JP3639635B2 - Method for producing magnesia-carbon refractory brick - Google Patents

Method for producing magnesia-carbon refractory brick Download PDF

Info

Publication number
JP3639635B2
JP3639635B2 JP09322695A JP9322695A JP3639635B2 JP 3639635 B2 JP3639635 B2 JP 3639635B2 JP 09322695 A JP09322695 A JP 09322695A JP 9322695 A JP9322695 A JP 9322695A JP 3639635 B2 JP3639635 B2 JP 3639635B2
Authority
JP
Japan
Prior art keywords
magnesia
brick
carbon
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09322695A
Other languages
Japanese (ja)
Other versions
JPH08259311A (en
Inventor
直樹 平井
信一 田村
淳二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09322695A priority Critical patent/JP3639635B2/en
Publication of JPH08259311A publication Critical patent/JPH08259311A/en
Application granted granted Critical
Publication of JP3639635B2 publication Critical patent/JP3639635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、溶鋼用窯炉に内張りされるマグネシア−カーボン質耐火れんがの製造方法に関する。
【0002】
【従来の技術】
マグネシア−カーボン質耐火れんがは、マグネサイト鉱石を仮焼した天然マグネシア、海水から抽出した海水マグネシア、天然マグネシアを溶融して純度を高めた電融マグネシアなどの粒径約5mm以下のマグネシアクリンカーと、鱗状黒鉛などの粒径約300μm以下のカーボンを原料とし、さらに酸化防止剤として、Al,Mgなどの粒径数十μm以下の金属を添加して得られる粉体を、樹脂を用いて成形することにより製造される。
【0003】
マグネシア−カーボン質れんがは、転炉のような非常に苛酷な環境で使用するため、従来から原料の高級化が指向されてきた。マグネシアクリンカーとして電融品が多く使用されたり、カーボンとして高品質の鱗状黒鉛が使用されている。
【0004】
しかし、操業技術および補修技術の進歩により苛酷な環境下においてもれんがに対する負荷が軽減され、マグネシア−カーボン質れんがの高耐用化はそれほど高いニーズではなくなってきて、むしろれんがコストの低減が重要となってきている。
【0005】
【発明が解決しようとする課題】
ところで、マグネシア−カーボン質れんがは、スラグの浸潤が生じにくいため、使用済みのれんがであっても稼働面より内部は使用前のれんがと殆ど同じ品質を保持している。特にマグネシアは品質が劣化しない。カーボンは多少酸化消耗するが、これは表面酸化して小さくなるのみであって鱗状黒鉛の特性は低下していない。しかしながらこれらの使用済みれんがは従来廃棄されていた。環境問題からもこれら廃棄物の有効利用が望まれている。
【0006】
本発明は使用済みのマグネシア−カーボン質れんがを新たに使用するれんがに再生させることで、れんが廃材を有効に活用し、従来のれんがと同等の特性を発現可能なれんがを製造して、れんがコストの低減をはかることを目的としている。
【0007】
【課題を解決するための手段】
前述の課題を解決するために本発明では、窯炉で使用済みのマグネシア−カーボン質耐火れんがを、該れんがを構成している骨材の最大粒径以下に粉砕して得られたれんが屑粉砕材5〜50重量部に、マグネシアクリンカー及びカーボンを加えて合計100重量部とし、さらに酸化防止剤を含む添加物を加えて、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるよう混合調整したのち、バインダーを添加して成形、乾燥することを特徴とする。
【0008】
あるいは、れんが屑粉砕材として、窯炉で使用済みのマグネシア−カーボン質耐火れんがを、該れんがを構成している骨材の最大粒径以下に粉砕し、そのうち粒径1mm未満の粒子を除去して得られたれんが屑粉砕材を用いるとさらによい。この場合も以下同様に、れんが屑粉砕材5〜50重量部に、マグネシアクリンカー及びカーボンを加えて合計100重量部とし、さらに酸化防止剤を含む添加物を加えて、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるよう混合調整したのち、バインダーを添加して成形、乾燥する。特にれんが屑粉砕材は、粉砕後、または粒径1mm未満の粒子を除去した後に、100〜600℃で加熱処理したものを用いるとよい。
【0009】
【作用】
使用済みのマグネシア−カーボン質耐火れんがは、カーボンが酸化されて気孔率が高くなっており、粗粒のまま利用すると気孔を内在するために特性が低下する。そこで本発明では、使用済みのマグネシア−カーボン質耐火れんがを、該れんがを構成している骨材の最大粒径以下に粉砕して用いる。一般にれんがに使用されている骨材の最大粒径は約5mmである。使用済みのマグネシア−カーボン質耐火れんがを5mm以下に粉砕することによって、マグネシア質の粒子とマグネシア−カーボン質の粒子とを得ることができる。
【0010】
マグネシア質の粒子は従来のマグネシアクリンカーとなんら変わらない特性を持っている。マグネシア−カーボン質の粒子は、その形状ゆえに充填が困難な鱗状黒鉛とマグネシア骨材とを、充填性を上げるために高圧成形して得られたれんがに基づく粒子であるから、既に十分な緻密性を持ち合わせている。また粉砕して得られる粒子は原料粒子よりも表面の凹凸が大きいため、液状バインダーとの濡れ性が良く、強度の均質化に効果的である。
【0011】
本発明は、前記のようなれんが屑粉砕材5〜50重量部に、マグネシアクリンカー及びカーボンを加えて合計100重量部とし、さらに、酸化防止剤を含む添加物を加えて、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるよう混合調整したのち、バインダーを添加して成形、乾燥してマグネシア−カーボン質耐火れんがを得る。
【0012】
れんが屑粉砕材、マグネシアクリンカー、及びカーボンにおけるれんが屑粉砕材の含有量は5〜50重量%で、含有量が5重量%よりも少ない場合には従来となんら変わらない特性が得られる。しかし、効果的なれんがコストの低減と廃材の再利用がはかれない。一方、含有量が多くなっていくと、特性は徐々に劣化し、少なくとも従来なみの耐用性を維持するためには含有量は50重量%が上限であることがわかった。
【0013】
ところで、前述のように、使用済みのマグネシア−カーボン質耐火れんがは、カーボンや酸化防止剤が一部酸化されて未使用れんがと成分が異なっていたり、粉砕によって、特に未使用れんがの微粉部に使用されていた成分が減少するため、従来と同等の耐用性を維持するためには成分調整を行う必要がある。
【0014】
そこで本発明では、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるようマグネシアクリンカー、カーボン、及び酸化防止剤を含む添加物の配合量を調整する。それによって、本発明のマグネシア−カーボン質耐火れんがの全体の組成を従来の同れんがと同一にする。
【0015】
なお、マグネシアクリンカーとしては電融マグネシアや焼結マグネシアなど、カーボンとしては鱗状黒鉛など、酸化防止剤としてはAl−Mg金属など従来と同じものを用いる。こうして全体の成分組成を調整した後は、従来と同様にバインダーを添加して成形、乾燥し、マグネシア−カーボン質耐火れんがを製造する。
【0016】
また本発明では、使用するれんが屑粉砕材として、窯炉で使用済みのマグネシア−カーボン質耐火れんがを、該れんがを構成している骨材の最大粒径以下に粉砕し、そのうち粒径1mm未満の粒子を除去して得られるれんが屑粉砕材を用いるとさらによい。発明者らは、マグネシア−カーボン質耐火れんがの廃材を粉砕してその成分を分析したところ、スラグなどが混入した廃材の場合、スラグは微粒子の部分に集まりやすいことを見いだした。
【0017】
このれんが屑粉砕材中の微粒子はれんがの特性を低下させる要因となり、除去する必要がある。種々の廃材について粒径5mm以下に粉砕すると、スラグなどの成分は経験的に粒径1mm未満の微粒子に含まれることがわかった。そこで、本発明では粒径1mm未満の粒子を除去した粉砕材を用いることを推奨する。
【0018】
さらに本発明では、れんが屑粉砕材を粉砕後または粒径1mm未満の粒子を除去した後に100〜600℃で加熱処理して使用するとよい。前記したように、マグネシア−カーボン質耐火れんがには酸化防止剤としてAl,Siなどの金属が添加されている。これらは、そのれんがが使用された後にあっても一部未酸化のまま残り、れんが解体時の冷却水や、粉砕・保管時の吸湿によって消化することが考えられる。従って、そのまま使用すれば新たに製造されるれんがを劣化させる。そこで残存する酸化防止剤を十分酸化して安定にするため、れんが屑粉砕材を予め100〜600℃で加熱処理して用いる。
【0019】
れんが屑粉砕材に付着している水分を除去するには、最低100℃以上に加熱する必要がある。一方れんが屑粉砕材に含まれているカーボンの酸化を抑制するには、600℃が上限である。使用済みのれんがに含まれている酸化防止剤を酸化するには前記温度範囲で十分可能であるが、好ましくは400℃以上とするとよく、従って、好ましい温度範囲は400〜600℃である。
【0020】
【実施例】
本発明に基づいて製造したマグネシア−カーボン質耐火れんがの実施例及び比較例についてその特性とともに表1に示す。用いたれんが屑は、転炉で使用済みのマグネシア−カーボン質耐火れんがで、最大粒径5mmのマグネシア骨材を用いて製造されたものである。そこで、上記のれんが屑に付着しているスラグを除去した後、ジョークラッシャーによって粒径5mm以下に粉砕し、5〜3mm、3〜1mm、1mm未満に分級した。また比較例として粒径10mm以下に粉砕して10〜5mmのれんが屑粉砕材も得た。
【0021】
れんが屑の各粒度域の成分を分析したところ、未使用の場合のれんが成分に対し、粒径5〜3mm、3〜1mmではマグネシアが約10%多くてカーボンが約5%少なく、1mm未満ではマグネシアが約10%少なくて、カーボンが約10%多かった。一方、粒径10〜5mmは未使用とほぼ同一成分であった。
【0022】
表1に示すように、比較例6を除く5ケースについて各原料を比較例7のれんが(未使用れんが)の粒度構成と鱗状黒鉛含有量とが同じになるように配合し、さらに酸化防止剤として全てのれんがにAl−Mg金属を2重量%添加し、れんがを作成して評価を行った。
【0023】
スラグ溶損指数は、C/S=1.1、T.Fe=3重量%の合成スラグを用い、1700℃で8時間の回転侵食試験を行なったときの溶損深さを、れんが7の溶損深さを100としたときの相対値で示した。数値が小さいほど耐スラグ溶損性に優れている。
【0024】
耐熱スポールは、40×40×230mmのれんがを用い、1600℃の溶銑に90秒浸漬した後に30秒水冷するというサイクルを15回繰り返し、れんが剥落するときの回数で示した。数値が大きいほど耐熱スポール性に優れている。
【0025】
また、見かけ気孔率と曲げ強度は、れんがを作成した後、更に還元雰囲気中1400℃で3時間焼成したのち常温で試験を行った。曲げ強度指数はれんが7の曲げ強度を100としたときの相対値で示し、数値が大きいほど優れている。
【0026】
実施例1、2のれんがは、れんが屑添加量を30ないし40重量%とした場合で、比較例7のれんがと比較してほぼ同等の特性を示しており、実炉で問題なく使用できた。実施例3のれんがは、れんが屑粉砕材で粒径1mm未満のものを除去したれんがで、特に耐スラグ溶損性に優れていた。
【0027】
一方比較例4、5のれんがは、れんが屑を各々60、80重量%添加したれんがで、見かけ気孔率が高く、耐スラグ溶損性、耐熱スポール性、及び曲げ強度が低下していた。なお、実施例6のれんがは、使用済みのれんがの最大骨材粒径以上の粒径である10〜5mmのれんが屑を添加したれんがで、充填性が悪く、耐スラグ溶損性や曲げ強度が劣った。
【0028】
【表1】

Figure 0003639635
【0029】
また、表1には示さなかったが、れんが屑を500℃で焼成した後、実施例1のれんがと同一の粒度構成で製造したれんがは、れんが製造直後の物性は実施例1とほとんど変わらなかった。また、れんが製造後に長期保管した際も、実施例1のれんがと比較して物性の劣化は殆ど無かった。
【0030】
【発明の効果】
本発明により、従来廃棄物となっていた高級原料を含有するれんが屑を有効利用することが可能となるとともに、れんがコストの低減が図れる。[0001]
[Industrial application fields]
The present invention relates to a method for producing a magnesia-carbon refractory brick lined in a furnace for molten steel.
[0002]
[Prior art]
Magnesia-carbon refractory bricks include natural magnesia calcined magnesite ore, seawater magnesia extracted from seawater, and fused magnesia whose purity is improved by melting natural magnesia, and a magnesia clinker having a particle size of about 5 mm or less, Using a resin, a powder obtained by using carbon having a particle size of about 300 μm or less, such as scale graphite, and further adding a metal having a particle size of several tens of μm or less, such as Al, Mg, as an antioxidant, is molded. It is manufactured by.
[0003]
Since magnesia-carbon bricks are used in extremely harsh environments such as converters, the upgrading of raw materials has been conventionally aimed at. Many electrofused products are used as magnesia clinker, and high-quality scaly graphite is used as carbon.
[0004]
However, advances in operation technology and repair technology have reduced the burden on bricks in harsh environments, and increasing the durability of magnesia-carbon bricks is not a very high need. Rather, it is important to reduce the cost of bricks. It is coming.
[0005]
[Problems to be solved by the invention]
By the way, since the magnesia-carbon brick hardly infiltrates the slag, even if it is a used brick, the inside keeps almost the same quality as the brick before use from the operation surface. In particular, the quality of magnesia does not deteriorate. The carbon is somewhat oxidized and consumed, but this is only reduced by surface oxidation, and the characteristics of the scaly graphite are not deteriorated. However, these used bricks have been discarded. In view of environmental problems, the effective use of these wastes is desired.
[0006]
The present invention recycles used magnesia-carbon bricks to newly used bricks, effectively uses waste bricks, manufactures bricks that can exhibit the same characteristics as conventional bricks, and costs bricks. The purpose is to reduce this.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the magnesia-carbon refractory brick used in the kiln is crushed to the maximum particle size of the aggregate constituting the brick, and the brick crushed. Magnesia clinker and carbon are added to 5 to 50 parts by weight of the material to make a total of 100 parts by weight, and further an additive containing an antioxidant is added, so that the total composition is 69 to 89% by weight of magnesia and 10 to 30% by weight of carbon. , And additives containing 1 to 5% by weight of an antioxidant, and then the mixture is added and molded and dried.
[0008]
Alternatively, the magnesia-carbon refractory brick used in the kiln is crushed to the maximum particle size of the aggregate constituting the brick, and particles less than 1 mm in diameter are removed. It is even better to use a brick crusher obtained in this way. In this case as well, in the same manner, 5 to 50 parts by weight of the brick crushed material is added with magnesia clinker and carbon to a total of 100 parts by weight, and an additive containing an antioxidant is further added, so that the total composition is magnesia 69 to 69. After mixing and adjusting to 89 wt%, carbon 10 to 30 wt%, and an additive 1 to 5 wt% containing an antioxidant, a binder is added and molded and dried. In particular, the brick pulverized material may be heat-treated at 100 to 600 ° C. after pulverization or removal of particles having a particle diameter of less than 1 mm.
[0009]
[Action]
The used magnesia-carbon refractory brick has a high porosity due to the oxidation of carbon, and when used as coarse particles, the pores are inherent and the characteristics are deteriorated. Therefore, in the present invention, the used magnesia-carbon refractory brick is used after being pulverized to the maximum particle size or less of the aggregate constituting the brick. Generally, the maximum particle size of the aggregate used for the brick is about 5 mm. By pulverizing the used magnesia-carbon refractory brick to 5 mm or less, magnesia particles and magnesia-carbon particles can be obtained.
[0010]
Magnesia particles have the same characteristics as conventional magnesia clinker. Magnesia-carbonaceous particles are based on bricks obtained by high-pressure molding of scaly graphite and magnesia aggregate, which are difficult to fill due to their shape, to increase their filling properties. Have. Further, since the particles obtained by pulverization have larger surface irregularities than the raw material particles, the wettability with the liquid binder is good, and it is effective for homogenizing the strength.
[0011]
The present invention adds magnesia clinker and carbon to 5 to 50 parts by weight of the above brick waste pulverized material to make a total of 100 parts by weight, and further adds an additive containing an antioxidant so that the overall composition is magnesia. After mixing and adjusting to 69 to 89% by weight, 10 to 30% by weight of carbon, and 1 to 5% by weight of an additive containing an antioxidant, a binder is added, molded and dried to form a magnesia-carbon refractory brick Get.
[0012]
When the content of the brick crushed material, the magnesia clinker, and the carbon in the brick crushed material is 5 to 50% by weight, and the content is less than 5% by weight, the same characteristics as in the past can be obtained. However, effective brick costs cannot be reduced and waste materials cannot be reused. On the other hand, as the content increased, the characteristics gradually deteriorated, and it was found that the upper limit of the content was 50% by weight in order to maintain at least the conventional durability.
[0013]
By the way, as mentioned above, used magnesia-carbon refractory bricks are partly oxidized with carbon and antioxidants, and the components are different from those of unused bricks. Since the components used have decreased, it is necessary to adjust the components in order to maintain the same durability as the conventional one.
[0014]
Therefore, in the present invention, magnesia clinker, carbon, and antioxidant are included so that the total composition is 69 to 89% by weight of magnesia, 10 to 30% by weight of carbon, and 1 to 5% by weight of an additive containing an antioxidant. Adjust the amount of additive. This makes the overall composition of the magnesia-carbon refractory brick of the present invention the same as conventional bricks.
[0015]
As the magnesia clinker, electrofused magnesia or sintered magnesia is used, as the carbon, scaly graphite or the like, and as the antioxidant, the same conventional one as Al-Mg metal is used. After adjusting the overall component composition in this manner, a binder is added and molded and dried in the same manner as in the past to produce a magnesia-carbonaceous refractory brick.
[0016]
In the present invention, the magnesia-carbon refractory brick used in the kiln is crushed to the maximum particle size or less of the aggregate constituting the brick, and the particle size is less than 1 mm. It is more preferable to use a brick crusher obtained by removing the particles. The inventors of the present invention pulverized magnesia-carbon refractory brick waste material and analyzed its components. As a result, in the case of waste material mixed with slag and the like, it was found that slag is likely to collect in the part of fine particles.
[0017]
The fine particles in the brick crushed material become a factor of deteriorating the characteristics of the brick and need to be removed. When various waste materials were pulverized to a particle size of 5 mm or less, it was empirically found that components such as slag were contained in fine particles having a particle size of less than 1 mm. Therefore, in the present invention, it is recommended to use a pulverized material from which particles having a particle diameter of less than 1 mm are removed.
[0018]
Furthermore, in this invention, after grind | pulverizing a brick waste grind | pulverizing material or after removing the particle | grains with a particle size of less than 1 mm, it is good to use after heat-processing at 100-600 degreeC. As described above, metals such as Al and Si are added to the magnesia-carbon refractory brick as an antioxidant. Even after the brick is used, it remains partially unoxidized, and it is considered that the brick is digested by cooling water at the time of dismantling and moisture absorption at the time of crushing and storage. Therefore, if it is used as it is, the newly manufactured brick is deteriorated. Therefore, in order to fully oxidize and stabilize the remaining antioxidant, the brick crushed material is preheated at 100 to 600 ° C. and used.
[0019]
In order to remove the moisture adhering to the brick waste material, it is necessary to heat to at least 100 ° C. or higher. On the other hand, 600 ° C. is the upper limit to suppress the oxidation of the carbon contained in the brick waste material. In order to oxidize the antioxidant contained in the used brick, the above temperature range is sufficient. However, the temperature is preferably 400 ° C. or higher. Therefore, the preferable temperature range is 400 to 600 ° C.
[0020]
【Example】
It shows in Table 1 with the characteristic about the Example and comparative example of a magnesia-carbonaceous refractory brick manufactured based on this invention. The used brick scraps are magnesia-carbon refractory bricks used in the converter, and are manufactured using magnesia aggregate having a maximum particle size of 5 mm. Then, after removing the slag adhering to the above-mentioned brick scraps, it was pulverized to a particle size of 5 mm or less by a jaw crusher, and classified into 5 to 3 mm, 3 to 1 mm, and less than 1 mm. As a comparative example, a 10 to 5 mm brick crushed material was also obtained by pulverizing to a particle size of 10 mm or less.
[0021]
When the components of each particle size range of the brick waste are analyzed, the magnesia is about 10% more and the carbon is about 5% less than 1 mm when the particle size is 5 to 3 mm and 3 to 1 mm with respect to the unused brick component. There was about 10% less magnesia and about 10% more carbon. On the other hand, the particle size of 10 to 5 mm was almost the same as the unused component.
[0022]
As shown in Table 1, in 5 cases except Comparative Example 6, each raw material was blended so that the particle size composition of the brick (unused brick) of Comparative Example 7 and the scaly graphite content were the same, and further the antioxidant As a result, 2% by weight of Al-Mg metal was added to all bricks, and bricks were prepared and evaluated.
[0023]
The slag erosion index is C / S = 1.1, T.I. Using a synthetic slag of Fe = 3% by weight, the erosion depth when a rotational erosion test was conducted at 1700 ° C. for 8 hours was shown as a relative value when the erosion depth of brick 7 was 100. The smaller the value, the better the resistance to slag erosion.
[0024]
The heat-resistant spall used a 40 × 40 × 230 mm brick. The cycle of immersing in hot metal at 1600 ° C. for 90 seconds and then water cooling for 30 seconds was repeated 15 times, and the number of times the brick was peeled off was shown. The larger the value, the better the heat resistant spall property.
[0025]
The apparent porosity and bending strength were tested at room temperature after firing bricks at 1400 ° C. for 3 hours in a reducing atmosphere. The bending strength index is shown as a relative value when the bending strength of brick 7 is 100, and the larger the value, the better.
[0026]
The bricks of Examples 1 and 2 were the case where the amount of brick waste added was 30 to 40% by weight, and showed almost the same characteristics as the bricks of Comparative Example 7, and could be used without problems in an actual furnace. . The brick of Example 3 was a brick from which a brick crushed material with a particle size of less than 1 mm was removed, and was particularly excellent in resistance to slag erosion.
[0027]
On the other hand, the bricks of Comparative Examples 4 and 5 were bricks added with 60 and 80% by weight of brick waste, respectively, had a high apparent porosity, and had reduced slag erosion resistance, heat resistant spall resistance, and bending strength. In addition, the brick of Example 6 is a brick to which 10 to 5 mm of brick waste having a particle size equal to or larger than the maximum aggregate particle size of the used brick is added, and has poor filling properties, slag erosion resistance and bending strength. Was inferior.
[0028]
[Table 1]
Figure 0003639635
[0029]
Although not shown in Table 1, after the brick waste was baked at 500 ° C., the brick manufactured with the same particle size configuration as the brick of Example 1 had almost the same physical properties as the Example 1 immediately after the brick was manufactured. It was. Further, even when the brick was stored for a long time after production, the physical properties were hardly deteriorated as compared with the brick of Example 1.
[0030]
【The invention's effect】
According to the present invention, it is possible to effectively use brick scraps containing high-grade raw materials that have conventionally been waste, and the cost of bricks can be reduced.

Claims (3)

窯炉で使用済みのマグネシア−カーボン質耐火れんがを、れんがを構成している骨材の最大粒径以下に粉砕して得られたれんが屑粉砕材5〜50重量部に、マグネシアクリンカー及びカーボンを加えて合計100重量部とし、さらに酸化防止剤を含む添加物を加えて、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるよう混合調整したのち、バインダーを添加して成形、乾燥することを特徴とするマグネシア−カーボン質耐火れんがの製造方法。The magnesia clinker and carbon are added to 5-50 parts by weight of the brick waste pulverized material obtained by pulverizing the magnesia-carbon refractory brick used in the kiln to the maximum particle size of the aggregate constituting the brick. In addition, the total amount is 100 parts by weight, and an additive containing an antioxidant is added, and the total composition is 69 to 89% by weight of magnesia, 10 to 30% by weight of carbon, and 1 to 5% of an additive containing an antioxidant. A method for producing magnesia-carbon refractory bricks, which is prepared by mixing and adjusting so as to be, and then forming and drying by adding a binder. 窯炉で使用済みのマグネシア−カーボン質耐火れんがを、該れんがを構成している骨材の最大粒径以下に粉砕し、そのうち粒径1mm未満の粒子を除去して得られたれんが屑粉砕材5〜50重量部に、マグネシアクリンカー及びカーボンを加えて合計100重量部とし、さらに酸化防止剤を含む添加物を加えて、全体の組成がマグネシア69〜89重量%、カーボン10〜30重量%、及び酸化防止剤を含む添加物1〜5重量%になるよう混合調整したのち、バインダーを添加して成形、乾燥することを特徴とするマグネシア−カーボン質耐火れんがの製造方法。Brick crushed material obtained by crushing magnesia-carbon refractory bricks used in kilns to below the maximum particle size of the aggregate constituting the bricks, and removing particles less than 1 mm in size. 5 to 50 parts by weight, magnesia clinker and carbon are added to make a total of 100 parts by weight, and an additive containing an antioxidant is further added, so that the total composition is magnesia 69 to 89% by weight, carbon 10 to 30% by weight, And magnesia-carbon refractory brick manufacturing method characterized by mixing and adjusting to 1 to 5% by weight of an additive containing an antioxidant and then adding a binder to form and dry. れんが屑粉砕材として粉砕後または、粒径1mm未満の粒子を除去した後に100〜600℃で加熱処理したものを用いることを特徴とする請求項1または2に記載のマグネシア−カーボン質耐火れんがの製造方法。The magnesia-carbon refractory brick according to claim 1 or 2, wherein the brick waste pulverized material is heat-treated at 100 to 600 ° C after pulverization or after removal of particles having a particle size of less than 1 mm. Production method.
JP09322695A 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick Expired - Fee Related JP3639635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09322695A JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09322695A JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Publications (2)

Publication Number Publication Date
JPH08259311A JPH08259311A (en) 1996-10-08
JP3639635B2 true JP3639635B2 (en) 2005-04-20

Family

ID=14076640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09322695A Expired - Fee Related JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Country Status (1)

Country Link
JP (1) JP3639635B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331462B1 (en) * 1999-12-30 2002-04-09 신승근 MgO-C Refractory Brick Having High Resistance Against Heating Stress
JP2005240142A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY
JP5668614B2 (en) * 2011-06-17 2015-02-12 Jfeスチール株式会社 Method for reusing used magnesia carbon brick and method for producing magnesia carbon brick
JP2013147414A (en) * 2011-12-19 2013-08-01 Jfe Steel Corp Method for recycling carbon-containing neutral/acid refractory and method of manufacturing
JP5663121B2 (en) * 2012-05-31 2015-02-04 株式会社ヨータイ Reusing used carbon-containing unfired brick
JP2014051428A (en) * 2012-09-04 2014-03-20 Yotai Refractories Co Ltd Carburization raw material and amorphous refractory
CN110352183B (en) 2017-02-24 2022-03-25 杰富意钢铁株式会社 Graphite-containing refractory and method for producing graphite-containing refractory
CN114147040A (en) * 2021-12-29 2022-03-08 中冶焦耐(大连)工程技术有限公司 Integrated treatment device and method for waste magnesia carbon bricks

Also Published As

Publication number Publication date
JPH08259311A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
CN103265297A (en) Refining steel ladle carbon-free periclase spinel baking-free brick and preparation method thereof
JP2018184315A (en) Carbon-containing castable refractory and method for producing carbon-containing castable refractory
JP3639635B2 (en) Method for producing magnesia-carbon refractory brick
JP2601129B2 (en) Alumina-chromia castable refractory and precast block using it
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
JPS6411589B2 (en)
JPH08259313A (en) Production of magnesia-chrome-based refractory brick
JP2601134B2 (en) Alumina-chromia-zircon sintered refractory brick
JP4388173B2 (en) Magnesia-carbonaceous unfired brick for lining of molten steel vacuum degassing equipment
JP3609245B2 (en) Manufacturing method of refractory raw materials
JP3748196B2 (en) Spinel for DC electric furnace hearth-C brick
US1289578A (en) Refractory article.
JPH09301766A (en) Porous spinel clinker and its production
JP7368648B1 (en) Method for manufacturing unfired basic bricks
JPH10287477A (en) Prepared unshaped refractory material produced by using refractory composite prepared by coating and fixing graphite on the surface of the starting refractory particles using resin binder
JPH11130548A (en) Basic monolithic refractory material
JPH1017357A (en) Production of carbon-containing refractory
JP2604820B2 (en) Refractory material
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
JP2962927B2 (en) Carbon-containing irregular refractories
JP3878244B2 (en) Method for producing carbon-containing refractories
JP3620748B2 (en) Method for producing electrofused magnesia clinker and basic refractory using the same
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same
JP2015193510A (en) MgO-TiO2-NiO CLINKER AND BURNT BASIC BRICK USING THE SAME
JP2024010280A (en) Refractory brick and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees