成形型1は、ダイ2と、工具3および4から主に構成され、工具3および4は、相対向して配設されたラム5および6(図2(a)参照)に取付けられて、ダイ2のダイキャビティ2a内を図中上下方向にスライドし、ダイキャビティ2a内に収容された金属素材管Tに対して上下両方向から押し込み作動することによって、図1(c)に示すように素材管Tに加工を施すようになっている。
【0016】
一方、素材管Tは、ダイキャビティ2a内に固定され、その両端部において素材管T内に充填された水Wをシールする構造を備え、成形に際して素材管Tの内面に水圧が均等に負荷されるようになっている。
【0017】
図2(a)は、上記液圧成形型1の横断面を示すものであって、ラム5に取付けられた上方工具3の成形面3aには、図中左側端部に傾斜面3bを備えた略三角形をなす突部3cが形成してあり、この傾斜面3bの長さLは、図2(b)に拡大して示すように、11.2mmであり、ダイキャビティ2aの工具3および4との摺接面2cに対する傾斜面3bの角度θは153°としてある。
【0018】
図中下方に位置する工具4にも、その成形面4aの図中右側端部に傾斜面4bを備えた突部4cが形成してある。
【0019】
このような構造を備えた液圧成形型1のダイキャビティ2a内に、金属素材管Tとして、円形断面を有し、直径101.6mm、板厚t=2.0mm(したがって、比D(L/t)=5.6)の590MPa級鋼管材をセットし、該素材管Tの内部に水Wを充満させ、20MPaの内圧を作用させて保持した状態で、上下のラム5,6を同時に作動させて、素材管Tの上下両側から工具3,4を押し込んで液圧成形を行った。このとき、素材管T内部の容積の減少に伴って、内部の圧力が上昇するが、図示しないリーク弁を介して管内の水Wをリークさせることにより急激な圧力上昇が生じないように制御した。
【0020】
そして、最終的に、素材管Tの初期周長寄りも短い周長になるまでラム5,6を押し込むことによって、図2(c)に示すような略六角形断面を有する中空部材P1 を成形した。このとき、素材管T内の最終的な内部液圧は、30MPa以上に達した。素材管Tの容積減少に伴う内部液圧のこのような増加は、縦壁やコーナー部への圧縮応力の作用時に、ダイ2や工具3,4の成形面への押付け力として作用し、圧縮変形時の座屈を抑制する働きをする。この座屈抑制機能によって、成形部材P1 の縦壁部およびコーナー部の板厚増加を図ることができる。
【0021】
このようにして成形された中空部材P1 の各部板厚を測定したところ、一方の縦壁部P1aの板厚t1 が2.16mm(8%増)、他方の縦壁部P1bの板厚t2 が2.20mm(10%増)、コーナー部P1cの板厚t3 が2.24mm(12%増)とそれぞれ増加しており、その他の部分については、初期板厚2.0mmのままであることが確認された。
【0022】
実施例2
図3は、本発明に係わる液圧成形方法の第2の実施例に用いた液圧成形型の形状を示す横断面図であって、外観的には、図1(a)に示したものと基本的に同様である。
【0023】
この実施例に用いた液圧成形型11においては、上方側工具13の成形面13aの両端部に、傾斜面13bを備えた略三角形をなす突部13cがそれぞれ形成してあると共に、下方側工具14の成形面14aにも、その両端部に傾斜面14bを備えた突部14cがそれぞれ形成してあって、この点においてのみ前記第1実施例に用いた液圧成形型1と異なる。
【0024】
この突部13cおよび14cは、第1実施例の液圧成形型1のものと同一の形状・寸法を有しており、図2(b)に示したように、傾斜面13bおよび14bの長さLがそれぞれ11.2mm、ダイキャビティ2aの摺接面2cに対する角度θがそれぞれ153°である。
【0025】
このような構造を備えた液圧成形型11のダイキャビティ2a内に、上記第1実施例で使用した金属素材管Tをセットし、同様に水Wを充満させたのち、20MPaの内圧を作用させて保持した状態で、上下のラム5,6を同時に作動させて、素材管Tの上下両側から工具13,14を押し込んで液圧成形を行った。
【0026】
そして、最終的に、素材管Tの断面の中心線で区切られた1/2の円周に対して、成形後の断面の半分の周長の方が短くなるまでラム5,6を押し込むことにより、図3(b)に示すような略八角形断面を有する中空部材P2 を成形した。このとき、素材管T内の最終的な内部液圧は、同様に30MPa以上に達した。
【0027】
このようにして成形された中空部材P2 の各部板厚を測定したところ、両縦壁部P2a,P2bの板厚t1 ,t2 が共に2.20mm(10%増)、各コーナー部P2cの板厚t3 が2.30mm(15%増)とそれぞれ増加しており、その他の部分については、初期板厚2.0mmのままであることが確認された。
【0028】
比較例1
図4(a)に示すように、ダイキャビティ51aを備えた略U字状断面のダイ51と、上記各実施例と同じ形状の突部52c(L=11.2mm,θ=153°)をその成形面52aの図中右側端部に、4mmの平坦面52eと傾斜部からなる突部52dを図中左側端部に備え、図示しないラムに取付けられてダイキャビティ51a内を移動する単一の工具52からなる液圧成形型50を使用し、上記各実施例と同様の加工条件のもとに、同一金属素材管Tに液圧成形を施し、図4(b)に示すような略六角形断面を有する中空部材P3 を得た。
【0029】
そして、この中空部材P3 の各部板厚を測定したところ、中空部材P3 における図中左側の縦壁部P3aの板厚t1 および図中右側のコーナー部P2cの板厚t2 については、それぞれ2.20mm( 10%増)および2.30mm(15%増)と増加するものの、隣接する縦壁部とコーナー部とを共に板厚増加させることはできなかった。
【図面の簡単な説明】
【図1】(a) 本発明に係わる液圧成形型の全体構造を示す斜視図である。
(b) 図1(a)に示した液圧成形型の縦断面図である。
(c) 図1(a)に示した液圧成形型による成形状態を説明する縦断面図である。
【図2】(a) 本発明の第1の実施例に用いた液圧成形型の横断面図である。
(b) 図2(a)に示した工具の端部に形成された突部形状を説明する拡大断面図である。
(c) 図2(a)に示した液圧成形型により成形された多角形断面部材の断面図である。
【図3】(a) 本発明の第2の実施例に用いた液圧成形型の横断面図である。
(b) 図3(a)に示した液圧成形型により成形された多角形断面部材の断面図である。
【図4】(a) 比較例に用いた液圧成形型の横断面図である。
(b) 図4(a)に示した液圧成形型により成形された多角形断面部材の断面図である。
【符号の説明】
1,11 液圧成形型
2 ダイ
2a ダイキャビティ
2b 摺接面
3,4,13,14 工具
3a,4a,13a,14a 成形面
3b,4b,13b,14b 傾斜面
T 金属素材管
P1 ,P2 多角形断面部材
W 水(液体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a hollow member having a polygonal cross section having a square shape or more and a method for forming a hollow member.
[0002]
[Problems to be solved by the invention]
As the hydraulic forming method as described above, for example, the method published on page 373 of the 48th Plastic Working Joint Lecture Proceedings is known.
[0003]
That is, the molding method described in the above-mentioned papers aims at applying a liquid pressure to the inside of the material tube while applying axial force to the material tube set in the mold and compressing and deforming in the axial direction. This is a method of expanding and forming until the pipe material is adapted to the shape of the mold to be used. In other words, with only pipe expansion by hydraulic pressure, if the target cross-sectional dimension to be molded is large with respect to the initial pipe diameter of the material, the elongation of the material increases, so the reduction in plate thickness increases and cracking is likely to occur. For this reason, an axial force is applied to the material pipe to cause movement of the material in the axial direction, thereby suppressing a decrease in the plate thickness, thereby ensuring moldability and molding a component having a desired shape.
[0004]
However, in such conventional hydraulic forming, since pipe expansion forming is a prerequisite, the plate thickness of each side of the polygonal cross-section member is reduced as compared with the initial plate thickness of the material pipe. In particular, the thickness of the part away from the center of the member is remarkably reduced, and cracks are likely to occur. In other words, the plate thickness distribution given to the member becomes the plate thickness distribution as it is shaped to generate the elongation of the material by pipe expansion, and the desired plate thickness distribution is obtained by controlling the plate thickness of each side in the cross section. It is difficult. Axial pressing in hydraulic forming is effective in increasing the thickness of the entire member, but can be a means of increasing the thickness of a specific side (surface) in the cross section of a polygonal cross-section member. First, solving such problems has been a problem in conventional hydraulic molding.
[0005]
OBJECT OF THE INVENTION
The present invention has been made paying attention to the above-mentioned problems in conventional hydraulic forming, and when forming a hollow member having a polygonal cross section by hydraulic forming, the thickness of a specific side in the polygonal cross section is a material. A hydraulic forming method that can be made thicker than the initial plate thickness of the pipe and that can improve the mechanical strength of the molded product by increasing the plate thickness and work hardening by molding, and the hydraulic forming used for such molding The purpose is to provide a mold.
[0006]
[Means for Solving the Problems]
In the hydroforming method according to claim 1 of the present invention, the tool is applied to the material pipe in the die cavity while applying an initial liquid pressure that does not cause a free bulge to the metal material pipe held in the die cavity. In a hydraulic forming method of forming a material tube into a member having a polygonal cross section by moving relative to each other, at least one end of a forming surface that is disposed opposite to the material tube and is in contact with the material tube At the same time, two tools each having an inclined surface that forms an obtuse angle with respect to the sliding contact surface with the tool of the die cavity are moved at the same time, and at least a part of the constant cross-sectional shape of the polygonal cross-section member is formed into a raw material tube In the hydraulic forming method according to claim 2, the molded product is formed to be shorter than the circumferential length of the cross section, and the thickness of the molded product on at least two sides adjacent to the polygonal cross-section member is increased from the initial thickness of the material pipe. ,adjacent In order to solve the above-described conventional problems in the hydraulic forming method, the thickness of at least two sides is increased by 3% or more with respect to the initial thickness of the material pipe. As a means of.
[0007]
According to a third aspect of the present invention, there is provided a hydroforming mold comprising a die provided with a die cavity for housing a metal material tube, and a material arranged at a position facing each other with the material tube accommodated in the die cavity interposed therebetween. The tool has two tools each moving relatively in the die cavity with respect to the tube and having an inclined surface at at least one end of the molding surface contacting the material tube, and the inclined surface of the tool is the die cavity. In the hydraulic forming die according to claim 4, the length L of the inclined surface in the cross section of the tool is defined as an angle in the range of 135 to 165 ° with respect to the sliding contact surface with the tool. The ratio D (L / t 0 ) to the initial plate thickness t 0 of the material pipe is in the range of 4 to 7.5, and the angle θ formed by the sliding surface between the inclined surface of the tool and the tool of the die cavity. And (10D + 68) ° or more. In the hydraulic molding die related to the above, both tools are provided with inclined surfaces at both end portions of the molding surface, and such a configuration in the hydraulic molding die is to solve the conventional problems described above. It is characterized as a means.
[0008]
[Effects of the Invention]
Hydroforming method according to claim 1 of the present invention, an inclined surface of the metal material pipe by hydroforming In preparing member having a polygonal cross-section, the molding surface abutting the Material tube, material Two tools arranged opposite to both sides of the pipe are simultaneously operated to form at least a part of a constant cross-sectional shape of the polygonal cross-section member to be formed to be shorter than the cross-sectional circumference of the material pipe Therefore, when the tool is pushed in, the compressive force acts on the material surface of a part of the material pipe abutting against the tool to increase the thickness of the part, and both tools located on both sides of the material pipe Since the compression force is applied to the material tube portion that does not contact the tool, the thickness of the portion also increases. Therefore, the mechanical properties of the polygonal cross-section member are improved by increasing the plate thickness and improving the yield strength by work hardening. At this time, since the internal volume of the material pipe decreases as the tool is pushed in, the hydraulic pressure in the material pipe rises compared to the initial hydraulic pressure, so that buckling of the material due to indentation is suppressed, and the plate The limit of thickness increase will be improved.
[0009]
As one embodiment of the hydraulic forming method according to the present invention, in the forming method according to claim 2, the thickness of at least one of the sides of the polygonal cross-section member to be formed is set to the initial thickness of the material. Therefore, the width of increase in the mechanical characteristics of the polygonal cross-section member due to the increase in the plate thickness and work hardening is sufficient.
[0010]
The hydraulic forming die according to claim 3 of the present invention is suitable for the hydraulic forming of the polygonal cross-section member according to the present invention, and comprises a die and two tools arranged on both sides of the die cavity. These tools are provided with an inclined surface at the end of the molding surface that forms an angle in the range of 135 to 165 ° with the slidable contact surface of the die cavity with the tool, and are pressed against the material pipe in the die cavity from both sides. Therefore, the thickness of the portion that contacts the inclined surface of the tool increases, and the thickness of the portion that is formed by the die cavity wall surface without contacting the tool increases. A polygonal cross-sectional member having excellent characteristics is easily formed. In an embodiment of hydroformed type according to the present invention, in the hydroformed type according to claim 4, the initial thickness t 0 of the length L and the material pipe of the inclined surface in the cross section of the tool Since the ratio D (L / t 0 ) is in the range of 4 to 7.5 and the angle θ formed by the sliding contact surface between the inclined surface and the tool of the die cavity is (10D + 68) ° or more, The thickness of the portion formed by being pushed by the inclined surface of the tool forming surface is more reliably increased without causing buckling or increasing the thickness of the portion other than the intended portion. Further, in the hydraulic mold according to claim 5 , since both the tools are respectively provided with inclined surfaces at both end portions of the molding surface, for example, a hollow member having a target shape cross section such as an octagonal cross section. It is suitable for molding.
[0011]
【The invention's effect】
In the hydraulic forming method of the polygonal cross-section member according to claim 1 of the present invention, since the above configuration is adopted, the hydraulic pressure in the material pipe rises due to the pushing of the tool, so that the material is buckled. Since the compression force acts on the material surface of the portion formed by the tool and the portion formed by the die cavity without coming into contact with the tool, the plate thickness of at least two sides adjacent to the polygonal cross-section member As a result, the yield strength is improved by the increase in the plate thickness and the work hardening at this time, and it is possible to form a polygonal cross-sectional member having excellent mechanical properties.
[0012]
In the hydraulic forming method according to claim 2 of the present invention, the plate thickness of at least two sides adjacent to the formed polygonal cross-section member is increased by 3% or more with respect to the initial plate thickness of the material. Further, it is possible to reliably and sufficiently improve the mechanical properties of the polygonal cross-section member based on the increase in plate thickness and work hardening.
[0013]
The hydraulic mold according to claim 3 of the present invention includes a die and two tools, and the tool has an angle in the range of 135 to 165 ° with respect to the sliding contact surface of the die cavity with the tool of the die cavity. In addition to having an inclined surface to be formed, the material pipe accommodated in the die cavity is molded from both sides, so that it can be applied to the hydraulic molding method according to the present invention and abuts against the tool. The material plate thickness of the part and the part formed by the die cavity without abutting against the tool can be reliably increased, and the strength of the molded product can be improved. In the hydraulic mold according to claim 4, The ratio between the length of the inclined surface of the tool forming surface and the initial plate thickness of the material is specified within a predetermined range, and the angle formed between the forming surface and the sliding contact surface of the tool of the die cavity is related to the ratio. Wrinkles The thickness of the desired portion can be more reliably increased without causing buckling. Further, in the hydraulic forming die according to claim 5, two tools are provided with inclined surfaces at both end portions of the forming surface, respectively. Since it has, the outstanding effect that it can apply to shaping | molding of the hollow member provided with the cross section of object shape is brought about.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0015]
Example 1
FIGS. 1A and 1B are a perspective view and a longitudinal sectional view, respectively, showing the overall shape of the hydraulic mold used in this embodiment. The hydraulic mold 1 shown in FIG. The tools 3 and 4 are mainly mounted on rams 5 and 6 (see FIG. 2 (a)) arranged in opposition to each other in the die cavity 2a of the die 2. As shown in FIG. 1 (c), the material tube T is processed by sliding in the vertical direction in the drawing and pushing in the metal material tube T accommodated in the die cavity 2a from both the upper and lower directions. It has become.
[0016]
On the other hand, the material tube T is fixed in the die cavity 2a and has a structure that seals the water W filled in the material tube T at both ends thereof, and water pressure is evenly applied to the inner surface of the material tube T during molding. It has become so.
[0017]
FIG. 2 (a) shows a cross section of the hydraulic mold 1, and the molding surface 3a of the upper tool 3 attached to the ram 5 is provided with an inclined surface 3b at the left end in the figure. A projection 3c having a substantially triangular shape is formed, and the length L of the inclined surface 3b is 11.2 mm as shown in an enlarged view in FIG. 2B, and the tool 3 of the die cavity 2a and The angle θ of the inclined surface 3b with respect to the sliding contact surface 2c with 4 is 153 °.
[0018]
The tool 4 located at the lower side in the figure also has a protrusion 4c having an inclined surface 4b at the right end of the molding surface 4a in the figure.
[0019]
In the die cavity 2a of the hydraulic mold 1 having such a structure, the metal material tube T has a circular cross section, a diameter of 101.6 mm, and a plate thickness t 0 = 2.0 mm (therefore, the ratio D ( L / t 0 ) = 5.6) 590 MPa class steel pipe material is set, and the upper and lower rams 5, 6 are filled with water W inside the raw material pipe T and maintained by applying an internal pressure of 20 MPa. Were simultaneously operated, and the tools 3 and 4 were pushed in from both the upper and lower sides of the material tube T to perform hydraulic forming. At this time, the internal pressure rises as the volume inside the material pipe T decreases, but control is performed so as not to cause a sudden pressure rise by leaking the water W in the pipe through a leak valve (not shown). .
[0020]
Finally, the hollow member P1 having a substantially hexagonal cross section as shown in FIG. 2 (c) is formed by pushing the rams 5 and 6 until the initial circumferential length of the material tube T becomes short. did. At this time, the final internal hydraulic pressure in the material pipe T reached 30 MPa or more. Such an increase in the internal hydraulic pressure accompanying the decrease in the volume of the material tube T acts as a pressing force against the forming surface of the die 2 and the tools 3 and 4 when compressive stress is applied to the vertical walls and corners. It works to suppress buckling during deformation. This buckling suppressing function can increase the thickness of the vertical wall portion and the corner portion of the molded member P1.
[0021]
When the thickness of each part of the hollow member P1 thus formed was measured, the thickness t1 of one vertical wall P1a was 2.16 mm (8% increase), and the thickness t2 of the other vertical wall P1b was 2. The plate thickness t3 of the corner portion P1c is increased to 2.24 mm (12% increase), respectively, and the other portions may remain at the initial plate thickness of 2.0 mm. confirmed.
[0022]
Example 2
FIG. 3 is a cross-sectional view showing the shape of a hydraulic forming die used in the second embodiment of the hydraulic forming method according to the present invention, and the appearance is shown in FIG. 1 (a). And basically the same.
[0023]
In the hydraulic forming die 11 used in this embodiment, protrusions 13c each having a substantially triangular shape having inclined surfaces 13b are formed at both ends of the forming surface 13a of the upper tool 13, respectively. The molding surface 14a of the tool 14 is also formed with protrusions 14c having inclined surfaces 14b at both ends thereof, and only this point is different from the hydraulic mold 1 used in the first embodiment.
[0024]
The projections 13c and 14c have the same shape and dimensions as those of the hydraulic mold 1 of the first embodiment, and as shown in FIG. 2 (b), the length of the inclined surfaces 13b and 14b. The length L is 11.2 mm, and the angle θ with respect to the sliding contact surface 2c of the die cavity 2a is 153 °.
[0025]
The metal material tube T used in the first embodiment is set in the die cavity 2a of the hydroforming mold 11 having such a structure, and after water W is similarly filled, an internal pressure of 20 MPa is applied. In this state, the upper and lower rams 5 and 6 were simultaneously operated, and the tools 13 and 14 were pushed in from both the upper and lower sides of the material tube T to perform hydraulic forming.
[0026]
And finally, the rams 5 and 6 are pushed into the circumference of the half divided by the center line of the cross section of the material tube T until the circumference of the half of the cross section after the molding becomes shorter. Thus, a hollow member P2 having a substantially octagonal cross section as shown in FIG. At this time, the final internal hydraulic pressure in the material tube T similarly reached 30 MPa or more.
[0027]
When the thickness of each part of the hollow member P2 thus formed was measured, the thicknesses t1 and t2 of both vertical wall parts P2a and P2b were both 2.20 mm (10% increase), and the thickness of each corner part P2c. It was confirmed that t3 increased to 2.30 mm (15% increase), and other portions remained at the initial plate thickness of 2.0 mm.
[0028]
Comparative Example 1
As shown in FIG. 4A, a die 51 having a substantially U-shaped cross section provided with a die cavity 51a and a protrusion 52c (L = 11.2 mm, θ = 153 °) having the same shape as each of the above embodiments. The molding surface 52a is provided with a 4mm flat surface 52e and an inclined portion 52d at the left end in the drawing at the right end in the drawing, and is attached to a ram (not shown) to move within the die cavity 51a. 4 is formed on the same metal material tube T under the same processing conditions as those of the above-described embodiments, and is substantially as shown in FIG. A hollow member P3 having a hexagonal cross section was obtained.
[0029]
When the thickness of each part of the hollow member P3 is measured, the thickness t1 of the vertical wall portion P3a on the left side in the drawing and the thickness t2 of the corner portion P2c on the right side in the drawing are 2.20 mm. Although it increased to (10% increase) and 2.30 mm (15% increase), it was not possible to increase the thickness of both the adjacent vertical wall portion and corner portion.
[Brief description of the drawings]
FIG. 1 (a) is a perspective view showing the overall structure of a hydraulic mold according to the present invention.
(B) It is a longitudinal cross-sectional view of the hydraulic forming die shown to Fig.1 (a).
(C) It is a longitudinal cross-sectional view explaining the shaping | molding state by the hydraulic die shown in Fig.1 (a).
FIG. 2 (a) is a cross-sectional view of the hydraulic mold used in the first embodiment of the present invention.
(B) It is an expanded sectional view explaining the protrusion shape formed in the edge part of the tool shown to Fig.2 (a).
(C) It is sectional drawing of the polygonal cross-section member shape | molded by the hydraulic forming die shown to Fig.2 (a).
FIG. 3 (a) is a cross-sectional view of a hydraulic mold used in a second embodiment of the present invention.
(B) It is sectional drawing of the polygonal cross-section member shape | molded by the hydraulic-molding die shown to Fig.3 (a).
FIG. 4 (a) is a cross-sectional view of a hydraulic mold used in a comparative example.
(B) It is sectional drawing of the polygonal cross-section member shape | molded by the hydraulic forming die shown to Fig.4 (a).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Hydraulic forming die 2 Die 2a Die cavity 2b Sliding contact surface 3, 4, 13, 14 Tool 3a, 4a, 13a, 14a Forming surface 3b, 4b, 13b, 14b Inclined surface T Metal material pipes P1, P2 Square section member W Water (liquid)

Claims (5)

ダイキャビティ内に保持された金属素材管に自由バルジしない程度の初期液圧を作用させながら、ダイキャビティ内で工具を前記素材管に対して相対移動させて素材管を多角形断面を備えた部材に成形する液圧成形方法において、
前記素材管を挟んで相対向して配置されると共に、素材管に当接する成形面の少なくとも一方の端部にダイキャビティの工具との摺接面に対して鈍角をなす傾斜面をそれぞれ備えた二つの工具を同時に移動させて、多角形断面部材の少なくとも一部の一定断面形状部分を成形前素材管の断面周長よりも短く成形し、多角形断面部材の隣接する少なくとも2辺の成形品板厚を素材管の初期板厚よりも増加させることを特徴とする液圧成形方法。
A member having a polygonal cross section by moving the tool relative to the material tube in the die cavity while applying an initial hydraulic pressure that does not allow free bulging to the metal material tube held in the die cavity. In the hydraulic molding method of molding into
The material pipes are arranged opposite to each other, and at least one end of the molding surface that contacts the material pipes is provided with an inclined surface that forms an obtuse angle with respect to the sliding contact surface with the tool of the die cavity. By moving two tools simultaneously, at least a part of the constant cross-sectional shape of the polygonal cross-section member is formed to be shorter than the cross-sectional circumferential length of the raw material tube, and a molded product of at least two sides adjacent to the polygonal cross-section member A hydraulic forming method characterized in that the plate thickness is increased from the initial plate thickness of the material pipe .
隣接する少なくとも2辺の板厚を素材管の初期板厚に対して3%以上増加させることを特徴とする請求項1記載の液圧成形方法。2. The hydraulic forming method according to claim 1, wherein the thickness of at least two adjacent sides is increased by 3% or more with respect to the initial thickness of the material pipe. 金属素材管を収容するダイキャビティを備えたダイと、ダイキャビティ内に収容された前記素材管を挟んで相対向する位置に配置されて素材管に対してダイキャビティ内を相対的に移動すると共に、素材管に当接する成形面の少なくとも一方の端部に傾斜面をそれぞれ備えた二つの工具を有し、該工具の傾斜面がダイキャビティの工具との摺接面に対して135〜165°の範囲の角度をなしていることを特徴とする液圧成形型。A die having a die cavity for accommodating a metal material tube, and a die cavity disposed relative to the material tube, with the material tube accommodated in the die cavity interposed therebetween, and moved relative to the material tube And two tools each having an inclined surface at at least one end of the forming surface that contacts the material tube, and the inclined surface of the tool is 135 to 165 ° with respect to the sliding contact surface with the tool of the die cavity. A hydraulic mold having an angle in the range of 工具の横断面における前記傾斜面の長さLと前記素材管の初期板厚tとの比D(L/t)が4〜7.5の範囲であると共に、前記工具の傾斜面とダイキャビティの工具との摺接面のなす角度θが(10D+68)°以上であることを特徴とする請求項3記載の液圧成形型。The ratio D (L / t 0 ) between the length L of the inclined surface in the cross section of the tool and the initial plate thickness t 0 of the material tube is in the range of 4 to 7.5, and the inclined surface of the tool The hydraulic forming die according to claim 3, wherein an angle θ formed by a sliding contact surface of the die cavity with the tool is (10D + 68) ° or more. 両工具が成形面の両側端部に傾斜面をそれぞれ備えていることを特徴とする請求項3または請求項4記載の液圧成形型。5. The hydraulic forming die according to claim 3, wherein both the tools are respectively provided with inclined surfaces at both end portions of the forming surface.
JP2000049476A 1999-03-26 2000-02-25 Hydroforming method and hydroforming mold Expired - Fee Related JP3642404B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000049476A JP3642404B2 (en) 2000-02-25 2000-02-25 Hydroforming method and hydroforming mold
DE10014619A DE10014619B4 (en) 1999-03-26 2000-03-24 A method and apparatus for forming a tubular workpiece into a shaped hollow product using tube hydroforming
US09/534,261 US6415638B1 (en) 1999-03-26 2000-03-24 Method and device for forming tubular work into shaped hollow product by using tubular hydroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049476A JP3642404B2 (en) 2000-02-25 2000-02-25 Hydroforming method and hydroforming mold

Publications (2)

Publication Number Publication Date
JP2001239329A JP2001239329A (en) 2001-09-04
JP3642404B2 true JP3642404B2 (en) 2005-04-27

Family

ID=18571412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049476A Expired - Fee Related JP3642404B2 (en) 1999-03-26 2000-02-25 Hydroforming method and hydroforming mold

Country Status (1)

Country Link
JP (1) JP3642404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806248A (en) * 2012-08-06 2012-12-05 哈尔滨工业大学 Device and method for testing real-time changes of fillet radius along with internal pressure in internal high-pressure forming process
JP2021137820A (en) * 2020-03-02 2021-09-16 住友重機械工業株式会社 Molding equipment, and molding method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045604A1 (en) * 2001-11-21 2003-06-05 Wilhelm Schulz Gmbh Method and device for reshaping tubes
TWI530335B (en) * 2012-12-12 2016-04-21 和碩聯合科技股份有限公司 Pressing method and system thereof
CN111451351B (en) * 2020-04-30 2022-08-09 初冠南 Forming and integrating method for tubular part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806248A (en) * 2012-08-06 2012-12-05 哈尔滨工业大学 Device and method for testing real-time changes of fillet radius along with internal pressure in internal high-pressure forming process
JP2021137820A (en) * 2020-03-02 2021-09-16 住友重機械工業株式会社 Molding equipment, and molding method
JP7286571B2 (en) 2020-03-02 2023-06-05 住友重機械工業株式会社 Molding apparatus and molding method

Also Published As

Publication number Publication date
JP2001239329A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US20140000336A1 (en) Method of cold forming a piece of sheet metal by bending or press moulding
JP5009363B2 (en) Hydroform processing method
CN103857479A (en) Manufacturing method for stepped rectangular pipe
JP3642404B2 (en) Hydroforming method and hydroforming mold
JP2001340922A (en) Manufacturing method of t joint part and hydroform die
JP2008149343A (en) Tube hydroforming method
JP3687838B2 (en) Fluid pressure molding method, fluid pressure mold and fluid pressure molded member
JP3642244B2 (en) Polygonal cross-section member hydraulic forming method, hydraulic forming mold and automobile polygon cross-section member
JP3205105B2 (en) Manufacturing method of deformed curved pipe
JP4907590B2 (en) Metal cross-section hat-shaped member having a bent portion outside the plane in the longitudinal direction of the member, and press forming method thereof
JP3642232B2 (en) Fluid pressure molding method, fluid pressure molding apparatus, and body member
KR100815789B1 (en) Hydroforming apparatus
JP2005095983A (en) Bellows pipe, manufacturing method therefor, and die
JP4546592B2 (en) Metal pipe bending method and metal bent pipe
JPH11197758A (en) Deformed metallic tube stock, its manufacture, and manufacture of deformed bend metallic tube
JP2006272378A (en) Press formed article of metallic sheet, and press working method and press die for metallic sheet
JPS60148628A (en) Drawing press die of square cylinder vessel
JP7310777B2 (en) Press molding method, press molding die for intermediate molding and press molded product
JP4730164B2 (en) Hydraulic bulge parts with flange
JP4259075B2 (en) Method and apparatus for forming hydroforming material tube
JP2539983B2 (en) Manufacturing method of square steel pipe
JP3593381B2 (en) Pipe flattening method and die used for it
JP4537792B2 (en) Hydroforming mold with movable mold and metal branch pipe
JP4253457B2 (en) Bulge processing mold
JP2013103240A (en) Press forming metallic mold and press forming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees