JP3635170B2 - Battery electrode manufacturing method - Google Patents

Battery electrode manufacturing method Download PDF

Info

Publication number
JP3635170B2
JP3635170B2 JP31432696A JP31432696A JP3635170B2 JP 3635170 B2 JP3635170 B2 JP 3635170B2 JP 31432696 A JP31432696 A JP 31432696A JP 31432696 A JP31432696 A JP 31432696A JP 3635170 B2 JP3635170 B2 JP 3635170B2
Authority
JP
Japan
Prior art keywords
active material
material paint
paint
negative electrode
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31432696A
Other languages
Japanese (ja)
Other versions
JPH09213310A (en
Inventor
康博 上山
邦夫 鶴田
頼人 大花
利一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31432696A priority Critical patent/JP3635170B2/en
Publication of JPH09213310A publication Critical patent/JPH09213310A/en
Application granted granted Critical
Publication of JP3635170B2 publication Critical patent/JP3635170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filtration Of Liquid (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池電極の製造方法に関するものである。さらに詳しくは、正極及び負極の活物質塗料中に含まれる未分散の凝集塊を除去した電池電極の製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化が進みそれに応じて電力源となる電池の小型化、高容量化が強く望まれており、一次電池及び二次電池の材料や製造方法等、さまざまな検討がなされている。特に特開昭55−155470号公報、特開昭60−127661号公報、特開昭61−135055号公報、特開平2−158055号公報、特開平3−263757号公報等に見られるように、製造方法の検討のみならず製造方法が電池容量に影響することが報告されている。
【0003】
【発明が解決しようとする課題】
従来の塗料化方法では、活物質塗料中に含まれる未分散の凝集塊により塗布時に塗工スジによる不良部分が発生して、歩留りの低下が発生してた。また塗布乾燥後の極板は表面が粗く、突起状のブツブツが多く観察されていた。それら未分散の凝集物を多く含む極板を用いて電池を作成しサイクル試験を繰り返すと、放電容量の劣化が激しく、またそれら突起状のブツブツを核とする反応物質の析出が見られた。また、凝集塊の多い活物質塗料を用いると集電体上に塗布される塗膜重量が均一でなく、凝集塊部分が基材から脱落して放電容量の著しい劣化が見られる他、電池容量のばらつきが多いことなど活物質の塗料化方法の改善が望まれていた。
【0004】
本発明は、前記従来の問題を解決するため、正極及び負極の活物質塗料中の未分散の凝集塊を除去し、電極の均一化を図り放電特性を改善した電池を提供することを目的としている。
【0005】
【課題を解決するための手段】
前記目的を達成するため、本発明の電池電極の製造方法は、集電体表面に活物質塗料を塗布して電池電極を製造する方法において、撹拌装置で前記活物質塗料を撹拌し、前記活物質塗料を前記集電体表面に塗布する塗布手段に供給するとともに、前記撹拌装置内の前記活物質塗料を前記撹拌装置より濾過処理手段を経て、前記撹拌装置に循環させるラインを、前記塗布手段への供給ラインとは別に備え、前記循環ラインで前記活物質塗料中の未分散の凝集塊を除去することを特徴とする。
【0006】
前記方法においては、前記活物質塗料の撹拌装置と、活物質塗料を集電体表面に塗布する塗布手段との間の経路においても濾過処理を行うことが好ましい。
【0007】
また前記方法においては、前記活物質塗料を濾過するフィルターが、金属材料、有機材料もしくはそれらの複合材料からなる繊維、または線を用いてなる膜、織物、不織布、及び網から選ばれる少なくとも一つであることが好ましい。
【0008】
また前記方法においては、前記活物質塗料を濾過するフィルターの目開きが、5μm以上1mm以下の範囲であることが好ましい。また前記方法においては、濾過処理をフィルターを用いて1回以上行うことが好ましい。
【0009】
上記手段により撹拌装置内で撹拌翼の運動によって活物質塗料が流動して気泡が取り除かれる効果が得られ、かつ活物質塗料を静置させないことで活物質の沈澱、分離を防ぐことができ、安定に保存することが可能になる。またフィルターを用いた濾過処理を施すことにより活物質塗料中の未分散の凝集塊を除去するが可能となり、塗工スジを解消しかつ乾燥塗膜のブツブツをなくして均一な塗工性を得ることができる。これら作用によって塗料の安定性を確保し不純物が除去できることで、材料歩留りがよくサイクル特性が改善され、ばらつきの少ない放電特性の良い電池を供給することができる。
【0010】
【発明の実施の形態】
以下発明の実施の形態を用いてさらに具体的に説明する。図1は本発明で用いることができる塗料を調製する方法及び塗工方法の例である。1は活物質塗料を撹拌するための撹拌装置で、撹拌作用による熱発生を防ぐ目的で冷却装置を備えていてもよい。この撹拌装置1は撹拌槽と撹拌翼2からなる。撹拌翼2は回転軸と翼部とを備えている。本発明に用いられる撹拌翼の形状は特に限定されるものではなく、円盤状、棒状、板状、ヘリカルリボン状等を用いることができる。本発明の撹拌は回転軸を中心にした円運動でも、回転軸を中心に円周方向に対して往復運動を行う撹拌方法でも良い。特に好ましくは撹拌翼の運動によって、活物質塗料中の気泡を取り除くことが効果的に行われるような流動状態を保つものが望ましい。また一般的に塗料を常に撹拌するものを用いると、活物質の沈澱、分離を防ぐことができ、塗料性状が向上し、安定な保存が可能となる。
【0011】
本発明に用いられる活物質塗料は撹拌装置1で活物質と結合剤溶液を混合して作成する。またあらかじめ例えば連続式二軸混練装置、バッチ式混練装置等の混練装置、圧力式ホモジナイザ、超音波式ホモジナイザ、ラインミル、サンドミル等で作成されてから撹拌装置1に送液、投入されてもよい。3は送液ポンプである。送液ポンプとして用いられるポンプは摺動部が金属と金属以外のネオプレンゴム、シリコンゴム等から構成されるものや、金属部品同士の摺動面が少ないポンプを用いることが望ましい。4はフィルター装置である。フィルターとしてはポリエステル繊維、ナイロン繊維等、有機材料、あるいはステンレス繊維、ニッケル繊維等を用いた金属材料あるいはそれらを合わせた複合材料からなる繊維、ファイバー、線を用いてなる膜、網、またはメッシュ織物、不織布などを用いることができる。一般にストレーナとよばれる金属繊維製格子網を用いてもよい。フィルターの目開きの下限は活物質の粒子径に依存して決定されるが、5μm以上、1mm以下であることが好ましく、20μm以上、0.5mm以下であることが望ましい。5μm未満であると、塗料がフィルターを通過する際の圧力損失が大きく、濾過時間が長くなり作業性が悪い。また1mmより大きいと塗料中の凝集塊を完全に除去することができず電池特性が劣化する。活物質を濾過する工程は1回でも良いが、1回以上循環して行うとさらに良い精製効果が得られる。また1回以上行う際には徐々に細かい目開きに変更してもよい。細かい目開きに変更してゆくことで、塗料中の凝集塊を徐々に除去することが可能となる。送液ポンプ3とフィルター装置4を用いて、活物質塗料を循環し塗料中の凝集塊を除去する。
【0012】
凝集塊を除去した活物質塗料は、次に定量ポンプ5を用いてフィルター装置6に送液する。活物質塗料を基材上に塗布する際には、塗布方法は定量に送られる塗料を塗布して均一な膜厚の極板を得るために、定量性に優れたポンプを用いることが望ましい。フィルター装置6による濾過処理は塗工前に行うこともできる。フィルター装置6に用いる材料としては、フィルター4と同じ材料を用いてもよい。フィルター装置6でフィルトレーション(濾過処理)された活物質塗料は、次に塗布装置7に送られる。
【0013】
塗布装置7においては、まず供給ローラ8から集電体(支持体)を送り出す。支持体としては、アルミ箔、銅箔、ニッケル箔、ラス材(ニッケルを主成分とする発泡体)箔等から選ばれる金属箔を用いる。送り出された支持体は、塗布手段9により活物質塗料が塗布される。塗布手段9としては、リバースロール法、コンマコータ法、グラビア法、ナイフコータ法、キスコータ法、ダイコータ法等を用いることができる。塗布後の塗膜密度が電池容量を確保する密度に満たない場合には圧延処理、カレンダー処理等を施してもよい。活物質塗料の塗布厚さは、一例として乾燥後で100μmである。次いで活物質塗料は乾燥ゾーン10で一例として120℃、数分間乾燥される。次いで巻取ローラー11でたとえば10m/分の速度で巻き取られる。
【0014】
本発明に用いられる活物質塗料としては、金属酸化物、金属水和物、金属粉体、あるいは炭素質材料を主材料とした活物質、導電剤、結合剤樹脂等を含むことができる。
【0015】
本発明に用いられる炭素質材料としてはカーボンブラック、黒鉛、有機焼結体を用いることができる。導電剤としては炭素繊維、アセチレンブラック等を用いることができる。
【0016】
本発明に用いられる結合剤樹脂としては、カルボシキメチルセルロース(以下CMCと略す。)、ポリビニルアルコール、フッ素系樹脂、ホルマール系樹脂、アセタール系樹脂、アクリル/スチレン系共重合樹脂、スチレン/ブタジエン系共重合樹脂(以下SBR系樹脂と略す。)等を溶解した樹脂溶液、またはエマルジョン化した樹脂溶液を用いることができる。溶剤は特に限定されるものでなく、N−メチルピロリドン、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、エタノール、メタノール、酢酸ブチル、蒸留水等を用いることができる。
【0017】
以下具体的実施例を説明する。以下の実施例において使用した装置は図1に示した通りである。
【0018】
【実施例】
以下、本発明をリチウム二次電池の製造方法を実施例として説明する。
(1)正極の作製
(正極1)
LiCoO2(平均粒子直径2μm:100重量部)、導電性カーボンブラック(2次粒子の平均粒子直径1μm:5重量部)、フッ素系樹脂(ポリテトラフルオロエチレン40重量%の水系エマルジョン(市販品):5重量部)、CMC:1重量部からなる塗料水溶液を、連続式二軸混練装置を用いて混練した。その後、回転軸を中心に往復運動する撹拌翼を有する撹拌装置内で撹拌しながら、目開きが0.1mmのステンレス製フィルターで濾過し、濾過された塗料液をアルミ箔両面に塗布し、乾燥して正極板を作製した。前記塗料の乾燥後の塗布量は、300g/m2であった。
(2)負極の作製
(負極1)
球状黒鉛(平均粒子直径2μm:100重量部)、SBR系エマルジョン樹脂(市販品):3重量部)、CMC:1重量部からなる塗料水溶液を連続式二軸混練装置を用いて混練した。その後、回転軸を中心に往復運動する撹拌翼を有する撹拌装置内で撹拌しながら目開きが0.05mmのステンレス製フィルターで濾過し、濾過された塗料液を銅箔両面に塗布し、乾燥して負極板を作製した。前記塗料の乾燥後の塗布量は、140g/m2であった。
(負極2)
(負極1)におけるステンレスフィルターの目開きが0.2mmである以外は全て(負極1)と同様にして負極板を得た。
(負極3)
(負極1)におけるステンレスフィルターの目開きが0.8mmである以外は全て(負極1)と同様にして負極板を得た。
(負極4)
(負極1)におけるフィルターによる濾過処理を行わずに塗布した以外は全て(負極1)と同様にして負極板を得た。
(負極5)
(負極1)における撹拌処理を行わずに塗布した以外は全て(負極1)と同様にして負極板を得た。
(負極1’)
球状黒鉛、SBR系樹脂、CMC:1wt%水溶液を連続式二軸混練装置を用いて混練した後、銅箔両面に塗布、乾燥して負極板を作製した。
(負極2’)
(負極1)におけるステンレスフィルターの目開きが1.2mmである以外は全て(負極1)と同様にして負極板を作成した。
【0019】
[実施例1]
正極1と負極1をセパレータを介して巻き込んで直径17mmで高さ50mmの円筒形リチウム二次電池を作成した。
【0020】
[実施例2]
正極1と負極2をセパレータを介して巻き込んで同サイズ電池を作成した。
【0021】
[実施例3]
正極1と負極3をセパレータを介して巻き込んで同サイズ電池を作成した。
【0022】
比較例1
正極1と負極4をセパレータを介して巻き込んで同サイズ電池を作成した。
【0023】
比較例2
正極1と負極5をセパレータを介して巻き込んで同サイズ電池を作成した。
【0024】
[比較例
正極1と負極1’をセパレータを介して巻き込んで同サイズ電池を作成した
【0025】
得られた各試料について以下の評価を行った。比較サンプルとして従来の工法で得られた同サイズ電池を用意した。
(1)放電容量[%]
室温において、一定電流(500mA)、終止電圧(4.2V)で充電を完了した二次電池を一定電流(500mA)で放電して、放電開始から低下する電圧が終止電圧(3.0V)に達した時の各サンプルの放電容量の比較サンプルの放電容量に対する比。
【0026】
図2は放電容量測定を行ったときの放電電圧曲線の例である。
(2)サイクル寿命[%]
室温において、一定条件(放電:電流500mA,終止電圧3.0V、充電:電流500mA,終止電圧4.2V)で充放電を繰り返して放電容量を測定し、初期放電容量の90%になったときの充放電回数の、比較サンプルの回数に対する比。
【0027】
図3はサイクル寿命測定を行ったときの各サンプルの充放電回数に対する放電容量変化の例である。
(3)負極板上へのリチウムの析出
(2)のサイクル寿命測定後電池を分解し、目視で負極板上へのリチウムの析出状態を観察した。
【0028】
表1に本実施例の測定結果の一覧を示す。
【0029】
【表1】

Figure 0003635170
【0030】
表1から明らかな通り、本実施例品はメッシュサイズ、放電容量、サイクル寿命、リチウム析出目視のいずれも優れていた。
【0031】
以上の実施例の発明は、活物質と結合剤樹脂溶液、必要に応じて加えられる導電剤からなる活物質塗料を、撹拌翼を有する撹拌装置で撹拌しながらフィルターを用いて少なくとも1回以上濾過した後、集電体上に塗布することにより放電特性、サイクル特性に優れた電池を得ることが確認できた。
【0032】
【発明の効果】
以上詳述した様に本発明によれば、上記した構成すなわち撹拌装置内の活物質塗料を撹拌装置より濾過処理手段を経て撹拌装置に循環させるラインを、塗布手段への供給ラインとは別に備え、濾過処理することにより、塗料を気泡を取り除きながら安定に保存して、正極、負極の活物質塗料中の未分散の凝集塊を除去し、均一な塗工性を得ることが可能になり、材料歩留りが良く、ばらつきの少ない、サイクル特性、放電特性に優れた電池を供給することができる。
【0033】
なお、本発明の実施例ではリチウム二次電池の負極の製造方法のみを記載したが、正極電極の製造方法でも同様な効果が得られ、またニッケル−カドミウム電池、あるいはニッケル水素電池の正、負極においても同様な効果を得ることができた。
【図面の簡単な説明】
【図1】 本発明の一実施例の電池極板の製造方法を示す図。
【図2】 本発明の一実施例の電池を用いて放電容量測定を行ったときの放電電圧曲線を示す図。
【図3】 本発明の一実施例の電池を用いてサイクル寿命測定を行ったときの放電容量変化を示す図。
【符号の説明】
1 撹拌装置
2 撹拌翼
3 送液ポンプ
4 フィルター
5 定量ポンプ
6 フィルター
7 塗布装置
8 集電体(支持体)の供給ローラ
9 塗布手段
10 乾燥ゾーン
11 巻取ローラー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a battery electrode. More specifically, the present invention relates to a method for producing a battery electrode from which undispersed aggregates contained in positive electrode and negative electrode active material paints are removed.
[0002]
[Prior art]
In recent years, downsizing of electronic devices has progressed, and accordingly, downsizing and high capacity of batteries serving as power sources have been strongly desired, and various studies have been made on materials and manufacturing methods of primary batteries and secondary batteries. Yes. In particular, as seen in JP-A-55-155470, JP-A-60-127661, JP-A-61-135055, JP-A-2-15855, JP-A-3-263757, etc. It has been reported that not only the manufacturing method but also the manufacturing method affects the battery capacity.
[0003]
[Problems to be solved by the invention]
In conventional coating methods, the defective portion by coating streak when applied by clumps of undispersed contained in the active material coating occurs, decrease in yield has occurred. Further, the electrode plate after coating and drying had a rough surface, and many protrusions were observed. When a battery was made using an electrode plate containing a large amount of these non-dispersed aggregates and the cycle test was repeated, the discharge capacity deteriorated severely, and precipitation of reactants centered on these protruding protrusions was observed. In addition, when an active material paint with a large amount of agglomerates is used, the weight of the coating applied on the current collector is not uniform, and the agglomerate parts fall off from the base material, resulting in significant deterioration of discharge capacity. Improvements in the method of making active materials into paints have been desired, such as the fact that there is a lot of variation in the number of particles.
[0004]
In order to solve the above-described conventional problems, an object of the present invention is to provide a battery having improved discharge characteristics by removing undispersed agglomerates in the active material paints of the positive electrode and the negative electrode, making the electrodes uniform. Yes.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the battery electrode manufacturing method of the present invention is a method of manufacturing a battery electrode by applying an active material paint to the surface of a current collector, and stirring the active material paint with a stirrer, A line for supplying the material paint to the application means for applying to the surface of the current collector, and circulating the active material paint in the stirring device from the stirring device to the stirring device through the filtering means, It is provided separately from the supply line, and the dispersion line removes undispersed agglomerates in the active material paint .
[0006]
In the method, it is preferable that the filtration treatment is also performed in a path between the stirrer for the active material paint and an application unit that applies the active material paint to the surface of the current collector .
[0007]
In addition the method, at least one filter for filtering the active material paint, metallic materials, organic materials or fibers consisting of composite material or obtained by using the linear film, fabric, chosen nonwovens, and from the network It is preferable that
[0008]
Moreover, in the said method, it is preferable that the opening of the filter which filters the said active material coating material is the range of 5 micrometers or more and 1 mm or less. Moreover, in the said method, it is preferable to perform a filtration process once or more using a filter.
[0009]
By the above means, the effect that the active material paint flows and bubbles are removed by the movement of the stirring blade in the stirring device can be obtained, and the active material paint can be prevented from being settled and separated by not allowing the active material paint to stand, It becomes possible to store stably. In addition, it is possible to remove undispersed agglomerates in the active material paint by performing a filtration treatment using a filter, eliminating coating streaks and eliminating the unevenness of the dry paint film to obtain uniform coatability. be able to. By ensuring the stability of the paint and removing impurities by these actions, it is possible to supply a battery with good material yield, improved cycle characteristics, and good discharge characteristics with little variation.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to embodiments. FIG. 1 is an example of a method for preparing a coating material and a coating method that can be used in the present invention. 1 is a stirring device for stirring the active material paint, and may be provided with a cooling device for the purpose of preventing heat generation due to the stirring action. The stirring device 1 includes a stirring tank and a stirring blade 2. The stirring blade 2 includes a rotating shaft and a blade portion. The shape of the stirring blade used in the present invention is not particularly limited, and a disc shape, a rod shape, a plate shape, a helical ribbon shape, or the like can be used. The stirring of the present invention may be a circular motion around the rotation axis, or a stirring method that reciprocates around the rotation axis in the circumferential direction. In particular, it is desirable to maintain a fluid state in which the bubbles in the active material paint can be effectively removed by the movement of the stirring blade. In general, when a paint that is constantly stirred is used, precipitation and separation of the active material can be prevented, paint properties are improved, and stable storage is possible.
[0011]
The active material paint used in the present invention is prepared by mixing the active material and the binder solution with the stirring device 1. Further, for example, it may be prepared in advance by a kneading apparatus such as a continuous biaxial kneading apparatus or a batch type kneading apparatus, a pressure homogenizer, an ultrasonic homogenizer, a line mill, a sand mill or the like, and then fed to the stirring apparatus 1 and charged. 3 is a liquid feed pump. As a pump used as a liquid feed pump, it is desirable to use a pump whose sliding part is made of metal and neoprene rubber other than metal, silicon rubber or the like, or a pump having few sliding surfaces between metal parts. 4 is a filter device. Filters include polyester fibers, nylon fibers, etc., organic materials, metal materials using stainless steel fibers, nickel fibers, etc., or fibers, fibers, and membranes made of composite materials combining them, mesh, or mesh fabrics. A nonwoven fabric or the like can be used. A metal fiber grid generally called a strainer may be used. The lower limit of the aperture of the filter is determined depending on the particle diameter of the active material, but is preferably 5 μm or more and 1 mm or less, and more preferably 20 μm or more and 0.5 mm or less. If it is less than 5 μm, the pressure loss when the paint passes through the filter is large, the filtration time becomes long, and the workability is poor. On the other hand, if it is larger than 1 mm, aggregates in the paint cannot be completely removed and the battery characteristics deteriorate. The step of filtering the active material may be performed once, but if it is circulated once or more, a better purification effect can be obtained. Moreover, when performing once or more, you may change to a fine opening gradually. By changing to fine mesh openings, it becomes possible to gradually remove agglomerates in the paint. Using the liquid feed pump 3 and the filter device 4, the active material paint is circulated to remove agglomerates in the paint.
[0012]
The active material paint from which the agglomerates have been removed is then sent to the filter device 6 using the metering pump 5. When the active material paint is applied on the substrate, it is desirable to use a pump with excellent quantitative properties in order to obtain a plate having a uniform film thickness by applying the paint sent in a fixed quantity. The filtration process by the filter device 6 can also be performed before coating. As the material used for the filter device 6, the same material as the filter 4 may be used. The active material paint filtered (filtered) by the filter device 6 is then sent to the coating device 7.
[0013]
In the coating device 7, first, a current collector (support) is sent out from the supply roller 8. As the support, a metal foil selected from an aluminum foil, a copper foil, a nickel foil, a lath material (a foam mainly composed of nickel) foil, or the like is used. An active material paint is applied to the fed support by the application means 9. As the coating means 9, a reverse roll method, a comma coater method, a gravure method, a knife coater method, a kiss coater method, a die coater method, or the like can be used. When the coating film density after application is less than the density for securing the battery capacity, a rolling process, a calendar process, or the like may be performed. As an example, the coating thickness of the active material paint is 100 μm after drying. Next, the active material paint is dried at 120 ° C. for several minutes in the drying zone 10 as an example. Then, it is wound up by the winding roller 11 at a speed of 10 m / min, for example.
[0014]
The active material paint used in the present invention can include metal oxides, metal hydrates, metal powders, or active materials mainly composed of carbonaceous materials, conductive agents, binder resins, and the like.
[0015]
As the carbonaceous material used in the present invention, carbon black, graphite, or an organic sintered body can be used. As the conductive agent, carbon fiber, acetylene black, or the like can be used.
[0016]
Examples of the binder resin used in the present invention include carboxymethylcellulose (hereinafter abbreviated as CMC), polyvinyl alcohol, fluorine resin, formal resin, acetal resin, acrylic / styrene copolymer resin, and styrene / butadiene copolymer. A resin solution in which a polymer resin (hereinafter abbreviated as SBR resin) or the like is dissolved, or an emulsified resin solution can be used. The solvent is not particularly limited, and N-methylpyrrolidone, toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethanol, methanol, butyl acetate, distilled water and the like can be used.
[0017]
Specific examples will be described below. The apparatus used in the following examples is as shown in FIG.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to an example of a method for producing a lithium secondary battery.
(1) Production of positive electrode (positive electrode 1)
LiCoO 2 (average particle diameter 2 μm: 100 parts by weight), conductive carbon black (average particle diameter of secondary particles 1 μm: 5 parts by weight), fluorine-based resin (polytetrafluoroethylene 40% by weight aqueous emulsion (commercial product)) : 5 parts by weight) and CMC: 1 part by weight An aqueous coating solution was kneaded using a continuous biaxial kneader. Then, while stirring in a stirrer having a stirring blade that reciprocates around the rotation axis, filter with a stainless steel filter with a mesh opening of 0.1 mm, apply the filtered coating liquid on both sides of the aluminum foil, and dry Thus, a positive electrode plate was produced. The coating amount of the paint after drying was 300 g / m 2 .
(2) Production of negative electrode (negative electrode 1)
A coating aqueous solution composed of spherical graphite (average particle diameter 2 μm: 100 parts by weight), SBR emulsion resin (commercial product): 3 parts by weight) and CMC: 1 part by weight was kneaded using a continuous biaxial kneader. Then, it is filtered through a stainless steel filter with an opening of 0.05 mm while stirring in a stirring device having a stirring blade that reciprocates around a rotating shaft, and the filtered coating liquid is applied to both sides of the copper foil and dried. Thus, a negative electrode plate was produced. The coating amount of the paint after drying was 140 g / m 2 .
(Negative electrode 2)
A negative electrode plate was obtained in the same manner as in (Negative electrode 1) except that the aperture of the stainless steel filter in (Negative electrode 1) was 0.2 mm.
(Negative electrode 3)
A negative electrode plate was obtained in the same manner as in (Negative electrode 1) except that the aperture of the stainless steel filter in (Negative electrode 1) was 0.8 mm.
(Negative electrode 4)
A negative electrode plate was obtained in the same manner as in (Negative electrode 1) except that the coating was performed without performing the filtration treatment with the filter in (Negative electrode 1).
(Negative electrode 5)
A negative electrode plate was obtained in the same manner as in (Negative electrode 1) except that the coating was performed without performing the stirring treatment in (Negative electrode 1).
(Negative electrode 1 ')
Spherical graphite, SBR resin, and CMC: 1 wt% aqueous solution were kneaded using a continuous biaxial kneader, and then applied to both sides of the copper foil and dried to prepare a negative electrode plate.
(Negative electrode 2 ')
A negative electrode plate was prepared in the same manner as in (Negative electrode 1) except that the aperture of the stainless steel filter in (Negative electrode 1) was 1.2 mm.
[0019]
[Example 1]
The positive electrode 1 and the negative electrode 1 were wound through a separator to prepare a cylindrical lithium secondary battery having a diameter of 17 mm and a height of 50 mm.
[0020]
[Example 2]
The positive electrode 1 and the negative electrode 2 were wound through a separator to produce the same size battery.
[0021]
[Example 3]
The positive electrode 1 and the negative electrode 3 were wound through a separator to produce the same size battery.
[0022]
[ Comparative Example 1 ]
The positive electrode 1 and the negative electrode 4 were wound through a separator to produce the same size battery.
[0023]
[ Comparative Example 2 ]
The positive electrode 1 and the negative electrode 5 were wound through a separator to produce the same size battery.
[0024]
[Comparative Example 3 ]
The positive electrode 1 and the negative electrode 1 ′ were wound through a separator to produce the same size battery .
[0025]
The following evaluation was performed about each obtained sample. A battery of the same size obtained by a conventional method was prepared as a comparative sample.
(1) Discharge capacity [%]
At room temperature, a secondary battery that has been charged with a constant current (500 mA) and a final voltage (4.2 V) is discharged with a constant current (500 mA), and the voltage that decreases from the start of discharge becomes the final voltage (3.0 V). The ratio of the discharge capacity of each sample when reached to the discharge capacity of the comparative sample.
[0026]
FIG. 2 is an example of a discharge voltage curve when the discharge capacity is measured.
(2) Cycle life [%]
When the discharge capacity is measured by repeating charge and discharge under certain conditions (discharge: current 500 mA, end voltage 3.0 V, charge: current 500 mA, end voltage 4.2 V) at room temperature, and when it reaches 90% of the initial discharge capacity The ratio of the number of charge / discharge cycles to the number of comparison samples.
[0027]
FIG. 3 is an example of a change in discharge capacity with respect to the number of charge / discharge cycles of each sample when cycle life measurement is performed.
(3) Lithium deposition on negative electrode plate After measuring the cycle life of (2), the battery was disassembled, and the lithium deposition state on the negative electrode plate was visually observed.
[0028]
Table 1 shows a list of measurement results of this example.
[0029]
[Table 1]
Figure 0003635170
[0030]
As is apparent from Table 1, the product of this example was excellent in mesh size, discharge capacity, cycle life, and visual observation of lithium deposition.
[0031]
The inventions in the above embodiments are filtered at least once using a filter while stirring an active material paint comprising an active material, a binder resin solution, and a conductive agent added as necessary with a stirring device having a stirring blade. After that, it was confirmed that a battery excellent in discharge characteristics and cycle characteristics was obtained by coating on a current collector.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, a line for circulating the active material paint in the above-described stirrer, from the stirrer to the stirrer through the filtering means, is provided separately from the supply line to the coating unit. By filtering, it is possible to stably store the paint while removing bubbles, remove the undispersed agglomerates in the active material paint of the positive electrode and the negative electrode, and obtain uniform coating properties. Batteries with good material yield, little variation, and excellent cycle characteristics and discharge characteristics can be supplied.
[0033]
In the examples of the present invention, only the method for producing the negative electrode of the lithium secondary battery was described. However, the same effect can be obtained by the method for producing the positive electrode, and the positive and negative electrodes of the nickel-cadmium battery or the nickel hydrogen battery The same effect could be obtained also in.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for manufacturing a battery electrode plate according to an embodiment of the present invention.
FIG. 2 is a graph showing a discharge voltage curve when the discharge capacity is measured using the battery of one embodiment of the present invention.
FIG. 3 is a graph showing a change in discharge capacity when cycle life measurement is performed using a battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stirring device 2 Stirring blade 3 Liquid feed pump 4 Filter 5 Metering pump 6 Filter 7 Coating device 8 Current collector (support) supply roller 9 Coating means 10 Drying zone 11 Winding roller

Claims (5)

集電体表面に活物質塗料を塗布して電池電極を製造する方法において、
拌装置で前記活物質塗料を撹拌し、
前記活物質塗料を前記集電体表面に塗布する塗布手段に供給するとともに、
前記撹拌装置内の前記活物質塗料を前記撹拌装置より濾過処理手段を経て、前記撹拌装置に循環させるラインを、前記塗布手段への供給ラインとは別に備え、
前記循環ラインで前記活物質塗料中の未分散の凝集塊を除去することを特徴とする電池電極の製造方法。
In a method of manufacturing a battery electrode by applying an active material paint to the current collector surface,
Stirring the active material paint 拌device,
While supplying the active material paint to the application means for applying to the surface of the current collector ,
A line for circulating the active material paint in the stirring device from the stirring device through the filtration means to the stirring device is provided separately from the supply line to the coating means,
A method for producing a battery electrode, comprising: removing undispersed agglomerates in the active material paint in the circulation line .
前記活物質塗料の撹拌装置と、活物質塗料を集電体表面に塗布する塗布手段との間の経路においても濾過処理を行う請求項1に記載の電池電極の製造方法。 The method for producing a battery electrode according to claim 1, wherein filtration treatment is also performed in a path between the stirrer for the active material paint and an application unit that applies the active material paint to the surface of the current collector . 前記活物質塗料を濾過するフィルターが、金属材料、有機材料もしくはそれらの複合材料からなる繊維、または線を用いてなる膜、織物、不織布、及び網から選ばれる少なくとも一つである請求項1又は2に記載の電池電極の製造方法。Filter for filtering the active material paint, metallic materials, organic materials or fibers made of composite material thereof or lines obtained by using a film, woven, nonwoven, and claim 1 or at least one selected from the network 2. A method for producing a battery electrode according to 2 . 前記活物質塗料を濾過するフィルターの目開きが、5μm以上1mm以下の範囲である請求項1〜のいずれかに記載の電池電極の製造方法。The battery electrode manufacturing method according to any one of claims 1 to 3 , wherein an opening of a filter for filtering the active material paint is in a range of 5 µm to 1 mm. 前記濾過処理をフィルターを用いて1回以上行う請求項1〜のいずれかに記載の電池電極の製造方法。Method for producing a battery electrode according to any one of claims 1 to 4 for one or more times through a filter with the filtration process.
JP31432696A 1995-11-28 1996-11-26 Battery electrode manufacturing method Expired - Fee Related JP3635170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31432696A JP3635170B2 (en) 1995-11-28 1996-11-26 Battery electrode manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-309126 1995-11-28
JP30912695 1995-11-28
JP31432696A JP3635170B2 (en) 1995-11-28 1996-11-26 Battery electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPH09213310A JPH09213310A (en) 1997-08-15
JP3635170B2 true JP3635170B2 (en) 2005-04-06

Family

ID=26565838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31432696A Expired - Fee Related JP3635170B2 (en) 1995-11-28 1996-11-26 Battery electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP3635170B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544107B1 (en) * 1999-01-22 2006-01-23 삼성에스디아이 주식회사 Electrode making device used in secondary battery
JP4959044B2 (en) * 2000-07-03 2012-06-20 Fdk株式会社 Method for producing gelled negative electrode for alkaline battery
JP4818498B2 (en) * 2000-07-25 2011-11-16 シャープ株式会社 Nonaqueous electrolyte secondary battery
WO2008004430A1 (en) * 2006-07-06 2008-01-10 Panasonic Corporation Method for production of member for secondary battery, apparatus for production of the member, and secondary battery using the member
JP5369385B2 (en) * 2007-04-23 2013-12-18 パナソニック株式会社 Lithium ion secondary battery, manufacturing method and manufacturing apparatus thereof
JP5317544B2 (en) * 2008-06-16 2013-10-16 日立ビークルエナジー株式会社 Method for manufacturing lithium secondary battery
JP5813910B2 (en) * 2008-11-05 2015-11-17 古河電池株式会社 Method for producing positive electrode for lithium secondary battery and lithium secondary battery
JP5386408B2 (en) * 2010-03-03 2014-01-15 三菱重工業株式会社 Electrode manufacturing equipment
JP2013069633A (en) * 2011-09-26 2013-04-18 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013146644A (en) * 2012-01-17 2013-08-01 Toyota Motor Corp Coating device, and method for producing electrode
JP6278440B2 (en) * 2013-09-24 2018-02-14 Necエナジーデバイス株式会社 Lithium battery electrode manufacturing method and lithium battery manufacturing apparatus using the same
CN107851773B (en) 2015-07-17 2020-11-06 艾利电力能源有限公司 Battery electrode slurry distribution device, battery electrode slurry processing device, battery electrode slurry distribution method, suspension distribution device, and suspension distribution method
JP6325145B1 (en) 2017-04-05 2018-05-16 株式会社石井表記 Inkjet coating apparatus and battery manufacturing apparatus

Also Published As

Publication number Publication date
JPH09213310A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3635170B2 (en) Battery electrode manufacturing method
WO2020098276A1 (en) Preparation method of carbon nanotube/manganese dioxide composite electrode
US8564933B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor
US6697249B2 (en) Supercapacitor and a method of manufacturing such a supercapacitor
JP5141002B2 (en) Method for producing composite particle for electrochemical device electrode
JP5069464B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof
KR100453596B1 (en) Positive electrode for non- aqueous electrolyte secondary battery and method of producing the same
WO2020158719A1 (en) Alkali water electrolysis diaphragm with electrode, method for producing same, and water electrolysis device
JPS6151386B2 (en)
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP4415673B2 (en) Capacitor electrode manufacturing method
JP5966233B2 (en) Method for producing secondary battery electrode, method for producing secondary battery paint
US8343655B2 (en) Gel polymer Li-ion battery electrode slice and preparing method thereof
US5158843A (en) Small particle thin electrochemical electrode and method
KR20070116039A (en) Electrode material for electric double layer capacitor, method for producing same, electrode for electric double layer capacitor, and electric double layer capacitor
CN109037587A (en) A kind of electrode and preparation method thereof
EP3108046A1 (en) Method for the preparation of fibers from a catalyst solution, and articles comprising such fibers
US5916628A (en) Method for manufacturing a cell electrode
TW496006B (en) Electrode structure, and rolling machine
JPH08229481A (en) Intermittent coating device and method and manufacture of cell electrode and nonaqueous electrolyte solution cell
JP5045761B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
JP5691874B2 (en) Paste coating apparatus and electrode manufacturing method
WO2020226686A1 (en) A lead carbon battery comprising an activated carbon anode
JP5875311B2 (en) Conductive particles and uses thereof
CN108760586A (en) A kind of method that overlay material particle size is distributed in detection lithium battery pole slice

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees