JP3638967B2 - Remedies for nephrotic syndrome and liver damage symptoms - Google Patents

Remedies for nephrotic syndrome and liver damage symptoms Download PDF

Info

Publication number
JP3638967B2
JP3638967B2 JP08587194A JP8587194A JP3638967B2 JP 3638967 B2 JP3638967 B2 JP 3638967B2 JP 08587194 A JP08587194 A JP 08587194A JP 8587194 A JP8587194 A JP 8587194A JP 3638967 B2 JP3638967 B2 JP 3638967B2
Authority
JP
Japan
Prior art keywords
water
polysaccharide
solution
molecular weight
nephrotic syndrome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08587194A
Other languages
Japanese (ja)
Other versions
JPH0748265A (en
Inventor
国驥 叶
淳一 梶原
清 桐原
和夫 加藤
博子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCR Pharmaceuticals Co Ltd
Original Assignee
JCR Pharmaceuticals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCR Pharmaceuticals Co Ltd filed Critical JCR Pharmaceuticals Co Ltd
Priority to JP08587194A priority Critical patent/JP3638967B2/en
Priority to FI943242A priority patent/FI943242A/en
Priority to US08/271,795 priority patent/US5547945A/en
Priority to KR1019940016859A priority patent/KR960013374A/en
Priority to CA002127934A priority patent/CA2127934A1/en
Priority to EP94305146A priority patent/EP0635519B1/en
Priority to AU67470/94A priority patent/AU686161B2/en
Priority to RU94026096A priority patent/RU2119341C1/en
Priority to AT94305146T priority patent/ATE171462T1/en
Priority to DE69413467T priority patent/DE69413467T2/en
Publication of JPH0748265A publication Critical patent/JPH0748265A/en
Application granted granted Critical
Publication of JP3638967B2 publication Critical patent/JP3638967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、老人はもとより近年若年層で増加傾向にある腎臓疾患、とりわけ慢性腎不全に至る前段階であるネフローゼ症候群と診断された患者に対し、あるいはウイルス性及び薬物性肝炎等の肝障害の症状を有する患者に対し、通院可能で安全な経口及び筋肉内投与治療剤を提供する発明に関する。
【0002】
【従来の技術】
微小変化型ネフローゼの内科的な治療薬として、合成薬であるステロイド剤或いは抗血小板薬であるジピリダモールが用いられているが、長期間使用しなくてはならず、若年層に投薬する際には特に満月様顔貌,月経不順,めまい,頭痛,悪心,嘔吐など、重篤な場合には感染症,消化管出血,代謝異常,骨粗症,血栓症,副腎不全,精神障害などの副作用が懸念されている。
【0003】
また、肝炎にはウイルス性、薬物性のものもあるがウイルス性のものが大半を占めており、それらの治療薬としてはインターフェロン、インターロイキン2のようなバイオロジカル・レスポンス・モディファイアー(BRM)、グリチルリチンの静注用注射剤であるネオミノファーゲンCなどが用いられている。しかしながらBRMには発熱等の副作用が見られることにより長期投与には問題がある。またグリチルリチンは基本的には抗炎症剤であり、長期に使用する場合は血圧、電解質濃度の管理が必要となる。この他にも生薬成分であるサイコサポニン、サポニン、ゴミシンなどが知られているが、いずれも臨床応用されるには至っていない。
【0004】
一方、ポリD−ガラクツロン酸
【化1】

Figure 0003638967
〔式中のカルボキシル基はメチルエステル化されていてもよい〕
を構成成分とする水溶性多糖類としては、たとえば水溶性ペクチン質(pectic substance)が知られている。これは柑橘類の果皮などを酸性水溶液で抽出し、必要に応じてさらに酸、アリカリ、酵素で脱メチル化し、アルコール等の有機溶媒を加えて沈澱させて得られる水溶性多糖類で、ポリD−ガラクツロン酸を主な構成成分とする。そしてポリD−ガラクツロン酸の構造式中のカルボキシル基のメチルエステル化率の大小により水溶性ペクチン質はペクチンとペクチニン酸に別けられ、また実際上メチルエステルが残っていないものはペクチン酸と呼ばれている。
【0005】
水溶性ペクチン質はゼリー等の材料として主として食品工業に用いられるが、医薬としては粘膜被覆に供される程度でほとんど用いられていない。
【0006】
本発明の一部においては、丹参の抽出成分が用いられるが、丹参は中国では、血液循環,血行停止の改善に良いとされ伝統的に使用されている薬草である。近年、血管拡張作用(大浦彦吉:和漢医薬学会誌.,5:227−237.,1988.)、降圧作用(中山医学院論:医歯薬出版,東京.,257−258.,1980.)、抗凝血作用(羅厚蔚ら:Acta PharmaceuticaSinica.,23(11):830−834.,1988.)、細胞内コレステロールの合成抑制作用(Sun Xi−ming;中草薬.,22(1):20−23.,1991.)、肝細胞保護(戚心広ら:中西医結合雑誌.,11(2):102−104.,1991.)及びラジカル消去作用(胡 天喜:上海中医薬雑誌,9:28−30.,1988.)などの多彩な生理活性作用があること、また腎機能の改善(大浦彦吉:第二回和漢薬の医学薬学的研究に関する日中シンポジウムpp.148−157,1988.)、慢性腎疾患及び***の患者に対して有効(張 鏡人:上海中医薬雑誌.,1.17−18.,1981.)であることが内外において報告されているが、その本質については何等言及されていないか、言及されていても本願発明とは全く異なる低分子物質である。
【0007】
また、丹参を原料とする腎疾患への治療薬の研究も盛んに行われていて、低分子のフェナントレンキノン類であるタンシノン類似物並びにカフェイン酸4量体であるマグネシウムリトスペルミン酸B等が単離されているが(T.Yoozawa,H.Y.Chung,H.Oura,G.Nonaka,and I.Nishioka,Chem.Pharm.Bull.,36,316(1988))、何れも有機溶媒含有下で抽出される脂溶性の高い物質だけであり、まだ臨床応用には至っていない。
【0008】
【発明が解決しようとする課題】
腎疾患は大別して、糸球体由来の原発性とそれ以外の疾患に由来する続発性に分類され、前者が約80%以上を占め、しかも低年齢層ほど多くて約90%に達する。病理組織所見からは微小変化群,単状糸球体硬化症,膜性腎症,メサンギゥム増殖性腎症(IgA腎症,非IgA腎症),膜性増殖糸球体腎炎,半月体形成糸球体腎炎などに分類される。蛋白尿は臨床所見の特徴として、いずれの組織学的病型にも共通して認められ、重篤な場合にはネフローゼ症候群として診断されている。また近年腎臓疾患、特に腎臓の器質的な衰えにより誘発される疾患は老人にとどまらず若年層に増加しつつあるため、器質を改善して疾患を治療する副作用発現の少ない植物成分で水溶性のある経口或いは筋肉内に投薬し治療する薬剤の開発が望まれている。
【0009】
また、肝炎は大別して、ウイルス性のものとアルコール等の薬物によるものがあるが、B型及びC型肝炎ウイルスによるものが圧倒的に多い。近年治療薬として特にインターフェロンがC型肝炎に対して有効であることが報告されており、使用頻度も高まってきている(飯野司郎ら:基礎と臨床.26:339,1992;鈴木宏ら:肝・胆・膵・23:1065,1991)。しかしながら、短期投与で発熱等のインフルエンザ様症状が表れ、長期投与でも体重減少、下痢、嘔吐、不整脈、脱毛、自己免疫異常等の副作用が見られる。またこれらの薬剤はすべて注射剤であることからより簡便に使用できる新たな治療薬あるいはインターフェロン等との併用補助薬として副作用発現の少ない生薬、漢方薬成分で水溶性のある経口或いは筋肉内に投与し治療する薬剤の開発が望まれている。
【0010】
【課題を解決するための手段】
本発明者らは、広く繁用されている蛋白尿***を顕著に起こし、さらに腎臓の器質変化を示すことで良く知られるピューロマイシンで惹起したラットのネフローゼ症候群モデルを利用して鋭意検討した結果、丹参の水抽出物より上記モデルに対して有効な多糖類が存在すること、その多糖類がポリD−ガラクツロン酸を主要構成成分とすることを見い出した。
【0011】
本発明はこの知見を発展させたもので、(I)ポリD−ガラクツロン酸を有効構成成分とする水溶性多糖類よりなるネフローゼ症候群及び肝障害症状の寛解剤、(II)丹参から水または水性溶媒で抽出されうる下記の特性を有する多糖類
Figure 0003638967
(III)丹参を水または水性溶媒で抽出し、抽出液から残渣を除去した液を無極性多孔性ポリマー樹脂を通過させ、限外濾過で濃縮し、ついでゲル濾過クロマトグラフィーに付することを特徴とする上記の多糖類の製造法である。
【0012】
ポリガラクツロン酸を有効構成成分とする水溶性多糖類としては、一般に植物から抽出される水溶性ペクチン質が用いられ、それはガラクツロン酸のカルボキシル基が約7.5%以上メチルエステル化されているペクチンでも、メチルエステル化率がそれよりも低いペクチニン酸でも、実際上メチルエステルがすべて加水分解されているペクチン酸でもよい。水溶性ペクチン質は一般に少量のアラバン、ガラクタン、ラムノースなどを伴う場合が多いが、そのまま用いることができる。
【0013】
本発明の水溶性多糖類としては、たとえば丹参から抽出される水溶性ペクチン質も用いられる。
【0014】
丹参は植物丹参(Salvia miltiorrhiza Bunge)の根および根状の茎であるが、同属植物の南丹参(S.bowleyana Dunn)、甘粛丹参(S.przewalskii Maxim)、雲南丹参(S.yunnanensis C.H.Wright)等の根も用いられ、本発明ではこれらを総称して丹参という。
【0015】
本発明で用いられる丹参の産地は特に限定されるものではないが、好ましくは中国,四川地区産の丹参が本発明の多糖類を効率よく抽出精製することができる。
【0016】
丹参はできるだけ小片にして抽出するのが望ましい。抽出溶媒として水または水性溶媒が用いられ、水性溶媒としてはリン酸緩衝液、酢酸緩衝液等の緩衝液または食塩等の塩類水溶液を用いるのが好ましい。
【0017】
抽出溶媒のpHは約2〜約9に調整するのが好ましい。抽出は約50〜約100℃で行うのが好ましく、さらに好ましくは70〜90℃である。たとえば、丹参を予め50〜100℃好ましくは70〜90℃にした温水或いはpH2〜9の範囲にある緩衝液または塩類溶液に入れるか、入れたあと温浴中などで所定の温度になるまで加温して抽出する。
【0018】
かくして、1〜8時間、好ましくは3〜5時間抽出すれば粗出液が得られる。抽出液中に混在する丹参の残渣は目の粗い濾布やヌッチェなどで濾去することができる。
【0019】
残渣を除去した抽出液は水で平衡化した無極性の多孔性ポリマー樹脂を充填材とするカラムクロマトグラフィーによりさらに精製する。このポリマー樹脂としては、たとえばHP−20およびMCI−ゲル(三菱化成社製)やアンバーライトXAD−2(オルガノ社製)などが挙げられる。
【0020】
丹参の活性成分についてMCI−ゲルの吸着分画で、50%メタノール溶液で溶出される低分子物質であるマグネシウムリトスペルミン酸Bが報告されており、発明者らも、同様の分画に蛋白尿***を抑制する活性のあることを確認した。しかし、非吸着部分を含め溶出された全画分について、詳細に蛋白尿***を抑制する作用を試験した結果、当初の予想に反して、素通り画分にも上記作用を示す成分のあることが判明した。この時点で、この処理からの素通り画分は、極性が低いことが予想され、又、蛋白質に固有の紫外部吸収スペクトルを示さないから蛋白質以外の成分であろうと思われた。
【0021】
素通り画分の一部を、次いで2枚の限外ろ過膜(カットオフ,分子量300,000及び50,000の)システムに通し、濃縮且つ精製ステップの検討を行った。実際には分子量300,000以上、50,000〜300,000及び50,000以下の各物質群に分け、各成分についてピューロマインシン惹起ラットモデルを用いて、蛋白尿***を抑制する活性を試験した。その結果、強い活性が分子量50,000〜300,000に範囲のある分画に見られ、50,000以下にも弱い活性が見られた。
【0022】
そこで、先の素通り画分の濃縮に分子量3000のカットオフ,限外ろ過膜を用いた。この工程での限外ろ過膜はカットオフのサイズが同じであれば何れの種類のものでも本発明の物質の濃縮に用いることが可能である。
【0023】
次に濃縮液中の活性成分をより狭い分子量範囲に限定するために、ゲルろ過カラムクロマトグラフィーによる精製を行った。一般に蛋白質などの場合には、ゲルろ過クロマトグラフィーの担体としては、セファデックス及びセファロース類(ファルマシア社製),セルロファイン(生化学工業社製),バイオゲル(バイオラッド社製)などが使用されており、本発明の物質のクロマトグラフィーにも上記のものが使用できるが、好ましくは合成手段によって調製された材質によるクロマト材、例えばバイオゲルが本発明の物質の精製に適している。クロマト材には編目サイズ、即ち排除限界により各種のものがあるが、分画範囲として10000〜300,000のものであればいずれでも構わない。発明者らは、好んでバイオゲルP−30,−60,−100、中でもバイオゲルP−60を使用した。そこで、濃縮液を水で平衡化したバイオゲルP−60を充填したカラムに通した。モニターは暫定的に280nmの吸収で行い、吸収のある分画と吸収のない分画をカラム容量の2倍量まで数分画に分け、次いでピューロマイシン惹起ラットモデルでの蛋白尿***の抑制作用を試験したところ高分子領域に活性を有する多糖類が溶出されていることがわかった。
【0024】
この多糖類は過ヨウ素酸酸化あるいは還元処理すると活性を失う。また本物質は血小板凝集抑制作用,赤血球膜保護作用を有することがin vitroの実験結果より明らかになった。さらにピューロマイシン惹起ネフローゼモデルラットまたは四塩化炭素誘発肝障害モデルラットにおいてはラジカルが関与することが知られているが、本物質には直接ラジカルを消去する作用はないことがESRを用いた実験により示された。
丹参の抽出液を無極性ポーラスポリマー樹脂及びゲルろ過クロマトグラフィーで精製(精製画分)した多糖類の特性を下記のように試験した。
【0025】
(1)全糖含量:フェノール硫酸法(Hodge,J.E.and Hofreiter,B.T.(1962)Methods in Carbohydrate Chemistry(Academic Press).Vol.1,p.338)
試験溶液0.5mlを試験管にとり5%(w/v)フェノール液0.5mlを加え、濃硫酸2.5mlを速やかに液面に直接に加えよくまぜ、室温に20分保った後、480nmの吸光度を測定する。標準溶液にはグルコース(10〜90μg/ml)水溶液を用いた。
【0026】
(2)ウロン酸含量:メタヒドロキシジフェニル法(Blumenkrantz,N.and Asboe Hansen,G.(1973)Anal.Biochem.54,484−489.)
試料溶液0.2mlに0.0125Mホウ酸ナトリウムの濃硫酸溶液1.2mlを添加し、氷冷後攪はんする。100℃で5分間処理した後氷冷し、0.15%メタヒドロキシジフェニルの0.5%水酸化ナトリウム溶液20μlを加え、520nmの吸光度を測定する。標準溶液にはガラクツロン酸溶液を用いた。
【0027】
(3)中性糖含量(アルジトールアセテート−GC−MS法)(Borchardt,L.G.and Piper,C.V.(1970)Tappi.53,257−260.)
丹参の精製画分50mgを72%(v/v)硫酸3mlに溶かし、30℃,1時間処理したものに蒸留水84mlを加え、120℃で1時間オートクレープする。内部標準としてイノシトール4mgを加え、その30mlを水酸化バリウムを加えてpH5.5に調整した後、遠心分離して上清を得る。その25mlに水素化ホウ素ナトリウム80mgを添加し、室温で2時間処理後、酢酸で反応をとめる。濃縮乾燥後、蒸留水に溶かしDEAEセファデックスカラムにかけ素通り画分を集める。濃縮乾燥後、無水酢酸とピリジンによりアセチル化した後、ジクロルメタンと1N塩酸の混液で抽出する。有機層を蒸留水で洗った後、濃縮し、アセトンに溶かしてガスクロマトグラフィーマススペクトロメトリー(GC−MS)にて定量した(カラム:Supelco糖分析用キャピラリーカラムを使用)。また標品は上記の還元操作により処理して同様に分析した。
【0028】
(4)分子量の測定
トーソーHPLCシステム(トーソー社製)にアサヒパックGS−520(旭化成社製)カラム(7.6mmIDx500mm)を接続し、ミリQ水を用いて、本願物質試料溶液10μlをカラムに付加して分子量を測定(温度:室温、流速:0.5ml/分、検出:RID)した。分子量マーカーにはアミロースキット(中埜酢店社製):分子量10200,30100,75200,111400,364200を用い、これらの溶出パターンから得た検量線より、本願物質の分子量を算出した。
【0029】
(5)ピューロマイシン惹起ネフローゼ症候群モデルラットによる評価
1)ネフローゼ症候群モデルラットの作製:ウィスター系雌性ラット(約9週令、体重約150g)にピューロマイシンアミノヌクレオシド(:以下ピューロマイシン、シグマ社製)60mg/kgを1回、頸静脈内投与してネフローゼ症候群モデルラットを作製した(東條静夫ら:ネフローゼ症候群 京極方久 編,ソフトサイエンス社出版,479−488,1984)。
【0030】
2)試料溶液の投与:ピューロマイシン投与の開始の日から1日1回各試料溶液を胃カニューレを通じて21日間経口或いは筋肉内投与した。陰性対照群には注射用水を、陽性対照群にはジピリダモール溶液を用いた。
【0031】
3)尿蛋白質量の測定:尿蛋白質量は、ピューロマイシン投与終了後5日目から、2〜3日おきに24時間尿をラット代謝ケージを用いて採尿し、尿量を計測した。次いで遠心分離(3000rpmx10分)して得た上清1mlにスルホサリチル酸3mlを加え、室温で10分間放置した後、波長660nmの吸収を測定し、検量線より尿中のタンパク質濃度を求め、更に尿容量を乗じて尿中への総蛋白質***量を算出した。検量線作成に当たっては牛血清アルブミン(シグマ社製)を標準タンパク質に用いた。
【0032】
4)血清コレステロール,血清アルブミン,血清中の総蛋白質量及び血清過酸化脂質の測定:ピューロマイシン投与終了後7日目,14日目,21日目に各群のラットをエーテル麻酔を施した後、静脈より採血し、血清中のコレステロール,アルブミン,総蛋白質量及び過酸化脂質量を測定した(いずれも和光純薬工業社製)。
【0033】
(6)四塩化炭素誘発肝障害モデルによる評価
1)肝障害モデルの作成:Wistar系雌性ラット(9−11週令、体重160g前後)に対し、オリーブ油に等量の割合で混合した四塩化炭素(和光純薬製)溶液1.5ml/kgを腹空内に1回投与することにより作成した。(炎症学書:炎症炎症動物実験法、実験的肝繊維症.医学書院出版,253−277)
【0034】
2)資料溶液の投与:四塩化炭素投与3日前から投与前日まで試料を1日1回筋肉内投与あるいは7日前から投与前日まで経口投与を行った。陰性対象群には注射用水を投与した。
【0035】
3)血清生科学的検査:四塩化炭素投与24時間御にエーテル麻酔下で回胸、心臓より2mlの血液を採血し、常温に1時間放置後、遠心分離して血清を得た。血清トランスアミナーゼ(GOT:glutamic oxaloacetic transaminase,GPT:glutamic pyruvictransaminase)活性の測定は和光純薬製キットを用いて行った。
【0036】
4)統計解析:それぞれの測定データはすべて平均±S.Eで示し、Student’sのt検定により統計解析した。
【0037】
下記の実施例に示されるように、本発明の多糖類は動物実験でネフローゼ症候群の寛解や肝障害症状の改善に有効であり、ネフローゼ症候群の寛解剤または肝障害症状改善剤として、通常成人1人当たり1日量、経口的に約10〜150mg、筋肉内注射として約0.5〜10mg投与することができる。
【0038】
【実施例】
以下に実施例および試験例を挙げて本発明をさらに説明する。
実施例1
中国,四川地区産の丹参の根部の小片10kgに水80Lを加え、投げ込みヒーターを投じ80℃にした後、3時間攪はんしながら抽出した。抽出液中の根部残渣はヌッチェでろ過して取り除き、回収した根部残渣に更に水80Lを加えて1回目と同様に処理して再抽出液を得た。1回目と2回目の抽出液(130L)を合わせ、減圧下、40℃でエバポレーターを用いて濃縮し濃縮液(10L)を得た。
【0039】
次に、濃縮液をHP−20(4L,三菱化成社製)を充填したカラム(11×45cm)に負荷した。平衡化液及び展開液には水を用い、室温下でクロマトグラフィーを行い、素通り分画及び水洗浄分画(非吸着)液を回収した。カラムは50%メタノール及びアセトニトリルで洗浄した後、最後に水に完全に置換して再使用した。上記非吸着画分は繰り返し3回程同様に処理して完全に非吸着分画の液(55L)を得た。この全非吸着液は分子量カットオフ3000の限外ろ過膜を装備した限外ろ過装置SEP−1013(旭化成)を用いて限外ろ過濃縮し、通過液(分子量 約3000以下,SEP−OUT)と非通過液(分子量 約3000以上,SEP−IN)を得た。濃縮した非通過液(SEP−IN)を水で平衡化したバイオゲルP−60を充填したカラム(1.5×100cm)に付加し、水を展開液として用いクロマトグラフィーを行った。モニターは暫定的に波長280nmで吸収を測定し、横軸に分画番号を、縦軸に各分画液の吸収を記載したグラフを作成し、吸収を示さない分画を中心に全糖の測定を行い、その測定結果を同じグラフに記載した(図1)。
【0040】
目的の多糖類成分は分画番号11から22の分画液(AF)に得られ、ついで凍結乾燥して粉末(30g,ロットA)を得た。
ここで得た精製多糖類の特性を前述した試験法により試験した結果、以下の持性を得た。
【0041】
1)糖含量(フェノール硫酸法):79%
Figure 0003638967

【0042】
2)分子量:259000(標準多糖:アミラーゼキット、分子量100〜360K)
【0043】
3)ネフローゼ症候群モデルラットによる評価
精製試料10mg/kg,40mg/kgを経口投与、0.5mg/kg,2.5mg/kgを筋肉内投与したところ、図2,図3に示したようにいずれの場合も尿蛋白***が有意に抑制された。また表1,表2に示したように血清コレステロール(Cholesterol)値,血清アルブミン(Albumin)値及びA/G比,血清過酸化脂質(MDA)値においても有意な改善効果が認められた。
【表1】
Figure 0003638967
【表2】
Figure 0003638967
【0044】
4)四塩化炭素誘発肝障害モデルによる評価
製糖試料(AF)7mg/kg,35mg/kgを経口投与、0.3mg/kg,1.5mg/kgを筋肉内投与したところ、表3に示したようにいずれの場合もAF前投与群では血清GOT,GPT値の上昇が用量異存的に抑制された。
【0045】
【表3】
Figure 0003638967
【0046】
実施例2
実施例1に記載の方法によりロットの異なる丹参原料より各々精製を行い、1に記載した以外に計3ロット(ロットB,C,D)の精製品を取得し、同様の特性評価を行った。
1)糖含量(フェノール硫酸):ロットB(65%),ロットC(80%),ロットD(93%)
(1)糖組成
【0047】
【表4】
Figure 0003638967
【0048】
(2)中性糖組成(アルジトールアセテート−GC−MS法)
【表5】
Figure 0003638967
【0049】
(3)その他の糖:
ロットB,C,Dのいずれもアミノ糖、アルドヘキソース、2−デオキシ糖は含まない。
【0050】
2)分子量:(標準多糖:アミロースキャット、分子量100〜360K)
ロットB(150,000),ロットC(280,000),ロットD(250,000)
【0051】
3)ネフローゼ症候群モデルラットによる評価
薬効評価についてはいずれの精製品も実施例1で得られたものとほぼ同等の効果が得られた。
【0052】
実施例3
活性の本体が糖であること及びウロン酸の薬効に対する関与について調べる目的で本精製品を以下の操作によって酸化及び還元し、それらの効果について調べた。投与量はネフローゼ症候群ラットにはそれぞれ40mg/kgを経口投与し、肝障害ラットにはそれぞれ1.5mg/kgを筋肉内投与した。
(1)酸化(Noble,D.W.and Sturgeon,R.J.(1970)Carbohyd,Res.12,448による)精製試料600mgを蒸留水150mlに溶かし、0.2M過ヨウ素酸ナトリウム溶液150mlを加えて37℃で240時間反応させる。エチレングリコール150mlを加えて反応を止めた後、水素化ホウ素ナトリウム500mgを加えて室温24時間処理する。酢酸で反応を止め、水に透析した後、凍結乾燥する。
【0053】
(2)還元(Taylor,R.L.and Conrad,H.E.(1972)Biochemistry.11,1383−1388による)精製試料50mgを蒸留水に溶かし、EDC(1−ethyl−3−(dimethyl−aminopropyl)−carbodiimide)249mgを加えた後、0.1N塩酸でpH4.75に保ちながら19時間反応させる。その後、2M水素化ホウ素ナトリウム溶液10mlを1時間かけて滴下し、その間pH7に保つ。さらに1時間攪はんした後、水に透析し凍結乾燥する。
【0054】
結果を図4ならびに表6、7に示したが、酸化及び還元した試料については全く効果が認められなかった。このことは精製試料中の活性物質は確かに多糖類であり、中でも特にウロン酸が薬効に大きく寄与していることが示された。また還元前後の中性糖含量の比較から本試料に含まれるウロン酸のほとんどはガラクツロン酸であることがわかった。
【0055】
【図4】
【表6】
Figure 0003638967
【表7】
Figure 0003638967
【0056】
実施例4
実施例3の結果より多糖中のD−ガラクツロン酸が活性に重要であることがわかったので次にポリD−ガラクツロン酸の構造を有する植物由来のペクチン酸を用いてピューロマイシン惹起ネフローゼ及び四塩化炭素誘発肝障害モデルに対する効果を調べた。
ネフローゼモデルに対しては10,40mg/kgを経口投与、2.5mg/kgを筋肉内投与し、尿蛋白***量及び血清コレステロール、アルブミン量を測定した。肝炎モデルに対しては1.5mg/kgを筋肉内投与し、血清GOT,GPT値を測定した。
【0057】
結果を表8,9,10に示したが、ネフローゼにおける尿蛋白***はペクチン酸の筋肉内投与で有意に抑制され、経口投与でも改善傾向を示した。また血清パラメータについても経口、筋肉内投与で明きらかな改善が見られた。ただ経口投与の場合はいずれの指標においてもAFの方が高い有効性を示した。
肝炎に対してはペクチン酸はAFと同等の効果を示し、血清GOT,GPT値を有意に抑制した。
【0058】
これらの結果から丹参由来の多糖類(AF)に限らず由来の異なるポリD−ガラクツロン酸の構造を有する多糖類でもAFとほぼ同様の効果を示すことがわかった。
【0059】
【表8】
Figure 0003638967
【0060】
【表9】
Figure 0003638967
【0061】
【表10】
Figure 0003638967
【0062】
【発明の効果】
本発明によれば、ポリD−ガラクツロン酸を有効構成成分とする水溶性多糖類がネフローゼ症候群及び肝障害症状の寛解剤として提供される。
【0063】
【図面の簡単な説明】
図1は実施例1におけるゲルろ過クロマトグラフィーにより展開された分画の波長280nm(A280 )および480nm(A480 )の吸光度、図2および図3は実施例1においてネフローゼ症候群モデルラットに本発明の多糖類(AF)を種々の投与量で経口投与した場合の尿蛋白***量、図4はAFを酸化または還元して同様に投与した場合の尿蛋白***量、をそれぞれ示すグラフである。[0001]
[Industrial application fields]
The present invention is intended for patients diagnosed with nephrotic syndrome, which is a pre-stage leading to chronic renal failure, or for renal disorders that have been increasing in young people as well as the elderly in recent years, or for liver disorders such as viral and drug-induced hepatitis. The present invention relates to an invention for providing a safe therapeutic agent for oral and intramuscular administration that can be hospitalized for patients with symptoms.
[0002]
[Prior art]
Synthetic steroids or anti-platelet drugs dipyridamole are used as medical treatments for minimal change nephrosis, but they must be used for a long time and should be administered to young people. In particular, side effects such as infection, gastrointestinal bleeding, metabolic abnormalities, osteoporosis, thrombosis, adrenal insufficiency, psychiatric disorders are serious in cases such as full moon-like facial appearance, irregular menstruation, dizziness, headache, nausea, vomiting Has been.
[0003]
In addition, hepatitis includes viral and drug-related ones, but most of them are viral. Therapeutic agents are biological response modifiers (BRM) such as interferon and interleukin-2. Neominophagen C, which is an injection for intravenous injection of glycyrrhizin, is used. However, BRM has problems with long-term administration due to side effects such as fever. Glycyrrhizin is basically an anti-inflammatory agent, and blood pressure and electrolyte concentration must be managed when used for a long time. In addition, saikosaponins, saponins, trashins and the like, which are herbal medicine components, are known, but none of them has been clinically applied.
[0004]
Meanwhile, poly-D-galacturonic acid
[Chemical 1]
Figure 0003638967
[The carboxyl group in the formula may be methyl esterified]
For example, water-soluble pectic substances are known as water-soluble polysaccharides containing as a constituent component. This is a water-soluble polysaccharide obtained by extracting citrus peels with an acidic aqueous solution, further demethylating with acid, ants, or enzyme as necessary, and adding an organic solvent such as alcohol to precipitate, and poly-D- Galacturonic acid is the main constituent. The water-soluble pectin is divided into pectin and pectinic acid depending on the degree of methyl esterification of the carboxyl group in the structural formula of poly-D-galacturonic acid, and the one in which no methyl ester actually remains is called pectinic acid. ing.
[0005]
Water-soluble pectin is mainly used in the food industry as a material such as jelly, but it is rarely used as a medicine to the extent that it is used for mucosal coating.
[0006]
In some of the present invention, extract of Dansang is used, but Dansang is a medicinal herb that is traditionally used in China to improve blood circulation and blood circulation. In recent years, vasodilatory action (Hirokichi Oura: Journal of the Japanese Society of Pharmaceutical Sciences, 5: 227-237., 1988.), hypotensive action (Nakayama Medical School: Therapeutic Medicine, Tokyo, 257-258., 1980.) , Anticoagulant action (Ra Atsushi et al .: Acta Pharmacinica Sinica., 23 (11): 830-834., 1988.), intracellular cholesterol synthesis inhibitory action (Sun Xi-ming; Naka Herbal Medicine, 22 (1): 20-23., 1991.), hepatocyte protection (Hiroshi Hiroshi et al .: Nakanishi Medical Journal., 11 (2): 102-104., 1991.) and radical scavenging action (Hu Tian Yi: Shanghai Chinese Journal of Medicine) , 9: 28-30., 1988.) and other improvements in renal function (Hirokichi Oura: Japan-China Symposium on Second Pharmaceutical Medicine and Pharmaceutical Research pp 148-157, 1988.) and reported to be effective in patients with chronic kidney disease and uremia (Zhang Kajing: Shanghai China Journal, 1.17-18., 1981). However, it is a low molecular weight substance that is completely different from the present invention even if the essence is not mentioned at all.
[0007]
In addition, research on therapeutic agents for kidney diseases using Dansang as a raw material has been actively conducted, and tanshinone analogues which are low molecular weight phenanthrenequinones and magnesium lithospermic acid B which is a caffeic acid tetramer are included. Although isolated (T. Yozawa, H. Y. Chung, H. Oura, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 36, 316 (1988)), all contain organic solvents. It is only a highly fat-soluble substance extracted below, and has not yet reached clinical application.
[0008]
[Problems to be solved by the invention]
Renal diseases are roughly classified into primary ones derived from glomeruli and secondary ones derived from other diseases. The former accounts for about 80% or more, and the lower age group reaches about 90%. From the histopathological findings, minimal change group, monoglomerular sclerosis, membranous nephropathy, mesangial proliferative nephropathy (IgA nephropathy, non-IgA nephropathy), membranous proliferative glomerulonephritis, crescent glomerulonephritis And so on. Proteinuria is common to all histological types as a clinical feature, and in severe cases it is diagnosed as nephrotic syndrome. In recent years, kidney diseases, especially those caused by the deterioration of the kidneys, are increasing not only in the elderly, but also in the younger generation. There is a need to develop drugs that are administered orally or intramuscularly.
[0009]
In addition, hepatitis is roughly classified into viral ones and alcohol-related drugs, but those caused by hepatitis B and C viruses are overwhelming. In recent years, interferon has been reported to be particularly effective against hepatitis C as a therapeutic agent, and the frequency of use has increased (Shiro Iino et al .: Fundamental and Clinical. 26: 339, 1992; Hiroshi Suzuki et al .: Liver・ Gall, pancreas, 23: 1065, 1991). However, influenza-like symptoms such as fever appear after short-term administration, and side effects such as weight loss, diarrhea, vomiting, arrhythmia, hair loss, and autoimmune abnormalities are observed even after long-term administration. In addition, since these drugs are all injections, they can be administered orally or intramuscularly as a new therapeutic drug that can be used more conveniently or as a combined adjuvant with interferon, etc. Development of drugs for treatment is desired.
[0010]
[Means for Solving the Problems]
As a result of earnest examination using the nephrotic syndrome model of the rat caused by puromycin, which is well known to cause remarkable excretion of proteinuria, which is widely used, and to show changes in renal organs. From the water extract of Tansan, it was found that there is a polysaccharide effective for the above model, and that the polysaccharide contains poly-D-galacturonic acid as a main constituent.
[0011]
The present invention has been developed from this finding, and (I) an agent for ameliorating nephrotic syndrome and hepatic disorder consisting of a water-soluble polysaccharide comprising poly-D-galacturonic acid as an active component, and (II) water or water from Tansan. Polysaccharides having the following characteristics that can be extracted with a solvent:
Figure 0003638967
(III) Extracting Danshen with water or an aqueous solvent, removing the residue from the extract, passing through a nonpolar porous polymer resin, concentrating by ultrafiltration, and then subjecting to gel filtration chromatography This is a method for producing the polysaccharide.
[0012]
As a water-soluble polysaccharide comprising polygalacturonic acid as an active component, a water-soluble pectin extracted from plants is generally used, which is a pectin in which the carboxyl group of galacturonic acid is methyl esterified by about 7.5% or more. However, pectinic acid having a lower methyl esterification rate or pectinic acid in which all methyl esters are hydrolyzed may be used. Water-soluble pectin is generally accompanied by a small amount of araban, galactan, rhamnose, etc., but can be used as it is.
[0013]
As the water-soluble polysaccharide of the present invention, for example, a water-soluble pectin extracted from red ginseng is also used.
[0014]
Dansang is the root and root-like stems of the plant, but the same plant, S. bowleyana Dunn, S. przewalskii Maxim, S. isunan H. .Wright) and the like are also used, and in the present invention, these are collectively referred to as Tansan.
[0015]
There are no particular restrictions on the production area of Tansan used in the present invention. Preferably, Tansan from Sichuan, China, can efficiently extract and purify the polysaccharide of the present invention.
[0016]
It is desirable to extract Tansan as small pieces as possible. As the extraction solvent, water or an aqueous solvent is used, and as the aqueous solvent, a buffer solution such as a phosphate buffer solution or an acetate buffer solution or a salt aqueous solution such as sodium chloride is preferably used.
[0017]
The pH of the extraction solvent is preferably adjusted to about 2 to about 9. The extraction is preferably performed at about 50 to about 100 ° C, more preferably 70 to 90 ° C. For example, put Dansan into warm water preliminarily adjusted to 50 to 100 ° C., preferably 70 to 90 ° C., or a buffer solution or salt solution in the range of pH 2 to 9, or warm up to a predetermined temperature in a warm bath. And extract.
[0018]
Thus, a crude liquid can be obtained by extracting for 1 to 8 hours, preferably 3 to 5 hours. Tansan residue mixed in the extract can be filtered off with a coarse filter cloth or Nutsche.
[0019]
The extract from which the residue has been removed is further purified by column chromatography using a nonpolar porous polymer resin equilibrated with water as a filler. Examples of the polymer resin include HP-20 and MCI-gel (manufactured by Mitsubishi Kasei Co., Ltd.), Amberlite XAD-2 (manufactured by Organo Corporation), and the like.
[0020]
Magnesium lithospermic acid B, a low molecular weight substance eluted with a 50% methanol solution, has been reported in the MCI-gel adsorption fraction for the active ingredient of Dansang. It was confirmed that there was activity to suppress excretion. However, as a result of testing the action of suppressing proteinuria excretion in detail for all the fractions eluted including the non-adsorbed part, it was found that the pass-through fraction also has a component exhibiting the above action, contrary to the initial expectation. found. At this point, the flow-through fraction from this treatment was expected to be of low polarity and would not be a component other than protein because it did not show the intrinsic UV absorption spectrum of the protein.
[0021]
A portion of the flow-through fraction was then passed through two ultrafiltration membrane (cut-off, molecular weight 300,000 and 50,000) systems to examine the concentration and purification steps. Actually divided into substance groups with molecular weights of 300,000 or more, 50,000 to 300,000 and 50,000 or less, and tested the activity of suppressing proteinuria excretion for each component using a puromaincin-induced rat model. did. As a result, strong activity was observed in fractions having a molecular weight ranging from 50,000 to 300,000, and weak activity was also observed at 50,000 or less.
[0022]
Therefore, a cut-off, ultrafiltration membrane with a molecular weight of 3000 was used for concentration of the previous flow-through fraction. Any type of ultrafiltration membrane in this step can be used for concentration of the substance of the present invention as long as the cut-off size is the same.
[0023]
Next, purification by gel filtration column chromatography was performed in order to limit the active ingredient in the concentrate to a narrower molecular weight range. In general, for proteins and the like, Sephadex and Sepharose (Pharmacia), Cellulofine (Seikagaku Corporation), Biogel (BioRad), etc. are used as carriers for gel filtration chromatography. The above can also be used for the chromatography of the substance of the present invention, but preferably a chromatographic material made of a material prepared by a synthesis means, for example, a biogel, is suitable for purification of the substance of the present invention. There are various types of chromatographic materials depending on the stitch size, that is, the exclusion limit, but any chromatographic material may be used as long as it has a fractionation range of 10,000 to 300,000. The inventors preferred to use biogel P-30, -60, -100, especially biogel P-60. Therefore, the concentrated solution was passed through a column packed with biogel P-60 equilibrated with water. The monitor tentatively performs absorption at 280 nm, and separates fractions with and without absorption into several fractions up to twice the column volume, and then suppresses proteinuria excretion in a puromycin-induced rat model. As a result, it was found that polysaccharides having activity were eluted in the polymer region.
[0024]
This polysaccharide loses its activity upon periodate oxidation or reduction treatment. In addition, the in vitro experimental results revealed that this substance has a platelet aggregation inhibitory effect and a red blood cell membrane protective action. Furthermore, although it is known that radicals are involved in puromycin-induced nephrotic model rats or carbon tetrachloride-induced liver injury model rats, it has been confirmed by experiments using ESR that this substance has no direct scavenging effect. Indicated.
The characteristics of the polysaccharides obtained by purifying (purified fraction) the extract of Dansang with nonpolar porous polymer resin and gel filtration chromatography were tested as follows.
[0025]
(1) Total sugar content: phenol sulfuric acid method (Hodge, JE and Hofreiter, BT (1962) Methods in Carbohydrate Chemistry (Academic Press). Vol. 1, p. 338)
Take 0.5 ml of the test solution in a test tube, add 0.5 ml of 5% (w / v) phenol solution, quickly add 2.5 ml of concentrated sulfuric acid directly to the liquid surface, mix well, and keep at room temperature for 20 minutes. The absorbance is measured. As the standard solution, an aqueous solution of glucose (10 to 90 μg / ml) was used.
[0026]
(2) Uronic acid content: metahydroxydiphenyl method (Blumenkranz, N. and Asboe Hansen, G. (1973) Anal. Biochem. 54, 484-489.)
Add 0.2 ml of 0.0125M sodium borate concentrated sulfuric acid solution to 0.2 ml of sample solution, and stir after cooling with ice. After treatment at 100 ° C. for 5 minutes, the mixture is cooled with ice, 20 μl of 0.5% sodium hydroxide solution of 0.15% metahydroxydiphenyl is added, and the absorbance at 520 nm is measured. A galacturonic acid solution was used as a standard solution.
[0027]
(3) Neutral sugar content (Alditol acetate-GC-MS method) (Borchardt, LG and Piper, CV (1970) Tappi. 53, 257-260.)
50 mg of the refined fraction of Dansang is dissolved in 3 ml of 72% (v / v) sulfuric acid, 84 ml of distilled water is added to what was treated at 30 ° C. for 1 hour, and autoclaved at 120 ° C. for 1 hour. As an internal standard, 4 mg of inositol is added, and 30 ml thereof is adjusted to pH 5.5 by adding barium hydroxide, and then centrifuged to obtain a supernatant. To 25 ml of the solution, 80 mg of sodium borohydride is added, treated at room temperature for 2 hours, and then reacted with acetic acid. After concentration and drying, dissolve in distilled water and apply to a DEAE Sephadex column to collect the flow-through fraction. After concentration and drying, the mixture is acetylated with acetic anhydride and pyridine, and then extracted with a mixed solution of dichloromethane and 1N hydrochloric acid. The organic layer was washed with distilled water, concentrated, dissolved in acetone, and quantified by gas chromatography mass spectrometry (GC-MS) (column: using a capillary column for Supelco sugar analysis). In addition, the sample was processed by the above reduction operation and analyzed in the same manner.
[0028]
(4) Measurement of molecular weight
Connect Asahi Pack GS-520 (Asahi Kasei Co., Ltd.) column (7.6 mm ID x 500 mm) to Tosoh HPLC system (Tosoh Corp.), add 10 μl of the sample solution of this application substance to the column using Milli-Q water and measure the molecular weight. (Temperature: room temperature, flow rate: 0.5 ml / min, detection: RID). As molecular weight markers, an amylose kit (manufactured by Nakatsuji Vineyard Co., Ltd.): molecular weights 10200, 30100, 75200, 111400, and 364200 were used, and the molecular weight of the substance of the present application was calculated from the calibration curves obtained from these elution patterns.
[0029]
(5) Evaluation using puromycin-induced nephrotic syndrome model rats
1) Preparation of nephrotic syndrome model rats: Wistar female rats (approximately 9 weeks old, body weight approximately 150 g) were administered once with 60 mg / kg of puromycin aminonucleoside (hereinafter puromycin, Sigma) intravenously in the jugular vein. Nephrotic syndrome model rats were prepared (Shizuo Tojo et al .: Nephrotic Syndrome, Kyogoku Hakusho, Soft Science Publishing Co., 479-488, 1984).
[0030]
2) Administration of sample solution: Each sample solution was orally or intramuscularly administered through a gastric cannula once a day from the day of the start of puromycin administration for 21 days. Water for injection was used for the negative control group, and dipyridamole solution was used for the positive control group.
[0031]
3) Measurement of urine protein mass: The urine protein mass was measured by collecting urine for 24 hours every 2 to 3 days using a rat metabolic cage from the fifth day after puromycin administration. Next, 3 ml of sulfosalicylic acid was added to 1 ml of the supernatant obtained by centrifugation (3000 rpm × 10 minutes), left at room temperature for 10 minutes, absorption at a wavelength of 660 nm was measured, protein concentration in urine was obtained from a calibration curve, and urine was further obtained. The total protein excretion in urine was calculated by multiplying the volume. In preparing a calibration curve, bovine serum albumin (manufactured by Sigma) was used as a standard protein.
[0032]
4) Measurement of serum cholesterol, serum albumin, serum total protein amount and serum lipid peroxide: After the administration of puromycin, the rats of each group were subjected to ether anesthesia on the 7th, 14th and 21st days. Blood was collected from a vein, and serum cholesterol, albumin, total protein amount and lipid peroxide amount were measured (all manufactured by Wako Pure Chemical Industries, Ltd.).
[0033]
(6) Evaluation by carbon tetrachloride-induced liver injury model
1) Preparation of liver damage model: 1.5 ml / kg of carbon tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.) solution mixed with olive oil at an equal ratio to Wistar female rats (9-11 weeks old, body weight around 160 g) Was administered once in the abdominal cavity. (Inflammation Journal: Inflammation and Inflammation Animal Experimental Method, Experimental Liver Fibrosis, Medical School Publishing, 253-277)
[0034]
2) Administration of sample solution: Samples were administered intramuscularly once a day from 3 days before the administration of carbon tetrachloride to the day before administration, or orally from 7 days before to the day before administration. Water for injection was administered to the negative control group.
[0035]
3) Serum biochemical examination: After 24 hours of administration of carbon tetrachloride, 2 ml of blood was collected from the chest and heart under ether anesthesia, left at room temperature for 1 hour, and centrifuged to obtain serum. Serum transaminase (GOT) activity was measured using a kit made by Wako Pure Chemical Industries.
[0036]
4) Statistical analysis: All measured data are mean ± S. This is indicated by E and statistically analyzed by Student's t-test.
[0037]
As shown in the following examples, the polysaccharide of the present invention is effective in remission of nephrotic syndrome and improvement of liver disorder symptoms in animal experiments. The daily dose per person, about 10 to 150 mg orally, and about 0.5 to 10 mg as intramuscular injection can be administered.
[0038]
【Example】
The present invention will be further described below with reference to examples and test examples.
Example 1
80 kg of water was added to 10 kg of a small piece of Dansang root from Sichuan, China, and a cast-in heater was added to 80 ° C, followed by extraction with stirring for 3 hours. The root residue in the extract was removed by filtration with Nutsche, and 80 L of water was further added to the recovered root residue and treated in the same manner as the first time to obtain a re-extract solution. The first and second extracts (130 L) were combined and concentrated under reduced pressure at 40 ° C. using an evaporator to obtain a concentrated solution (10 L).
[0039]
Next, the concentrated solution was loaded onto a column (11 × 45 cm) packed with HP-20 (4 L, manufactured by Mitsubishi Kasei). Water was used as the equilibration solution and the developing solution, and chromatography was performed at room temperature to collect a flow-through fraction and a water-washed fraction (non-adsorbed) solution. The column was washed with 50% methanol and acetonitrile, and finally completely replaced with water and reused. The non-adsorbed fraction was repeatedly treated in the same manner about three times to obtain a completely non-adsorbed fraction solution (55 L). This total non-adsorbed liquid was ultrafiltered and concentrated using an ultrafiltration apparatus SEP-1013 (Asahi Kasei) equipped with an ultrafiltration membrane having a molecular weight cut-off 3000, and passed through (molecular weight about 3000 or less, SEP-OUT). A non-passing liquid (molecular weight of about 3000 or more, SEP-IN) was obtained. The concentrated non-passed solution (SEP-IN) was added to a column (1.5 × 100 cm) packed with biogel P-60 equilibrated with water, and chromatography was performed using water as a developing solution. The monitor tentatively measures the absorption at a wavelength of 280 nm, prepares a graph with the fraction number on the horizontal axis and the absorption of each fraction on the vertical axis. Measurement was performed, and the measurement result was shown in the same graph (FIG. 1).
[0040]
The objective polysaccharide component was obtained in fractions (AF) with fraction numbers 11 to 22, and then freeze-dried to obtain a powder (30 g, lot A).
As a result of testing the properties of the purified polysaccharide obtained here by the test method described above, the following properties were obtained.
[0041]
1) Sugar content (phenol sulfuric acid method): 79%
Figure 0003638967
.
[0042]
2) Molecular weight: 259000 (standard polysaccharide: amylase kit, molecular weight 100-360K)
[0043]
3) Nephrotic syndrome model rat evaluation
Purified samples 10 mg / kg and 40 mg / kg were orally administered and 0.5 mg / kg and 2.5 mg / kg were administered intramuscularly. As shown in FIGS. 2 and 3, urinary protein excretion was significant in both cases. Suppressed. In addition, as shown in Tables 1 and 2, a significant improvement effect was observed in serum cholesterol (Cholesterol) value, serum albumin (Albumin) value, A / G ratio, and serum lipid peroxide (MDA) value.
[Table 1]
Figure 0003638967
[Table 2]
Figure 0003638967
[0044]
4) Evaluation by carbon tetrachloride-induced liver injury model
Sugar preparation samples (AF) 7 mg / kg and 35 mg / kg were orally administered and 0.3 mg / kg and 1.5 mg / kg were intramuscularly administered. As shown in Table 3, in any case, in the pre-AF group, Increases in serum GOT and GPT levels were suppressed in a dose-dependent manner.
[0045]
[Table 3]
Figure 0003638967
[0046]
Example 2
Refining from Tansan raw materials in different lots by the method described in Example 1 and obtaining a total of 3 lots (lots B, C, D) in addition to those described in 1, and performing the same characteristic evaluation .
1) Sugar content (phenolic sulfuric acid): Lot B (65%), Lot C (80%), Lot D (93%)
(1) Sugar composition
[0047]
[Table 4]
Figure 0003638967
[0048]
(2) Neutral sugar composition (alditol acetate-GC-MS method)
[Table 5]
Figure 0003638967
[0049]
(3) Other sugars:
None of lots B, C, and D contains amino sugars, aldohexoses, or 2-deoxy sugars.
[0050]
2) Molecular weight: (standard polysaccharide: amylose cat, molecular weight 100-360K)
Lot B (150,000), Lot C (280,000), Lot D (250,000)
[0051]
3) Nephrotic syndrome model rat evaluation
As for medicinal efficacy evaluation, all the purified products had almost the same effect as that obtained in Example 1.
[0052]
Example 3
For the purpose of investigating the fact that the main body of the activity is sugar and the involvement of uronic acid in the medicinal effect, this purified product was oxidized and reduced by the following operations, and their effects were examined. The dose was 40 mg / kg orally administered to rats with nephrotic syndrome, and 1.5 mg / kg was intramuscularly administered to rats with liver damage.
(1) Oxidation (according to Noble, DW and Sturgeon, RJ (1970) Carbohydr, Res. 12, 448) 600 mg of purified sample was dissolved in 150 ml of distilled water, and 150 ml of 0.2 M sodium periodate solution was dissolved. In addition, the reaction is carried out at 37 ° C. for 240 hours. After the reaction is stopped by adding 150 ml of ethylene glycol, 500 mg of sodium borohydride is added and treated at room temperature for 24 hours. The reaction is quenched with acetic acid, dialyzed against water and lyophilized.
[0053]
(2) Reduction (according to Taylor, RL and Conrad, HE (1972) Biochemistry. 11, 1383-1388) A purified sample of 50 mg was dissolved in distilled water, and EDC (1-ethyl-3- (dimethyl- (aminopropyl) -carbodiimide) 249 mg is added, and the mixture is reacted for 19 hours while maintaining the pH at 4.75 with 0.1 N hydrochloric acid. Thereafter, 10 ml of 2M sodium borohydride solution is added dropwise over 1 hour, while maintaining the pH at 7. Stir for another hour, dialyze against water and freeze-dry.
[0054]
The results are shown in FIG. 4 and Tables 6 and 7, but no effect was observed for the oxidized and reduced samples. This indicates that the active substance in the purified sample is certainly a polysaccharide, and in particular, uronic acid contributes greatly to the drug efficacy. Moreover, it was found from the comparison of the neutral sugar content before and after the reduction that most of the uronic acid contained in this sample was galacturonic acid.
[0055]
[Fig. 4]
[Table 6]
Figure 0003638967
[Table 7]
Figure 0003638967
[0056]
Example 4
Since it was found from the results of Example 3 that D-galacturonic acid in the polysaccharide is important for the activity, puromycin-induced nephrosis and tetrachloride were then used using a plant-derived pectic acid having a poly-D-galacturonic acid structure. The effect on carbon-induced liver injury model was investigated.
For the nephrotic model, 10,40 mg / kg was orally administered and 2.5 mg / kg was intramuscularly administered, and urinary protein excretion, serum cholesterol and albumin were measured. For the hepatitis model, 1.5 mg / kg was administered intramuscularly, and serum GOT and GPT values were measured.
[0057]
The results are shown in Tables 8, 9, and 10, and urinary protein excretion in nephrosis was significantly suppressed by intramuscular administration of pectic acid and showed an improvement trend even by oral administration. The serum parameters were also clearly improved by oral and intramuscular administration. However, in the case of oral administration, AF was more effective for any index.
For hepatitis, pectic acid showed the same effect as AF and significantly suppressed serum GOT and GPT values.
[0058]
From these results, it was found that not only polysaccharides derived from Dansang (AF) but also polysaccharides having different poly-D-galacturonic acid structures exhibit substantially the same effect as AF.
[0059]
[Table 8]
Figure 0003638967
[0060]
[Table 9]
Figure 0003638967
[0061]
[Table 10]
Figure 0003638967
[0062]
【The invention's effect】
According to the present invention, a water-soluble polysaccharide comprising poly-D-galacturonic acid as an active constituent is provided as a ameliorating agent for nephrotic syndrome and liver disorder symptoms.
[0063]
[Brief description of the drawings]
FIG. 1 shows a wavelength of 280 nm (A) of the fraction developed by gel filtration chromatography in Example 1. 280 ) And 480 nm (A 480 2 and FIG. 3 are the amounts of urinary protein excreted when the polysaccharide (AF) of the present invention was orally administered to the nephrotic syndrome model rat in Example 1 at various doses, and FIG. It is a graph which respectively shows the amount of urinary protein excretion at the time of reducing and administering similarly.

Claims (8)

下記の特性:A.糖含量:60〜100%
Figure 0003638967
B.分子量 150,000〜300,000を有する水溶性ペクチン質多糖類よりなるネフローゼ症候群及び肝障害症状の寛解剤。
The following characteristics: Sugar content: 60-100%
Figure 0003638967
B. A ameliorating agent for nephrotic syndrome and liver disorder symptoms comprising a water-soluble pectic polysaccharide having a molecular weight of 150,000 to 300,000.
多糖類が丹参から水又は水性溶媒で抽出されたものである請求項1記載の寛解剤。The ameliorating agent according to claim 1, wherein the polysaccharide is extracted from red ginseng with water or an aqueous solvent. 筋肉内または経口投与される請求項1、または2記載の寛解剤。The ameliorating agent according to claim 1 or 2 , which is administered intramuscularly or orally. 丹参から水または水性溶媒で抽出されうる下記の特性を有するペクチン質多糖類。
A.糖含量:60〜100%
Figure 0003638967
B.分子量 150,000〜300,000
A pectic polysaccharide having the following characteristics that can be extracted from Dansan with water or an aqueous solvent.
A. Sugar content: 60-100%
Figure 0003638967
B. Molecular weight 150,000-300,000
丹参を水または水性溶媒で抽出し、抽出液から残渣を除去した液を無極性多孔性ポリマー樹脂を通過させ、限外濾過で濃縮し、ついでゲル濾過クロマトグラフィーに付することを特徴とする請求項記載の多糖類の製造法。The extract obtained by extracting Dansang with water or an aqueous solvent and removing the residue from the extract is passed through a nonpolar porous polymer resin, concentrated by ultrafiltration, and then subjected to gel filtration chromatography. Item 5. A method for producing a polysaccharide according to Item 4 . 丹参の抽出をpH約2〜約8で行う請求項記載の製造法。6. The process according to claim 5 , wherein the extraction of Tansan is performed at a pH of about 2 to about 8. 水性溶媒が緩衝液または塩類水溶液である請求項記載の製造法。6. The process according to claim 5 , wherein the aqueous solvent is a buffer solution or an aqueous salt solution. 丹参の抽出を約40〜約100℃で行う請求項または記載の製造法。The method according to claim 5 , 6 or 7 , wherein the extraction of dansan is performed at about 40 to about 100 ° C.
JP08587194A 1993-06-03 1994-03-30 Remedies for nephrotic syndrome and liver damage symptoms Expired - Fee Related JP3638967B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP08587194A JP3638967B2 (en) 1993-06-03 1994-03-30 Remedies for nephrotic syndrome and liver damage symptoms
FI943242A FI943242A (en) 1993-07-15 1994-07-07 A remedy for kidney and liver diseases
US08/271,795 US5547945A (en) 1993-07-15 1994-07-07 Remitting agent for nephrotic syndrome and hepatopathy symptoms
CA002127934A CA2127934A1 (en) 1993-07-15 1994-07-13 Remitting agent for nephrotic syndrome and hepatopathy symptoms
KR1019940016859A KR960013374A (en) 1993-07-15 1994-07-13 Nephrotic syndrome and liver disease symptoms
AU67470/94A AU686161B2 (en) 1993-07-15 1994-07-14 Remitting agent for nephrotic syndrome and hepatopathy symptoms
EP94305146A EP0635519B1 (en) 1993-07-15 1994-07-14 Polyglucuronic acid as remitting agent for nephrotic syndrome and hepatopathy symptoms
RU94026096A RU2119341C1 (en) 1993-07-15 1994-07-14 Agent attenuating a sickness course at nephrotic syndrome and hepatopathy symptoms, water-soluble polysaccharide, method of polysaccharide preparing
AT94305146T ATE171462T1 (en) 1993-07-15 1994-07-14 POLYGLUCURONIC ACID AS A REMITTING AGENT FOR NEPHROTIC SYNDROME AND SYMPTOMS OF HEPATOPATHY
DE69413467T DE69413467T2 (en) 1993-07-15 1994-07-14 Polyglucuronic acid as a remitting agent for nephrotic syndrome and symptoms of hepatopathy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16037393 1993-06-03
JP5-160373 1993-06-03
JP08587194A JP3638967B2 (en) 1993-06-03 1994-03-30 Remedies for nephrotic syndrome and liver damage symptoms

Publications (2)

Publication Number Publication Date
JPH0748265A JPH0748265A (en) 1995-02-21
JP3638967B2 true JP3638967B2 (en) 2005-04-13

Family

ID=26426873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08587194A Expired - Fee Related JP3638967B2 (en) 1993-06-03 1994-03-30 Remedies for nephrotic syndrome and liver damage symptoms

Country Status (1)

Country Link
JP (1) JP3638967B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000037814A (en) * 1998-12-02 2000-07-05 최수부 Healthy food contained natural medicine materials
US6149915A (en) 1999-09-29 2000-11-21 Shiva Biomedical, Llc Treatment of diabetic nephropathy and microalbuminuria
CN100373152C (en) * 2004-11-23 2008-03-05 西北农林科技大学 Method for measuring galacturonic acid in fruit juice and beverage
CN104374862A (en) * 2014-11-27 2015-02-25 成都大学 Salvia miltiorrhiza stem leaf quality control method

Also Published As

Publication number Publication date
JPH0748265A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
Yang et al. Anti-hyperuricemic and anti-gouty arthritis activities of polysaccharide purified from Lonicera japonica in model rats
Wang et al. A novel acidic polysaccharide from the residue of Panax notoginseng and its hepatoprotective effect on alcoholic liver damage in mice
AU2004200624B2 (en) Medicinal preparation containing phenylethanoid glycosides extracted from herbaceous plant, cistanche tubulosa (schenk.) wight, process of making the same, and uses of the same
Wang et al. The isolation, structural features and biological activities of polysaccharide from Ligusticum chuanxiong: A review
Ma et al. Chemical characterization of polysaccharides isolated from scrophularia ningpoensis and its protective effect on the cerebral ischemia/reperfusin injury in rat model
KR102082276B1 (en) High purity heparin and production method therefor
JP7285596B2 (en) Kudzu root polysaccharide and its production method and use
Xiong et al. Extraction, purification and characterization of sulphated polysaccharide from Bellamya quadrata and its stabilization roles on atherosclerotic plaque
JP3638967B2 (en) Remedies for nephrotic syndrome and liver damage symptoms
RU2119341C1 (en) Agent attenuating a sickness course at nephrotic syndrome and hepatopathy symptoms, water-soluble polysaccharide, method of polysaccharide preparing
CN115894731B (en) Anoectochilus formosanus uniform polysaccharide and preparation method and application thereof
JP3161882B2 (en) Ginseng-derived polysaccharide, its production method and use
CN106913858B (en) Application of eucheuma polypeptide in preventing and treating pulmonary fibrosis
JP2021512997A (en) Separated windproof polysaccharides and their uses
JP2602295B2 (en) Polysaccharide, method for isolating the same, and pharmaceutical composition containing the polysaccharide
CN1687092A (en) General glycoside extractive of xanthium and preparation method
EP1498131B1 (en) Medicinal preparation containing phenylethanoid glycosides extracted from Cistanche tubulosa
CN107456460A (en) Lithosperman and its purposes in anticomplement medicament is prepared
CN115141288B (en) Rhizoma anemarrhenae active polysaccharide, rhizoma anemarrhenae crude polysaccharide, and preparation method and application thereof
CN115304686B (en) Achyranthes bidentata polysaccharide, and preparation process and application thereof
CN116693711B (en) Polygonum multiflorum polysaccharide, extraction method and application thereof
Zhang et al. Extraction, purification, structural characteristics, and pharmacological activities of the polysaccharides from corn silk: A review
CN107090050A (en) Screwtree root polysaccharide and preparation method thereof and the purposes in anticomplement medicament is prepared
Ghaffar et al. The hematological and histological studies for the hepatoprotective-like effect of the hydromethanolic extract and the fractions of Viola serpens Wall.
CN1795927A (en) Composite of total flavone phospholipid of safflower, and preparation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees