JP3640268B2 - Connector and connector manufacturing method - Google Patents

Connector and connector manufacturing method Download PDF

Info

Publication number
JP3640268B2
JP3640268B2 JP28685295A JP28685295A JP3640268B2 JP 3640268 B2 JP3640268 B2 JP 3640268B2 JP 28685295 A JP28685295 A JP 28685295A JP 28685295 A JP28685295 A JP 28685295A JP 3640268 B2 JP3640268 B2 JP 3640268B2
Authority
JP
Japan
Prior art keywords
connector
hole
conductive
conductive layer
insulating sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28685295A
Other languages
Japanese (ja)
Other versions
JPH09115577A (en
Inventor
龍 前田
光司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitaker LLC
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Priority to JP28685295A priority Critical patent/JP3640268B2/en
Priority to PCT/US1996/016667 priority patent/WO1997013295A1/en
Publication of JPH09115577A publication Critical patent/JPH09115577A/en
Application granted granted Critical
Publication of JP3640268B2 publication Critical patent/JP3640268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、BGA、LGAのような、面内に多数の電極が形成された半導体パッケ−ジ用のコネクタ及びその製造方法に関する。
【0002】
【従来の技術】
パ−ソナルコンピュ−タやワ−クステ−ションに用いられるマイクロプロセッサやASIC(Application Specific Integrated Circuit)に、多ピンのBGAやLGAのパッケ−ジが使用されている。特に近年BGAパッケ−ジの使用が注目されており、半田による表面実装の他に、これらを取り外しできるコネクタが必要とされている。
従来はPGAパッケ−ジが主流であり、コネクタとしてピン挿入型のPGA用コネクタが主に用いられていた。しかしながらPGAパッケ−ジは比較的外形寸法が大きくなる点、多極高密度配置を要求するときピン径が小さくなりピンの成形加工やピンの変形等の問題を生じる点等の問題点があった。更にそのコネクタは大きな挿抜荷重に対して耐えうるよう、又は零挿入力型に設計される必要があり、コネクタ設計が難しい、又は経済的に不利である等の問題があった。
主に以上の理由からPGAパッケ−ジからピンを除去し面内に電極パッドだけを残すLGAパッケ−ジが使用される。また、近年QFP(Quad FlatPackeage)やTCP(Tape Carrier Package)等の多ピンパッケ−ジの代替としてBGAパッケ−ジが使用される。BGAはLGAのランドの位置にバンプ状半田ボ−ルを形成したものである。BGAパッケ−ジを有する素子はプリント基板上の所定の位置に配置後半田リフロ−され、これにより半田ボ−ルを溶融させ基板側のランドと半田接合されることにより、プリント基板上に実装可能である。
【0003】
【発明が解決しようとする課題】
しかしながら従来は、LGA、BGAパッケ−ジに好適なプリント基板に取り付け取り外し可能な比較的低コストのコネクタが無かった。上述の如き半田接合による取り付けでは取り外しが不可能になる。上記パッケ−ジを有する半導体素子が取り付け取り外し可能であることは試作段階や初期販売段階でのCPUの試験的実装、或いは新型半導体素子への交換等に必要とされる。
【0004】
従って、本発明の目的は,LGA、BGAパッケ−ジを有する半導体素子等を取り外し可能にしてプリント基板に取り付け両者間を電気的に接続させる小型で比較的安価なコネクタ及びその製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明のコネクタ複数の貫通孔が形成された絶縁性シートと、前記貫通孔の内側面上に位置し前記絶縁性シートの両面を電気的に導通する導電層と、前記貫通孔内に充填された弾性樹脂と、該弾性樹脂面上に配置され前記導電層と電気的に導通する金属バンプを有することを特徴とする。
【0006】
本発明のコネクタは、LGA、BGA等のパッケ−ジを具える半導体素子をプリント基板に接続させる。本発明のコネクタは多数の導電ランドを両面に有する絶縁性シ−トと、導電ランド位置に形成されたスル−ホ−ル(貫通孔)の内面に沿って位置し上下面のランド間を導電接続する導電層と、スル−ホ−ル内に充填されたエラストマ−と、エラストマ−の上下表面に位置する金属バンプとを有する。金属バンプは半球形または球形に形成され、その径はスル−ホ−ル径よりも小径に形成される。
【0007】
更に本発明のコネクタ製造方法は絶縁性シートの所定位置に貫通孔を形成する工程と該貫通孔の内側面に沿って導電層を形成する工程と、前記貫通孔内に弾性樹脂を充填する工程と、該弾性樹脂の上下面に前記導電層と電気的に導通する金属バンプを配置する工程を含む。
【0008】
本発明のコネクタの製造方法の第1工程では、絶縁性シ−トの両面の所望の対向位置に導電ランドが形成され、この導電ランド位置に孔開け加工しスル−ホ−ルを形成する。第2の工程ではスル−ホ−ル内面にめっき等の方法により導電層を膜状に形成する。第3の工程ではスル−ホ−ル内に適量のエラストマ−を充填し、第4の工程ではエラストマ−上に導電性接着剤を介して金属バンプを配置する。
【0009】
【発明の実施の形態】
以下に、添付図面を参照して本発明のコネクタ及びコネクタ製造方法の好適となる実施形態を説明する。
【0010】
本発明のコネクタは、ポリイミド、ポリエステル、ガラスエポキシ、紙フェノ−ル、セラミックス、テフロン、シリコン樹脂等の様々なシ−ト状樹脂からなる絶縁性シート1が使用される。この絶縁性シ−ト1の両面にはLGAのパッド位置及びプリント基板パッド位置と相対する背中合わせの位置に導電ランドを形成する。一例として導電ランドは絶縁性のシ−トの両面に銅の層を配置し、この銅層をエッチングして形成する。次に銅製の導電ランド位置にはランド寸法より小さい径の孔を孔開け加工しスル−ホ−ル2(貫通孔)を形成する(図1参照)。孔開け加工の方法は、ドリル加工、ケミカルエッチング、プレス打ち抜き、レ−ザ−加工等のいずれの方法でも構わない。
【0011】
次に、スル−ホ−ル2の内面にスル−ホ−ルめっきを行い導電層3を形成する(図2参照)。導電層3は絶縁シ−ト1の両面に位置する導電ランド5間を導電接続する。スル−ホ−ルめっきの代わりに導電性樹脂をスル−ホ−ル内に注入し内面に加熱硬化させる方法もある。
【0012】
更に図3の如く、スル−ホ−ル2内にエラストマ−等の弾性を有する樹脂6が充填され、加熱等の方法で硬化される。樹脂は好ましくはシリコ−ン樹脂を主成分とするものを使用する。樹脂は導電性であるか非導電性であるかを問わないが、好ましくは導電性のもの、例えばシリコ−ン樹脂中にAg(銀)等の金属粒子又は樹脂表面を金属コ−ティングした導電性の粒子を分散させたものを使用する。
【0013】
スル−ホ−ル2内に完全に樹脂が充填された後、絶縁性シ−ト1の表面を研磨し、両面側の導電ランド5及び/またはシリコ−ン弾性樹脂6の表面にシリコ−ン系導電性接着材7を塗布し、更にその後導電性接着剤7上に図4乃至図8の如く金属バンプ8を配置する。図4及び図6に示す実施形態によれば金属バンプ8が導電層3と直接接触し、一方図5、図7及び図8に示す実施形態では金属バンプ8と導電層3は導電性接着剤7を介して間接的に導通される。
【0014】
半球形又は球形の金属バンプ8は所定の形状の銅やニッケルの表面に金めっきしたものを用いる。これらは径を揃えたものであることが好ましい。特に金属バンプ8を半田ボ−ルにしたり、半田或いは錫めっきした金属半球または金属球より形成することにより表面実装型のコネクタとしても使用可能である。
【0015】
加えて本発明によれば図8に示す実施形態の如く、一側で弾性樹脂上に金属バンプ8が配置され逆側で導電ランド5上に半田バンプ9が形成される。この場合、下側の半田バンプ9が形成された側は基板等のパッドに位置合わせされ、半田付け接続される。
【0016】
上述した如く絶縁シート1の一面に金属バンプ8を形成した本発明のコネクタは略枠状のハウジング(図示せず)内に配置されコネクタ組立体(図示せず)を形成し得る。接続時には例えばプリント基板上の所望の位置に上述のコネクタを収容した略枠状のハウジングを配置し、その頂側にLGA、BGA等のパッケ−ジの半導体素子を配置し、この半導体素子の頂側より半導体素子を押圧する。これにより半導体素子の端子(パッド)がコネクタの一側の金属バンプ8と接触する。またこの金属バンプと背中合わせに配置された他方の金属バンプがプリント基板のパッドと接続され得る。この時金属バンプは弾性樹脂に埋まるよう移動する。
【0017】
半導体素子やプリント基板のパッドの平面度は完全ではなく一般には10mm角の寸法に対して約0.1mm程度の凹凸があるが、本発明のコネクタは弾性樹脂6を具えており、この凹凸を十分補償可能である。加えて接続抵抗値は金属バンプ8先端での優れた接触抵抗とスルーホールめっきにより十分小さな値となる。
【0018】
【実施例1】
27mm角で厚さ0.8mmのガラスエポキシ基板の両面に1.5mmピッチで直径1.3mm,縦15個、横15個合計225個の銅パッド(導電ランド)を基板両面の相対位置に形成した。各パッドの略中心に直径1.1mmのスルーホールを形成した後スルーホールめっきし上下の銅パッドを導電接続させた。さらに上下面のパッド表面に金めっきを施した。市販の2液混合付加反応型シリコーン樹脂に20重量%のシリカ粉を混合したぺーストを上記のスルーホールに充填し100℃で加熱硬化させた。シリコーン樹脂系の導電接着剤を樹脂及びパッド上に塗布し、金めっきした直径0.9mmの銅金属半球をスルーホールの略中央のエラストマー部分に接着させた。
【0019】
本コネクタ部材の1電極について上下から金めっき板で挟んで特性を調べたところ、接圧10グラムで金属半球によるバンプの変位は上下で約0.2mm,4端子法での接触抵抗は18mm・Ωであった。
225個のコンタクト、即ち接触部を有するコネクタをハウジングに入れ、27mm角のLGAをこの上に乗せて実装し電気的試験をした。225個の接続抵抗値は全て35mm・Ω以下となり高温試験後の抵抗変化はプラス10%以下であった。
【0020】
【実施例2】
27mm角で厚さ0.8mmのガラスエポキシ基板の両面に1.5mmピッチで直径1.3mm.縦15個、横15個合計225個の銅パッドを基板両面の相対位置に形成した。角パッドの略中心に直径1.1mmのスルーホールを孔開け加工し、スルーホールめっきし上下の電極パッドを導電接続させた。さらに上下の銅パッド表面に金メッキを施した。
付加反応型シリコーン樹脂90重量%に平均粒径100μmの金めっき銅粉を10重量%混合したものをスルーホールに充填し100℃で加熱硬化させた。直径0.9mmの銅金属球に金めっきを施し、シリコーン樹脂系の導電性接着材を金パッド全体に塗布した後スルーホール中央部のエラストマー部に接着させた。
【0021】
本コネクター部材の1電極について、上下から金めっき板で挟み、上下からの接圧と接触抵抗の相関を求めたところ、接圧10グラムでのバンプ変位は上下合計で0.2mm,4端子法での接触抵抗は5mm・Ωであった。
225個のコンタクトを有する本部材をハウジングに入れ、27mm角のLGAをこの上に載せて実装し電気的試験をした。225個の端子の接続抵抗は全て15mm・Ω以下にあり、高温高湿試験後の抵抗変化はプラス15%以下であった。
【0022】
【実施例3】
27mm角で厚さ1.0mmのガラスエキポシ基板の両面に1.5mmピッチで直径1.3mm,縦15個、横15個合計225個の銅パッドを基板両面の相対位置に形成した。基板の下面の角パッド中心に直径0.3mm、深さ0.3mmのスルーホール孔開け加工し、スルーホールめっきし上下のパッドを導電接続させた。さらに上下面のパッド表面に金めっきを施した。市販の2液混合付加反応型シリコーン樹脂を上記のスルーホールに充填し100℃で加熱硬化させた。直径0.9mmの銅金属球に金めっきを施し、シリコーン樹脂形の導電性接着材を上面の金パッド全体に塗布した後ランド中央部のエラストマー部に接着させた。 一方下面のパッドには直径1.2mmの球状半田ボールを半田接続させた。
【0023】
本コネクター部材の1電極について、下面はプリント基板と半田接合し上面の金属球に平板プローブを当てプローブにかかる荷重と接触抵抗の関係を求めたところ、接圧10グラムでのバンプ変位は0.12mm、4端子法での接触抵抗は4mm・Ωであった。
225個のコンタクトを有する本部材をハウジングに入れ、27mm角のLGAをこの上に乗せて実装し電気的試験をした。225個の端子の接続抵抗は全て28mm・Ω以下にあり、高温高湿試験後の抵抗変化はプラス8%以下であった。
【0024】
【発明の効果】
本発明のコネクタによればLGA、BGA等のパッケージを有する多極の半導体素子を、プリント基板等に対して取り外し可能にして容易に接続可能となる。更に本発明のコネクタは比較的簡単な構造でその製造方法によれば製造も容易であり経済的効果も高い。
【図面の簡単な説明】
【図1】 本発明のコネクタの製造方法の第1の工程を示す断面図。
【図2】 本発明のコネクタの製造方法の第2の工程を示す図1類似の断面図。
【図3】 本発明のコネクタの製造方法の第3の工程を示す図1類似の断面図。
【図4】 本発明のコネクタの第1の好適実施形態を示す断面図。
【図5】 本発明のコネクタの第2の好適実施形態を示す断面図。
【図6】 本発明のコネクタの第3の好適実施形態を示す断面図。
【図7】 本発明のコネクタの第4の好適実施形態を示す断面図。
【図8】 本発明のコネクタの第5の好適実施形態を示す断面図。
【符号の説明】
1・・・・絶縁性シート
2・・・・貫通孔(スルーホール)
3・・・・導電層
6・・・・弾性樹脂
8・・・・金属バンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connector for a semiconductor package, such as BGA and LGA, in which a large number of electrodes are formed in a plane, and a method for manufacturing the same.
[0002]
[Prior art]
Multi-pin BGA and LGA packages are used in microprocessors and ASICs (Application Specific Integrated Circuits) used in personal computers and workstations. In particular, the use of BGA packages has attracted attention in recent years, and in addition to surface mounting by solder, a connector that can be removed is required.
Conventionally, PGA packages have been mainstream, and pin insertion type PGA connectors have been mainly used as connectors. However, the PGA package has problems such as a relatively large external dimension and a problem that a pin diameter becomes small when a multi-pole high-density arrangement is required, resulting in problems such as pin forming and pin deformation. . Further, the connector needs to be designed to withstand a large insertion / extraction load, or to be designed to have a zero insertion force type, which causes problems such as difficulty in connector design or economical disadvantages.
For the above reasons, an LGA package is used which removes pins from the PGA package and leaves only electrode pads in the surface. In recent years, BGA packages have been used as an alternative to multi-pin packages such as QFP (Quad Flat Package) and TCP (Tape Carrier Package). BGA is a bump-shaped solder ball formed at the position of a land of LGA. A device with a BGA package can be mounted on a printed circuit board by solder reflow after it is placed at a predetermined position on the printed circuit board, thereby melting the solder ball and soldering it to the land on the board side. It is.
[0003]
[Problems to be solved by the invention]
However, conventionally, there has been no relatively low-cost connector that can be attached to and detached from a printed circuit board suitable for LGA and BGA packages. Demounting is impossible with the attachment by soldering as described above. The fact that the semiconductor element having the package can be attached and detached is necessary for trial mounting of the CPU at the trial production stage and the initial sales stage, or replacement with a new type semiconductor element.
[0004]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a small and relatively inexpensive connector in which a semiconductor element or the like having an LGA or BGA package can be removed and attached to a printed circuit board and electrically connected to each other, and a method for manufacturing the same. That is.
[0005]
[Means for Solving the Problems]
Connector of the present invention includes a plurality of through holes are formed insulating sheet, and a conductive layer electrically connected to both surfaces of the insulating sheet positioned on the inner surface of the through hole, the through hole and it filled elastic resin, and having a metal bump disposed on the elastic resin surface conducting to the conducting layers and electrically.
[0006]
The connector of the present invention connects a semiconductor element having a package such as LGA or BGA to a printed board. The connector of the present invention has an insulating sheet having a large number of conductive lands on both sides, and is located along the inner surface of a through hole (through hole) formed at the position of the conductive lands. It has a conductive layer to be connected, an elastomer filled in the through hole, and metal bumps located on the upper and lower surfaces of the elastomer. The metal bump is formed in a hemispherical shape or a spherical shape, and has a diameter smaller than the through hole diameter.
[0007]
Furthermore, the connector manufacturing method of the present invention includes a step of forming a through hole at a predetermined position of the insulating sheet, a step of forming a conductive layer along the inner surface of the through hole, and a step of filling the through hole with an elastic resin. And a step of disposing metal bumps electrically connected to the conductive layer on the upper and lower surfaces of the elastic resin.
[0008]
In the first step of the connector manufacturing method according to the present invention, conductive lands are formed at desired opposing positions on both surfaces of the insulating sheet, and holes are formed at the positions of the conductive lands to form through holes. In the second step, a conductive layer is formed in a film shape on the inner surface of the through hole by a method such as plating. In the third step, an appropriate amount of elastomer is filled in the through hole, and in the fourth step, metal bumps are disposed on the elastomer via a conductive adhesive.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a connector and a connector manufacturing method of the present invention will be described with reference to the accompanying drawings.
[0010]
The connector of the present invention uses an insulating sheet 1 made of various sheet-like resins such as polyimide, polyester, glass epoxy, paper phenol, ceramics, Teflon, and silicon resin. Conductive lands are formed on both sides of the insulating sheet 1 in back-to-back positions opposite to the LGA pad position and the printed circuit board pad position. As an example, the conductive land is formed by disposing a copper layer on both sides of an insulating sheet and etching the copper layer. Next, a hole having a diameter smaller than the land size is drilled at the copper conductive land position to form a through hole 2 (through hole) (see FIG. 1). The drilling method may be any method such as drilling, chemical etching, press punching, laser processing, or the like.
[0011]
Next, through hole plating is performed on the inner surface of the through hole 2 to form the conductive layer 3 (see FIG. 2). Conductive layer 3 conducts conductive connection between conductive lands 5 located on both sides of insulating sheet 1. There is also a method of injecting a conductive resin into the through hole instead of through hole plating and heating and curing the inner surface.
[0012]
Further, as shown in FIG. 3, an elastic resin 6 such as an elastomer is filled in the through hole 2, and is cured by a method such as heating. The resin is preferably a resin mainly composed of a silicone resin. Regardless of whether the resin is conductive or non-conductive, it is preferably conductive, for example, a conductive resin obtained by metal coating of metal particles such as Ag (silver) or a resin surface in a silicone resin. The one in which the nature particles are dispersed is used.
[0013]
After the through hole 2 is completely filled with the resin, the surface of the insulating sheet 1 is polished, and the surface of the conductive land 5 and / or the silicon elastic resin 6 on both sides is polished. A system conductive adhesive 7 is applied, and then metal bumps 8 are disposed on the conductive adhesive 7 as shown in FIGS. According to the embodiment shown in FIGS. 4 and 6, the metal bumps 8 are in direct contact with the conductive layer 3, whereas in the embodiments shown in FIGS. 5, 7, and 8, the metal bumps 8 and the conductive layer 3 are conductive adhesives. Conducted indirectly through 7.
[0014]
As the hemispherical or spherical metal bump 8, a surface of copper or nickel having a predetermined shape is gold-plated. These preferably have a uniform diameter. In particular, the metal bump 8 can be used as a surface mount type connector by forming it as a solder ball, or forming it from a solder or tin-plated metal hemisphere or metal ball.
[0015]
In addition, according to the present invention, as in the embodiment shown in FIG. 8, the metal bumps 8 are arranged on the elastic resin on one side and the solder bumps 9 are formed on the conductive lands 5 on the opposite side. In this case, the side on which the lower solder bump 9 is formed is aligned with a pad such as a substrate and soldered and connected.
[0016]
As described above, the connector of the present invention in which the metal bumps 8 are formed on one surface of the insulating sheet 1 can be arranged in a substantially frame-like housing (not shown) to form a connector assembly (not shown). At the time of connection, for example, a substantially frame-shaped housing that accommodates the above-described connector is disposed at a desired position on a printed circuit board, and a package semiconductor element such as LGA or BGA is disposed on the top side of the housing. The semiconductor element is pressed from the side. Thereby, the terminal (pad) of the semiconductor element comes into contact with the metal bump 8 on one side of the connector. The other metal bump arranged back to back with this metal bump can be connected to the pad of the printed circuit board. At this time, the metal bump moves so as to be buried in the elastic resin.
[0017]
The flatness of the pads of the semiconductor element and the printed circuit board is not perfect and generally has an unevenness of about 0.1 mm with respect to a size of 10 mm square, but the connector of the present invention includes the elastic resin 6, and this unevenness is It can be fully compensated. In addition, the connection resistance value is sufficiently small due to excellent contact resistance at the tip of the metal bump 8 and through-hole plating.
[0018]
[Example 1]
A copper pad (conductive land) of a total of 225 copper pads (conductive lands) of 1.5 mm in diameter and 15 in length and 15 in width is formed on both sides of a glass epoxy board of 27 mm square and 0.8 mm in thickness at a relative position on both sides of the board. did. A through hole having a diameter of 1.1 mm was formed at the approximate center of each pad, and then through hole plating was conducted to electrically connect the upper and lower copper pads. Further, gold plating was applied to the upper and lower pad surfaces. A paste in which 20% by weight of silica powder was mixed with a commercially available two-component mixed addition reaction type silicone resin was filled in the above-mentioned through-holes and cured by heating at 100 ° C. A silicone resin-based conductive adhesive was applied onto the resin and the pad, and a gold-plated copper metal hemisphere with a diameter of 0.9 mm was adhered to the elastomer portion at the approximate center of the through hole.
[0019]
When the characteristics of one electrode of this connector member were sandwiched from above and below by a gold-plated plate, the displacement of the bump due to the metal hemisphere was about 0.2 mm at the top and bottom at a contact pressure of 10 grams, and the contact resistance by the 4-terminal method was 18 mm. Ω.
A connector having 225 contacts, i.e., contact portions, was placed in a housing, and a 27 mm square LGA was mounted thereon and mounted for electrical testing. The connection resistance values of 225 pieces were all 35 mm · Ω or less, and the resistance change after the high temperature test was plus 10% or less.
[0020]
[Example 2]
A diameter of 1.3 mm at a pitch of 1.5 mm on both sides of a 27 mm square and 0.8 mm thick glass epoxy substrate. A total of 225 copper pads, 15 in length and 15 in width, were formed at relative positions on both sides of the substrate. A through hole having a diameter of 1.1 mm was drilled at the approximate center of the square pad, plated through the hole, and the upper and lower electrode pads were conductively connected. Furthermore, the upper and lower copper pads were plated with gold.
A mixture of 90% by weight of addition-reactive silicone resin and 10% by weight of gold-plated copper powder having an average particle size of 100 μm was filled into a through hole and cured by heating at 100 ° C. A copper metal ball having a diameter of 0.9 mm was plated with gold, and a silicone resin conductive adhesive was applied to the entire gold pad, and then adhered to the elastomer part at the center of the through hole.
[0021]
One electrode of this connector member was sandwiched from above and below by a gold-plated plate, and the correlation between the contact pressure from above and below and the contact resistance was determined. The contact resistance was 5 mm · Ω.
This member having 225 contacts was put in a housing, and a 27 mm square LGA was mounted thereon and mounted for electrical testing. The connection resistance of all 225 terminals was 15 mm · Ω or less, and the resistance change after the high-temperature and high-humidity test was plus 15% or less.
[0022]
[Example 3]
A total of 225 copper pads having a diameter of 1.3 mm, a length of 15 pieces, and a width of 15 pieces of 225 copper pads were formed on both surfaces of a 27 mm square and 1.0 mm thick glass epoxy substrate at a pitch of 1.5 mm. A through-hole with a diameter of 0.3 mm and a depth of 0.3 mm was drilled in the center of the corner pad on the lower surface of the substrate, and through-hole plating was performed to electrically connect the upper and lower pads. Further, gold plating was applied to the upper and lower pad surfaces. A commercially available two-component mixed addition reaction type silicone resin was filled into the above-mentioned through-holes and cured by heating at 100 ° C. A copper metal sphere having a diameter of 0.9 mm was plated with gold, and a silicone resin-type conductive adhesive was applied to the entire gold pad on the upper surface, and then adhered to the elastomer portion at the center of the land. On the other hand, a spherical solder ball having a diameter of 1.2 mm was soldered to the pad on the lower surface.
[0023]
For one electrode of this connector member, the lower surface was soldered to the printed circuit board, a flat probe was applied to the upper metal ball, and the relationship between the load applied to the probe and the contact resistance was determined. The contact resistance in the 12 mm, 4-terminal method was 4 mm · Ω.
This member having 225 contacts was placed in a housing, and a 27 mm square LGA was mounted thereon and mounted for electrical testing. The connection resistance of all 225 terminals was 28 mm · Ω or less, and the resistance change after the high temperature and high humidity test was 8% or less.
[0024]
【The invention's effect】
According to the connector of the present invention, a multipolar semiconductor element having a package such as LGA or BGA can be easily connected to a printed circuit board or the like by being removable. Furthermore, the connector of the present invention has a relatively simple structure, and is easy to manufacture according to the manufacturing method, and has a high economic effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first step of a connector manufacturing method according to the present invention.
FIG. 2 is a cross-sectional view similar to FIG. 1, showing a second step in the method for manufacturing a connector of the present invention.
FIG. 3 is a cross-sectional view similar to FIG. 1, showing a third step in the method of manufacturing a connector of the present invention.
FIG. 4 is a sectional view showing a first preferred embodiment of the connector of the present invention.
FIG. 5 is a cross-sectional view showing a second preferred embodiment of the connector of the present invention.
FIG. 6 is a sectional view showing a third preferred embodiment of the connector of the present invention.
FIG. 7 is a sectional view showing a fourth preferred embodiment of the connector of the present invention.
FIG. 8 is a sectional view showing a fifth preferred embodiment of the connector of the present invention.
[Explanation of symbols]
1 .... Insulating sheet 2 .... Through hole (through hole)
3 .... conductive layer 6 ... elastic resin 8 ... metal bump

Claims (2)

複数の貫通孔が形成された絶縁性シートと、
前記貫通孔の内側面上に位置し前記絶縁性シートの両面を電気的に導通する導電層と、
前記貫通孔内に充填された弾性樹脂と、
該弾性樹脂面上に配置され前記導電層と電気的に導通する金属バンプとを有することを特徴とするコネクタ。
An insulating sheet having a plurality of through holes;
A conductive layer located on the inner surface of the through hole and electrically conducting both sides of the insulating sheet ;
An elastic resin filled in the through hole;
A connector comprising metal bumps disposed on the elastic resin surface and electrically connected to the conductive layer.
絶縁性シートの所定位置に貫通孔を形成する工程と、
該貫通孔の内側面に沿って導電層を形成する工程と、
前記貫通孔内に弾性樹脂を充填する工程と、
該弾性樹脂の上下面に前記導電層と電気的に導通する金属バンプを配置する工程とを含むことを特徴とするコネクタ製造方法。
Forming a through hole at a predetermined position of the insulating sheet;
Forming a conductive layer along the inner surface of the through hole;
Filling the through hole with an elastic resin;
Connector manufacturing method characterized by including the step of placing a metal bump to the conductive layer and the electrically conductive to the upper and lower surfaces of the elastic resin.
JP28685295A 1995-10-06 1995-10-06 Connector and connector manufacturing method Expired - Fee Related JP3640268B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28685295A JP3640268B2 (en) 1995-10-06 1995-10-06 Connector and connector manufacturing method
PCT/US1996/016667 WO1997013295A1 (en) 1995-10-06 1996-10-04 Connector and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28685295A JP3640268B2 (en) 1995-10-06 1995-10-06 Connector and connector manufacturing method

Publications (2)

Publication Number Publication Date
JPH09115577A JPH09115577A (en) 1997-05-02
JP3640268B2 true JP3640268B2 (en) 2005-04-20

Family

ID=17709870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28685295A Expired - Fee Related JP3640268B2 (en) 1995-10-06 1995-10-06 Connector and connector manufacturing method

Country Status (1)

Country Link
JP (1) JP3640268B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW445680B (en) 1999-01-21 2001-07-11 Shinetsu Polymer Co Press-contact electrical interconnectors and method for producing the same
EP1204988A2 (en) * 1999-08-02 2002-05-15 Gryphics, Inc. Controlled compliance fine pitch interconnect
JP2002231342A (en) * 2001-02-02 2002-08-16 Citizen Electronics Co Ltd Electrical connector
JP4779504B2 (en) * 2005-08-26 2011-09-28 パナソニック電工株式会社 Connection device
JP6117492B2 (en) * 2012-07-06 2017-04-19 シャープ株式会社 Structure
IT201700100522A1 (en) * 2017-09-07 2019-03-07 Technoprobe Spa Interface element for an electronic device test device and its manufacturing method
KR102637066B1 (en) * 2019-02-28 2024-02-14 미쓰이 가가쿠 가부시키가이샤 Anisotropic conductive sheet, electrical inspection device and electrical inspection method
WO2024043220A1 (en) * 2022-08-24 2024-02-29 株式会社ヨコオ Irradiation target and method

Also Published As

Publication number Publication date
JPH09115577A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US5624268A (en) Electrical connectors using anisotropic conductive films
US5309324A (en) Device for interconnecting integrated circuit packages to circuit boards
US5810607A (en) Interconnector with contact pads having enhanced durability
EP2117082B1 (en) Electrical connection structure
US7658617B1 (en) Plastic land grid array (PLGA) module with inverted hybrid land grid array (LGA) interposer
JP4828164B2 (en) Interposer and semiconductor device
US5813870A (en) Selectively filled adhesives for semiconductor chip interconnection and encapsulation
JP2500462B2 (en) Inspection connector and manufacturing method thereof
JP2980046B2 (en) Semiconductor device mounting structure and mounting method
JPH1032070A (en) Test method for semiconductor device and ic socket
US6723927B1 (en) High-reliability interposer for low cost and high reliability applications
JP3640268B2 (en) Connector and connector manufacturing method
US20060027899A1 (en) Structure with spherical contact pins
JP4085186B2 (en) BGA socket
US6404047B1 (en) Socketable BGA package
JP2001052780A (en) Electric connector and its manufacture
US8212156B2 (en) Plastic land grid array (PLGA) module and printed wiring board (PWB) with enhanced contact metallurgy construction
JP2000031630A (en) Connecting structure of semiconductor integrated circuit element to wiring board
JP4000638B2 (en) Burn-in socket
JPH11163054A (en) Structure of semiconductor device and its manufacture
CN1988756A (en) Substrate structure, substrate manufacturing method and electronic device
JP2920198B2 (en) Connector for electrical connection
US6367763B1 (en) Test mounting for grid array packages
JP3692810B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
KR100310037B1 (en) Method for fabricating flexible printed circuit boad with a plurality of chip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees