JP3641885B2 - Battery charging method and charging device - Google Patents

Battery charging method and charging device Download PDF

Info

Publication number
JP3641885B2
JP3641885B2 JP30033396A JP30033396A JP3641885B2 JP 3641885 B2 JP3641885 B2 JP 3641885B2 JP 30033396 A JP30033396 A JP 30033396A JP 30033396 A JP30033396 A JP 30033396A JP 3641885 B2 JP3641885 B2 JP 3641885B2
Authority
JP
Japan
Prior art keywords
battery
voltage
charging
current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30033396A
Other languages
Japanese (ja)
Other versions
JPH10145981A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30033396A priority Critical patent/JP3641885B2/en
Publication of JPH10145981A publication Critical patent/JPH10145981A/en
Application granted granted Critical
Publication of JP3641885B2 publication Critical patent/JP3641885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の充電方法及び充電装置に関する。
【0002】
【従来の技術】
従来の電池の充電方法としては、例えば図9に示すような方法がある。電池電圧がある一定電圧以上になると安全上好ましくない非水系電池においては、同図に示すように、定電圧充電が行われている。また特開平6−325794号公報には、電池の電圧が満充電電圧より高い所定の基準電圧になるまで定電流で充電し、その後、満充電電圧に等しい電圧で定電圧充電することにより、短時間で十分な充電を行うことが可能な充電方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の電池の充電方法にあっては、充電時間及び充電量は、電池温度により異なるため、電池温度が高いときに必要以上に充電時間が長くかかることがあり、電池温度が高いときには充電時間が長くなるほど劣化しやすくなるという問題点があった。一方、電池温度が低いときには、充電時間が長く必要となるため、充電不足になったり、充電時間による制御が難しいという問題点があった。
【0004】
本発明は、このような従来の問題点に着目してなされたもので、電池の劣化に影響する定電圧充電時間及び充電量に関係する充電終止電流値を最適化して、充放電サイクル寿命を向上させることができる電池の充電方法及び充電装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の電池の充電方法は、電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、所定の電池温度における前記電池内部抵抗から前記電池の劣化を判断し、前記定電圧充電時間は前記電池の劣化とともに短くすることを要旨とする。この構成により、電池の劣化に影響する定電圧充電時間を最適化することが可能となる。また、電池内部抵抗は電池の容量劣化とともに大きくなる。定電圧充電時間を電池の劣化とともに短くすることで、劣化の進行を抑える上で定電圧充電時間を最適化することが可能となる。
【0007】
請求項記載の電池の充電方法は、電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、所定の電池温度における前記電池内部抵抗から前記電池の劣化を判断し、前記定電圧充電時の充電終止電流値は前記電池の劣化とともに大きくすることを要旨とする。この構成により、充電量に関係する充電終止電流値を最適化することが可能となる。また、電池容量は、電池内部抵抗が大きいほど、また充電回数又は使用時間が増すほど劣化している。充電終止電流値を電池の劣化とともに大きくすることで、充電不足を防止する上で充電終止電流値を最適化することが可能となる。
【0008】
請求項記載の電池の充電方法は、電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、前記電池の充電回数又は使用時間から前記電池の劣化を判断し、前記定電圧充電時の充電終止電流値は前記電池の劣化とともに大きくすることを要旨とする。この構成により、上記と同様に、充電量に関係する充電終止電流値を最適化することが可能となる。また、電池容量は、電池内部抵抗が大きいほど、また充電回数又は使用時間が増すほど劣化している。充電終止電流値を電池の劣化とともに大きくすることで、充電不足を防止する上で充電終止電流値を最適化することが可能となる。
【0010】
請求項記載の電池の充電方法は、上記請求項1,2又は3記載の電池の充電方法において、複数個の電池が直列に接続された組電池において、前記電池温度と電池内部抵抗は前記組電池中最も内部抵抗の大きい電池を基準にすることを要旨とする。この構成により、組電池に対し、電圧ばらつきを考慮した上で最適な充電が可能となる。
【0011】
請求項記載の充電装置は、電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する充電装置において、前記電池の温度を検出する電池温度検出手段と、前記電池の電圧を検出する電池電圧検出手段と、前記電池の電流を検出する電池電流検出手段と、前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗と、前記電池温度検出手段で検出された電池温度と、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電する時間は前記電池の劣化とともに短くすること要旨とする。この構成により、電池の劣化に影響する定電圧充電時間を最適化する充電方法を適切に実現することが可能となる。
【0012】
請求項記載の充電装置は、電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する充電装置において、前記電池の温度を検出する電池温度検出手段と、前記電池の電圧を検出する電池電圧検出手段と、前記電池の電流を検出する電池電流検出手段と、前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗と、前記電池温度検出手段で検出された電池温度と、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電自の充電終止電流値は前記電池の劣化とともに大きくすることを要旨とする。この構成により、充電量に関係する充電終止電流値を最適化する充電方法を適切に実現することが可能となる。
【0013】
【発明の効果】
請求項1記載の電池の充電方法によれば、定電圧充電時間を電池温度と電池内部抵抗によって決定するようにしたため、電池の劣化に影響する定電圧充電時間を最適化することができて、充放電サイクル寿命を向上させることができる。また、所定の電池温度における前記電池内部抵抗から電池の劣化を判断し、前記定電圧充電時間は前記電池の劣化とともに短くするようにしたため、劣化の進行を抑える上で定電圧充電時間を最適化することができて、充放電サイクル寿命を向上させることができる。
【0015】
請求項記載の電池の充電方法によれば、定電圧充電時の充電終止電流値を電池温度と電池内部抵抗によって決定するようにしたため、充電量に関係する充電終止電流値を最適化することができて、充電不足を防止することができる。また、所定の電池温度における前記電池内部抵抗、前記充電回数又は使用時間から電池の劣化を判断し、前記充電終止電流値は前記電池の劣化とともに大きくするようにしたため、充電不足を防止する上で充電終止電流値を最適化することができる。
【0016】
請求項記載の電池の充電方法によれば、定電圧充電時の充電終止電流値を電池の充電回数又は使用時間の少なくとも何れかによって決定するようにしたため、上記請求項記載の発明の効果とほぼ同様の効果が得られる。また、所定の電池温度における前記電池内部抵抗、前記充電回数又は使用時間から電池の劣化を判断し、前記充電終止電流値は前記電池の劣化とともに大きくするようにしたため、充電不足を防止する上で充電終止電流値を最適化することができる。
【0018】
請求項記載の電池の充電方法によれば、複数個の電池が直列に接続された組電池において、前記電池温度と電池内部抵抗は前記組電池中最も内部抵抗の大きい電池を基準にするようにしたため、組電池に対し、電圧ばらつきを考慮した上で最適な充電を行うことができる。
【0019】
請求項記載の充電装置によれば、電池の温度を検出する電池温度検出手段と、前記電池の電圧を検出する電池電圧検出手段と、前記電池の電流を検出する電池電流検出手段と、前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗と、前記電池温度検出手段で検出された電池温度とを具備させ、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電する時間は前記電池の劣化とともに短くするので、電池の劣化に影響する定電圧充電時間を最適化する充電方法を適切に実現することができる。
【0020】
請求項記載の充電装置によれば、電池の温度を検出する電池温度検出手段と、前記電池の電圧を検出する電池電圧検出手段と、前記電池の電流を検出する電池電流検出手段と、前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗とを具備させ、前記電池温度検出手段で検出された電池温度と、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電自の充電終止電流値は前記電池の劣化とともに大きくするので、充電量に関係する充電終止電流値を最適化する充電方法を適切に実現することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0022】
図1乃至図5は、本発明の第1の実施の形態を示す図である。まず、図1を用いて、充電装置の構成を説明する。同図において、1は被充電電池であり、充電器4により充電されるようになっている。充電器4には制御手段としてのCPU5が内蔵されており、CPU5には電池1の温度と内部抵抗より定電圧充電時間及び充電終止電流を求めるマップが記憶されている。2は電池1の電圧を検出する電池電圧検出手段、3は電池1の電流を検出する電池電流検出手段、6は電池1の温度を検出する電池温度検出手段である。
【0023】
次に、上記構成の充電装置を用いた電池1の充電方法を、図2乃至図5を用いて説明する。電池電圧検出手段2で電池電圧を検出し、電池電流検出手段3で電池電流を監視しつつ、電池1の電圧が所定電圧値に達するまで定電流で充電する。その後、電流値を定電流値より小さくし、電圧は、その所定電圧値に保って定電圧充電する。このとき、CPU5により、電池電圧検出手段2で検出された電池電圧と電池電流検出手段3で検出された電池電流から電池1の内部抵抗を求め、この内部抵抗値と電池温度検出手段6で検出された電池温度により定電圧充電時間及び充電終止電流を決定する。
【0024】
図2は、負極活物質に炭素材料、正極活物質にLiCoO2 を用い、電解液として炭酸プロピレンと1−2−ジメトキシエタンとの混合溶液に六フッカ化リン酸リチウムを1モル/l溶解させて得られた非水電解液を用いた電池を例にとって、電池温度及び所定の温度における内部抵抗と定電圧充電時間の関係を示している。同図より電池温度が高いほど、また所定の温度における内部抵抗の値が大きいほど充電時間は短かく決定する。電池の内部抵抗は電池の容量劣化とともに大きくなるため、所定の温度における電池の内部抵抗が大きいほど電池は劣化している。図3は、上記と同様の電池の電池温度及び所定の温度における内部抵抗と充電終止電流値の関係を示している。充電終止電流値は、電池温度が高いほど、また所定の温度における内部抵抗が大きいほど大きく決定する。
【0025】
電池の内部抵抗値は、電池の放電時に、前記したように電流値と電圧降下値より算出可能である。また図4に示すように、定電流(定電力)充電から定電圧充電へ切り替わるときの電圧降下値又は電流値を減少させて充電するときの電圧降下値を、そのとき流れていた電流値で割ることにより求めることも可能である。
【0026】
図5に、従来法(充電時間一定及び充電終止電流値一定)で充電したときと本実施の形態の充電方法で充電したときの、サイクル数と放電容量の関係を比較して示す。同図より、本実施の形態の充電方法で充電することにより、従来方法に比べて充放電サイクル寿命が向上していることがわかる。
【0027】
上述したように、本実施の形態によれば、定電圧充電時間又は充電終止電流値を電池温度及び内部抵抗値より決定することにより、充放電サイクル寿命を向上させることができる。
【0028】
図6乃至図8には、本発明の第2の実施の形態を示す。図6を用いて、本実施の形態の充電装置の構成を説明する。本実施の形態では、CPU5に電池1の充電回数又は使用日数より定電圧充電時間及び充電終止電流を求めるマップが記憶されている。そして、電池1の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を定電流値より小さくし、電圧は、その所定電圧値に保って定電圧充電する。このとき、CPU5により、定電圧充電時の定電圧充電時間及び充電終止電流値を電池1の充電回数又は使用日数の少なくとも何れかによって決定する。図7は、充放電回数と充電終止電流値の関係を示している。また図8は、電池の使用日数と充電終止電流値の関係を示している。充電回数や使用日数を記憶していることにより、電池の容量劣化とともに充電終止電流は大きく決定する。
【0029】
上記各実施の形態の充電方法は、複数の電池が直列に接続されている組電池にも適用可能である。組電池に適用する場合には組電池中最も内部抵抗の大きい電池の温度及び内部抵抗値によって充電制御することにより、総電圧で制御するよりも電圧ばらつきを考慮した最適な充電が可能となる。
【図面の簡単な説明】
【図1】本発明に係る充電装置の第1の実施の形態を示すブロック図である。
【図2】上記第1の実施の形態において電池温度及び所定温度における内部抵抗と定電圧充電時間の関係を示す図である。
【図3】上記第1の実施の形態において電池温度及び所定温度における内部抵抗と充電終止電流値の関係を示す図である。
【図4】上記第1の実施の形態において電池の電流値と電圧降下値から電池内部抵抗の算出例を説明するための図である。
【図5】上記第1の実施の形態において充放電サイクル数と放電容量の関係を比較例とともに示す図である。
【図6】本発明に係る充電装置の第2の実施の形態を示すブロック図である。
【図7】上記第2の実施の形態において充放電回数と充電終止電流値の関係を示す図である。
【図8】上記第2の実施の形態において電池の使用日数と充電終止電流値の関係を示す図である。
【図9】従来の電池の充電方法を説明するための図である。
【符号の説明】
1 被充電電池
2 電池電圧検出手段
3 電池電流検出手段
4 充電器
5 CPU(制御手段)
6 電池温度検出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery charging method and a charging device.
[0002]
[Prior art]
As a conventional battery charging method, for example, there is a method as shown in FIG. In a non-aqueous battery which is not preferable for safety when the battery voltage exceeds a certain voltage, constant voltage charging is performed as shown in FIG. Japanese Patent Application Laid-Open No. 6-325794 discloses that a battery is charged at a constant current until the battery voltage reaches a predetermined reference voltage higher than the full charge voltage, and then charged at a constant voltage at a voltage equal to the full charge voltage. A charging method capable of performing sufficient charging in time is disclosed.
[0003]
[Problems to be solved by the invention]
However, in such a conventional battery charging method, since the charging time and the charge amount differ depending on the battery temperature, the charging time may take longer than necessary when the battery temperature is high. When it is high, there is a problem that the longer the charging time, the easier it is to deteriorate. On the other hand, when the battery temperature is low, the charging time is required to be long, so that there is a problem that the charging is insufficient or the control by the charging time is difficult.
[0004]
The present invention has been made paying attention to such conventional problems, and optimizes the charge termination current value related to the constant voltage charge time and the charge amount that affect the deterioration of the battery, thereby improving the charge / discharge cycle life. It is an object of the present invention to provide a battery charging method and a charging device that can be improved.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, the battery charging method according to claim 1 is charged with a constant current until the voltage of the battery reaches a predetermined voltage value, and then the current value is decreased, and the voltage is set to the predetermined voltage value. In a charging method for a battery that is kept at a constant voltage and is charged, the deterioration of the battery is determined from the battery internal resistance at a predetermined battery temperature, and the constant voltage charging time is shortened with the deterioration of the battery . With this configuration, it is possible to optimize the constant voltage charging time that affects the deterioration of the battery. In addition, the battery internal resistance increases as the battery capacity deteriorates. By shortening the constant voltage charging time as the battery deteriorates, the constant voltage charging time can be optimized in order to suppress the progress of the deterioration.
[0007]
The battery charging method according to claim 2, wherein the battery is charged with a constant current until the voltage of the battery reaches a predetermined voltage value, and thereafter, the current value is decreased, and the battery is charged at a constant voltage while maintaining the voltage at the predetermined voltage value. The gist of the charging method is that the deterioration of the battery is determined from the battery internal resistance at a predetermined battery temperature , and the charge termination current value during the constant voltage charging is increased with the deterioration of the battery . With this configuration, it is possible to optimize the charge end current value related to the charge amount. Further, the battery capacity is deteriorated as the battery internal resistance is increased and the number of times of charging or usage time is increased. By increasing the charge end current value as the battery deteriorates, it is possible to optimize the charge end current value in order to prevent insufficient charging.
[0008]
The battery charging method according to claim 3, wherein the battery is charged with a constant current until the voltage of the battery reaches a predetermined voltage value, and thereafter, the current value is decreased and the voltage is maintained at the predetermined voltage value to be charged at a constant voltage. The gist of the charging method is to determine the deterioration of the battery from the number of charging times or the usage time of the battery, and to increase the charge end current value during the constant voltage charging with the deterioration of the battery . With this configuration, the charge end current value related to the charge amount can be optimized as described above. Further, the battery capacity is deteriorated as the battery internal resistance is increased and the number of times of charging or usage time is increased. By increasing the charge end current value as the battery deteriorates, it is possible to optimize the charge end current value in order to prevent insufficient charging.
[0010]
The battery charging method according to claim 4 is the battery charging method according to claim 1, 2 or 3 , wherein the battery temperature and the battery internal resistance are the battery packs in which a plurality of batteries are connected in series. The gist is to use the battery having the largest internal resistance among the assembled batteries. With this configuration, the assembled battery can be optimally charged in consideration of voltage variations.
[0011]
The charging device according to claim 5 , wherein charging is performed with a constant current until the voltage of the battery reaches a predetermined voltage value, and then the current value is decreased, and the voltage is maintained at the predetermined voltage value to perform constant voltage charging. Battery temperature detection means for detecting the battery temperature, battery voltage detection means for detecting the battery voltage, battery current detection means for detecting the battery current, and battery voltage detected by the battery voltage detection means Battery deterioration determined from the battery internal resistance obtained from the battery current detected by the battery current detection means, the battery temperature detected by the battery temperature detection means, and the battery internal resistance at a predetermined battery temperature. The gist of the constant voltage charging time is shortened with the deterioration of the battery . With this configuration, it is possible to appropriately realize a charging method that optimizes a constant voltage charging time that affects battery deterioration.
[0012]
The charging device according to claim 6 , wherein the battery is charged with a constant current until the voltage of the battery reaches a predetermined voltage value, and thereafter, the current value is reduced and the voltage is maintained at the predetermined voltage value to perform constant voltage charging. Battery temperature detection means for detecting the battery temperature, battery voltage detection means for detecting the battery voltage, battery current detection means for detecting the battery current, and battery voltage detected by the battery voltage detection means Battery deterioration determined from the battery internal resistance obtained from the battery current detected by the battery current detection means, the battery temperature detected by the battery temperature detection means, and the battery internal resistance at a predetermined battery temperature. The charging termination current value of the constant voltage charging itself increases with the deterioration of the battery . With this configuration, it is possible to appropriately realize a charging method that optimizes the charge end current value related to the charge amount.
[0013]
【The invention's effect】
According to the battery charging method of claim 1, since the constant voltage charging time is determined by the battery temperature and the battery internal resistance, the constant voltage charging time affecting the deterioration of the battery can be optimized, The charge / discharge cycle life can be improved. In addition, battery deterioration is judged from the battery internal resistance at a predetermined battery temperature, and the constant voltage charging time is shortened with the deterioration of the battery, so that the constant voltage charging time is optimized to suppress the progress of deterioration. And the charge / discharge cycle life can be improved.
[0015]
According to the method for charging a battery according to claim 2, since the charge end current value at the time of constant voltage charge is determined by the battery temperature and the battery internal resistance, the charge end current value related to the charge amount is optimized. Can be prevented and insufficient charging can be prevented. Further, the deterioration of the battery is determined from the battery internal resistance at the predetermined battery temperature, the number of times of charging or the usage time, and the charge end current value is increased with the deterioration of the battery. The end-of-charge current value can be optimized.
[0016]
According to the method for charging a battery according to claim 3, since the end-of-charge current value at the time of constant voltage charging is determined by at least one of the number of times the battery is charged or the usage time, the effect of the invention according to claim 2 is achieved. And almost the same effect can be obtained. In addition, since the deterioration of the battery is determined from the battery internal resistance at the predetermined battery temperature, the number of times of charging or the usage time, and the end-of-charge current value is increased along with the deterioration of the battery, The end-of-charge current value can be optimized.
[0018]
According to the battery charging method of claim 4, in the assembled battery in which a plurality of batteries are connected in series, the battery temperature and the battery internal resistance are based on the battery having the largest internal resistance among the assembled batteries. Therefore, the assembled battery can be optimally charged in consideration of voltage variation.
[0019]
According to the charging device of claim 5, the battery temperature detecting means for detecting the temperature of the battery, the battery voltage detecting means for detecting the voltage of the battery, the battery current detecting means for detecting the current of the battery, A battery internal resistance obtained from the battery voltage detected by the battery voltage detection means and the battery current detected by the battery current detection means, and a battery temperature detected by the battery temperature detection means, and a predetermined battery temperature Since the battery degradation is judged from the battery internal resistance in the battery and the constant voltage charging time is shortened with the battery degradation, a charging method that optimizes the constant voltage charging time that affects the battery degradation is appropriately realized. can do.
[0020]
According to the charging device of claim 6, the battery temperature detecting means for detecting the temperature of the battery, the battery voltage detecting means for detecting the voltage of the battery, the battery current detecting means for detecting the current of the battery, A battery voltage detected by the battery voltage detecting means and a battery internal resistance obtained from the battery current detected by the battery current detecting means, and a battery temperature detected by the battery temperature detecting means and a predetermined battery temperature In the charging method, the deterioration of the battery is determined from the internal resistance of the battery and the charge end current value of the constant voltage charge increases with the deterioration of the battery, so that the charge end current value related to the charge amount is optimized. It can be realized appropriately.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
1 to 5 are diagrams showing a first embodiment of the present invention. First, the configuration of the charging device will be described with reference to FIG. In the figure, reference numeral 1 denotes a battery to be charged, which is charged by a charger 4. The charger 4 has a built-in CPU 5 as a control means, and the CPU 5 stores a map for obtaining a constant voltage charging time and a charging end current from the temperature of the battery 1 and the internal resistance. 2 is a battery voltage detecting means for detecting the voltage of the battery 1, 3 is a battery current detecting means for detecting the current of the battery 1, and 6 is a battery temperature detecting means for detecting the temperature of the battery 1.
[0023]
Next, a method for charging the battery 1 using the charging device having the above configuration will be described with reference to FIGS. While the battery voltage is detected by the battery voltage detecting means 2 and the battery current is monitored by the battery current detecting means 3, the battery 1 is charged with a constant current until the voltage of the battery 1 reaches a predetermined voltage value. Thereafter, the current value is made smaller than the constant current value, and the voltage is kept at the predetermined voltage value and charged at a constant voltage. At this time, the CPU 5 obtains the internal resistance of the battery 1 from the battery voltage detected by the battery voltage detection means 2 and the battery current detected by the battery current detection means 3, and the internal resistance value and the battery temperature detection means 6 detect the internal resistance. The constant voltage charging time and charging end current are determined according to the battery temperature.
[0024]
FIG. 2 shows a case in which a carbon material is used as the negative electrode active material, LiCoO 2 is used as the positive electrode active material, and 1 mol / l of lithium hexafluorophosphate is dissolved in a mixed solution of propylene carbonate and 1-2-dimethoxyethane as an electrolytic solution. The relationship between the battery temperature and the internal resistance at a predetermined temperature and the constant voltage charging time is shown for the battery using the non-aqueous electrolyte obtained as an example. From the figure, the charging time is determined to be shorter as the battery temperature is higher and as the value of the internal resistance at a predetermined temperature is larger. Since the internal resistance of the battery increases as the capacity of the battery deteriorates, the battery deteriorates as the internal resistance of the battery at a predetermined temperature increases. FIG. 3 shows the relationship between the internal resistance and the charge end current value at a battery temperature and a predetermined temperature of the same battery as described above. The charge end current value is determined to be larger as the battery temperature is higher or the internal resistance at a predetermined temperature is higher.
[0025]
The internal resistance value of the battery can be calculated from the current value and the voltage drop value as described above when the battery is discharged. Also, as shown in FIG. 4, the voltage drop value when charging by reducing the voltage drop value or current value when switching from constant current (constant power) charge to constant voltage charge is the current value that was flowing at that time. It can also be obtained by dividing.
[0026]
FIG. 5 shows a comparison of the relationship between the number of cycles and the discharge capacity when charged by the conventional method (constant charging time and constant charging end current value) and when charged by the charging method of the present embodiment. From the figure, it can be seen that charging / discharging cycle life is improved as compared with the conventional method by charging with the charging method of the present embodiment.
[0027]
As described above, according to the present embodiment, the charge / discharge cycle life can be improved by determining the constant voltage charging time or the charge end current value from the battery temperature and the internal resistance value.
[0028]
6 to 8 show a second embodiment of the present invention. The configuration of the charging device of the present embodiment will be described with reference to FIG. In the present embodiment, the CPU 5 stores a map for obtaining the constant voltage charging time and the charging end current from the number of times the battery 1 is charged or the number of days used. The battery 1 is charged with a constant current until the voltage reaches a predetermined voltage value, and then the current value is made smaller than the constant current value, and the voltage is maintained at the predetermined voltage value and charged with a constant voltage. At this time, the CPU 5 determines the constant voltage charging time and the charge end current value at the time of constant voltage charging according to at least one of the number of charging times of the battery 1 and the number of days of use. FIG. 7 shows the relationship between the number of charge / discharge cycles and the charge end current value. FIG. 8 shows the relationship between the number of days the battery has been used and the end-of-charge current value. By storing the number of times of charging and the number of days of use, the end-of-charge current is largely determined as the battery capacity deteriorates.
[0029]
The charging method of each of the above embodiments can also be applied to an assembled battery in which a plurality of batteries are connected in series. When applied to an assembled battery, by performing charge control according to the temperature and internal resistance value of the battery having the largest internal resistance among the assembled batteries, it is possible to perform optimal charging in consideration of voltage variation rather than control with the total voltage.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of a charging apparatus according to the present invention.
FIG. 2 is a diagram showing a relationship between a battery temperature and an internal resistance at a predetermined temperature and a constant voltage charging time in the first embodiment.
FIG. 3 is a diagram showing a relationship between an internal resistance and a charge end current value at a battery temperature and a predetermined temperature in the first embodiment.
FIG. 4 is a diagram for explaining a calculation example of battery internal resistance from a battery current value and a voltage drop value in the first embodiment.
FIG. 5 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity together with a comparative example in the first embodiment.
FIG. 6 is a block diagram showing a second embodiment of the charging device according to the present invention.
FIG. 7 is a diagram showing the relationship between the number of charge / discharge cycles and the charge end current value in the second embodiment.
FIG. 8 is a diagram showing the relationship between the number of days of battery use and the charge end current value in the second embodiment.
FIG. 9 is a diagram for explaining a conventional battery charging method;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Charged battery 2 Battery voltage detection means 3 Battery current detection means 4 Charger 5 CPU (control means)
6 Battery temperature detection means

Claims (6)

電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、
所定の電池温度における前記電池内部抵抗から前記電池の劣化を判断し、前記定電圧充電時間は前記電池の劣化とともに短くすることを特徴とする電池の充電方法。
In the battery charging method of charging the battery with a constant current until the voltage of the battery reaches a predetermined voltage value, then reducing the current value and charging the battery at a constant voltage while maintaining the voltage at the predetermined voltage value,
A battery charging method , wherein deterioration of the battery is determined from the battery internal resistance at a predetermined battery temperature, and the constant voltage charging time is shortened with deterioration of the battery.
電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、
所定の電池温度における前記電池内部抵抗から前記電池の劣化を判断し、前記定電圧充電時の充電終止電流値は前記電池の劣化とともに大きくすることを特徴とする電池の充電方法。
In the battery charging method of charging the battery with a constant current until the voltage of the battery reaches a predetermined voltage value, then reducing the current value and charging the battery at a constant voltage while maintaining the voltage at the predetermined voltage value,
A battery charging method, wherein deterioration of the battery is determined from the battery internal resistance at a predetermined battery temperature, and a charge end current value at the time of constant voltage charging is increased with deterioration of the battery.
電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する電池の充電方法において、
前記電池の充電回数又は使用時間から前記電池の劣化を判断し、前記定電圧充電時の充電終止電流値は前記電池の劣化とともに大きくすることを特徴とする電池の充電方法。
In the battery charging method of charging the battery with a constant current until the voltage of the battery reaches a predetermined voltage value, then reducing the current value and charging the battery at a constant voltage while maintaining the voltage at the predetermined voltage value,
A battery charging method, wherein deterioration of the battery is determined from the number of times of charging or usage time of the battery, and a charge end current value at the time of constant voltage charging is increased with deterioration of the battery.
複数個の電池が直列に接続された組電池において、前記電池温度と電池内部抵抗は前記組電池中最も内部抵抗の大きい電池を基準にすることを特徴とする請求項1,2又は3記載の電池の充電方法。  4. The assembled battery in which a plurality of batteries are connected in series, wherein the battery temperature and the battery internal resistance are based on a battery having the largest internal resistance among the assembled batteries. How to charge the battery. 電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する充電装置において、
前記電池の温度を検出する電池温度検出手段と、
前記電池の電圧を検出する電池電圧検出手段と、
前記電池の電流を検出する電池電流検出手段と、
前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗と、前記電池温度検出手段で検出された電池温度と、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電する時間は前記電池の劣化とともに短くすることを特徴とする充電装置。
In a charging device that charges with a constant current until the voltage of the battery reaches a predetermined voltage value, then reduces the current value, and keeps the voltage at the predetermined voltage value to charge at a constant voltage,
Battery temperature detecting means for detecting the temperature of the battery;
Battery voltage detection means for detecting the voltage of the battery;
Battery current detection means for detecting the current of the battery;
The battery internal resistance obtained from the battery voltage detected by the battery voltage detecting means and the battery current detected by the battery current detecting means, the battery temperature detected by the battery temperature detecting means, and the battery temperature detected at the predetermined battery temperature A charging device characterized in that battery deterioration is determined from battery internal resistance, and the constant voltage charging time is shortened with battery deterioration .
電池の電圧が所定電圧値に達するまで定電流で充電し、その後、電流値を小さくし、電圧を前記所定電圧値に保って定電圧充電する充電装置において、
前記電池の温度を検出する電池温度検出手段と、
前記電池の電圧を検出する電池電圧検出手段と、
前記電池の電流を検出する電池電流検出手段と、
前記電池電圧検出手段で検出された電池電圧及び前記電池電流検出手段で検出された電池電流から求めた電池内部抵抗と、前記電池温度検出手段で検出された電池温度と、所定の電池温度における前記電池内部抵抗とから電池の劣化を判断し、前記定電圧充電時の充電終止電流値は前記電池の劣化とともに大きくすることを特徴とする充電装置。
In a charging device that charges with a constant current until the voltage of the battery reaches a predetermined voltage value, then reduces the current value, and keeps the voltage at the predetermined voltage value to charge at a constant voltage,
Battery temperature detecting means for detecting the temperature of the battery;
Battery voltage detection means for detecting the voltage of the battery;
Battery current detection means for detecting the current of the battery;
The battery internal resistance obtained from the battery voltage detected by the battery voltage detecting means and the battery current detected by the battery current detecting means, the battery temperature detected by the battery temperature detecting means, and the battery temperature detected at the predetermined battery temperature A battery charger, wherein battery deterioration is determined from battery internal resistance, and a charge end current value at the time of constant voltage charging is increased with battery deterioration .
JP30033396A 1996-11-12 1996-11-12 Battery charging method and charging device Expired - Lifetime JP3641885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30033396A JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30033396A JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Publications (2)

Publication Number Publication Date
JPH10145981A JPH10145981A (en) 1998-05-29
JP3641885B2 true JP3641885B2 (en) 2005-04-27

Family

ID=17883516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30033396A Expired - Lifetime JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Country Status (1)

Country Link
JP (1) JP3641885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319861A (en) * 2014-11-20 2015-01-28 李斌武 Differential low-voltage efficient and quick charging point circuit

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401734B2 (en) * 2002-10-11 2010-01-20 キヤノン株式会社 Secondary battery internal resistance detection method, internal resistance detection device, internal resistance detection program, and medium containing the program
JP4788398B2 (en) * 2006-02-27 2011-10-05 パナソニック電工株式会社 Charger
US7521897B2 (en) * 2006-03-27 2009-04-21 Sony Ericsson Mobile Communications Ab Battery charge temperature control
US7535201B2 (en) 2006-10-05 2009-05-19 Densei-Lambda Kabushiki Kaisha Uninterruptible power supply system
JP5418871B2 (en) * 2007-10-25 2014-02-19 日立工機株式会社 Charger
JP4821891B2 (en) 2009-07-01 2011-11-24 トヨタ自動車株式会社 Battery control system and vehicle
JP5879557B2 (en) * 2011-09-12 2016-03-08 パナソニックIpマネジメント株式会社 Charger
WO2013129499A1 (en) * 2012-02-27 2013-09-06 京セラ株式会社 Control device, control system, and storage cell control method
EP2838176B1 (en) 2012-06-07 2017-06-07 Lg Chem, Ltd. Method for charging secondary battery
CN104471829B (en) * 2012-07-12 2017-03-15 日产自动车株式会社 The charge control method and battery charge controller of secondary cell
JP6409510B2 (en) * 2014-11-04 2018-10-24 株式会社豊田自動織機 Charge control device and charge control method
JPWO2020137815A1 (en) * 2018-12-25 2021-11-04 三洋電機株式会社 How to charge the standby power supply and secondary battery
CN113424354A (en) * 2019-02-27 2021-09-21 三洋电机株式会社 Battery pack charging method, battery pack, and power supply device
CN113138348B (en) * 2020-01-17 2023-08-25 北京新能源汽车股份有限公司 Lithium battery detection method and device
CN111525651A (en) * 2020-05-27 2020-08-11 广东小天才科技有限公司 Charging method, charging chip and terminal equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319861A (en) * 2014-11-20 2015-01-28 李斌武 Differential low-voltage efficient and quick charging point circuit

Also Published As

Publication number Publication date
JPH10145981A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JP3641885B2 (en) Battery charging method and charging device
EP0948075B1 (en) Method for managing charge/discharge of secondary battery
JP3870577B2 (en) Variation determination method for battery pack and battery device
KR101608611B1 (en) Control device for secondary battery, and soc detection method
US8421418B2 (en) Charging/discharging control unit for lithium secondary battery
US20150200425A1 (en) Lithium secondary battery and control system therefor, and method for detecting state of lithium secondary battery
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US8674659B2 (en) Charge control device and vehicle equipped with the same
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JPWO2011007805A1 (en) Lithium ion secondary battery monitoring system and lithium ion secondary battery monitoring method
JP5699970B2 (en) Lithium ion secondary battery system and deposition determination method
JPH07255134A (en) Series connection circuit of secondary cells
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
JP7356986B2 (en) Secondary battery charging system
JP2010049882A (en) Vehicle
JP3849541B2 (en) Charge / discharge control method for battery pack
CN111799517A (en) Method for charging secondary battery
JP3721690B2 (en) Secondary battery protection device
US20220271550A1 (en) Management apparatus for energy storage device, energy storage apparatus, and input/output control method for energy storage device
JP5122899B2 (en) Discharge control device
JP3742137B2 (en) How to charge the battery
JP3653873B2 (en) How to charge the battery
JP4472415B2 (en) Non-aqueous electrolyte secondary battery charging method and charger
KR101078146B1 (en) Apparatus and method for charging battery cells
JP3888296B2 (en) Voltage generator for vehicle generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

EXPY Cancellation because of completion of term