JP3632385B2 - 誘導性負荷の駆動回路 - Google Patents

誘導性負荷の駆動回路 Download PDF

Info

Publication number
JP3632385B2
JP3632385B2 JP20473797A JP20473797A JP3632385B2 JP 3632385 B2 JP3632385 B2 JP 3632385B2 JP 20473797 A JP20473797 A JP 20473797A JP 20473797 A JP20473797 A JP 20473797A JP 3632385 B2 JP3632385 B2 JP 3632385B2
Authority
JP
Japan
Prior art keywords
inductive load
voltage
drive circuit
switching element
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20473797A
Other languages
English (en)
Other versions
JPH1155937A (ja
Inventor
浩之 川端
真一 前田
初男 岡田
栄次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20473797A priority Critical patent/JP3632385B2/ja
Publication of JPH1155937A publication Critical patent/JPH1155937A/ja
Application granted granted Critical
Publication of JP3632385B2 publication Critical patent/JP3632385B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直流電源から電源供給を受けて誘導性負荷を駆動する誘導性負荷の駆動回路に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来より、電磁弁等の誘導性負荷を駆動する駆動回路には、通常、直流電源から誘導性負荷への電源供給系路を導通・遮断するスイッチング素子とは別に、誘導性負荷への通電を遮断した際に誘導性負荷に発生する逆起電力からスイッチング素子を保護するために、誘導性負荷からスイッチング素子に加わる電圧を、スイッチング素子の耐圧よりも小さい所定のクランプ電圧以下にクランプするクランプ回路が設けられている。
【0003】
また、このクランプ回路としては、スイッチング素子と誘導性負荷との接続点と、グランド(又は電源)ラインとの間に、パワーツェナーダイオード或いはコンデンサと抵抗との並列回路からなるCR回路を設け、上記逆起電力が発生した際には、パワーツェナーダイオード或いはCR回路に電流を流し、誘導性負荷からスイッチング素子に加わる高電圧を所定のクランプ電圧以下にクランプするよう構成されたものや、スイッチング素子と誘導性負荷との接続点と、スイッチング素子の制御入力端子(スイッチング素子がバイポーラトランジスタであればベース,FETであればゲート)との間にツェナーダイオードを設け、上記逆起電力が発生した際には、ツェナーダイオードによりその両端の電圧を所定のクランプ電圧にクランプすると同時に、ツェナーダイオードに流れる電流によりスイッチング素子を動作させ、誘導性負荷に蓄積されたエネルギをスイッチング素子を介して放出するように構成したもの、等が知られている。
【0004】
そして、このうち、ツェナーダイオードとスイッチング素子とを利用する後者のクランプ回路は、電圧クランプ時にスイッチング素子を介して電流を流すため、クランプ回路として使用するツェナーダイオードの電流容量を小さくでき、比較的安価に実現できる。
【0005】
ところで、この種のクランプ回路を備えた駆動回路では、クランプ電圧を大きく設定すれば、逆起電力発生後にスイッチング素子に流れる電流を速やかに減衰させることができ、誘導性負荷駆動時の応答性を向上できるものの、急峻な電流変化によってラジオノイズが発生するといった問題があった。
【0006】
以下、この問題について、具体的回路を用いて説明する。
まず、図3は、従来の駆動回路100の一例を表す。
図3に示すように、この駆動回路100は、スイッチング素子としてNPN型のバイポーラトランジスタ(以下、単にトランジスタという)3を備え、トランジスタ3の制御入力端子であるベースB1に駆動信号発生回路5を接続し、トランジスタ3のコレクタC1に誘導性負荷7を接続し、トランジスタ3のエミッタE1をグランドラインに接地し、更に、誘導性負荷7のトランジスタ3とは反対側に正の電源電圧+Bが印加された電源ラインを接続することにより、駆動信号発生回路5からHighレベルの駆動信号を出力した際に、トランジスタ3がオンして、誘導性負荷7に電流が流れるように構成されている。そして、トランジスタ3のベースB1−コレクタC1間には、ベースB1側をアノードとしてツェナーダイオード101が設けられている。
【0007】
このように構成された駆動回路100においては、図4(a)に示すように、トランジスタ3がオン状態で、誘導性負荷7が通電されているときに、駆動信号発生回路5からの駆動信号の出力が停止(出力オープン)されると、トランジスタ3がオフして誘導性負荷7への通電が遮断され、誘導性負荷7に逆起電力が発生するため、トランジスタ3との接続点の電圧(コレクタ電圧Vc)は急峻に立上がる。しかし、トランジスタ3のコレクタC1−ベースB1間には、ツェナーダイオード101が設けられているため、コレクタ電圧Vcは、ツェナーダイオード101の降伏電圧でクランプされる。従って、トランジスタ3の耐圧が100Vであるとき、ツェナーダイオード101の降伏電圧を70Vというように、ツェナーダイオード101の降伏電圧をトランジスタ3の耐圧よりも低い電圧値に設定しておけば、誘導性負荷7の通電遮断時に発生した逆起電力からトランジスタ3を保護することができる。
【0008】
また、このようにツェナーダイオード101によりコレクタ電圧Vcがクランプされると、誘導性負荷7からツェナーダイオード101を介してトランジスタ3のベースB1に電流が流れ込むことから、トランジスタ3には、そのベース電流に応じたコレクタ電流Icが流れ、誘導性負荷7に蓄積されたエネルギは速やかに放出される。そして、このエネルギの放出により、コレクタ電圧Vcがクランプ電圧よりも低くなると、ツェナーダイオード101(延いてはトランジスタ3のベース)には電流が流れなくなり、誘導性負荷7側から流れ込むコレクタ電流Icも遮断される。
【0009】
ところで、このような駆動回路101では、クランプ電圧(つまりツェナーダイオード101の降伏電圧)を低く設定すると、誘導性負荷7からトランジスタ3に流れる電流変化が穏やかになり、また、誘導性負荷7に蓄積されたエネルギを誘導性負荷の動作(例えば電磁弁の開閉)に影響を受けない領域にまで充分放出できているにもわらず、トランジスタ3に電流が流れ続けてしまうことから、トランジスタ3が完全にオフするのに時間がかかるといった問題がある。
【0010】
このため、この種の駆動回路101(特に、ディーゼル機関に燃料を噴射供給する燃料噴射ポンプのスピル弁(電磁弁)等、高応答性が要求される誘導性負荷の駆動回路)では、クランプ電圧を、トランジスタ3の耐圧よりも低い電圧範囲内で、できるだけ大きな電圧値に設定することにより、誘導性負荷7の通電遮断後にトランジスタ3に流れる電流をより短時間で減衰させて、トランジスタ3が完全に動作を停止するまでの時間を短くし、駆動回路の応答性を確保するようにしている。
【0011】
しかし、このように駆動回路の応答性を向上するために、クランプ電圧を高く設定すると、誘導性負荷に発生した逆起電力がクランプ電圧に達した直後に、コレクタ電流Icが減少方向に急変することから、その電流変化によって、高周波のラジオノイズが発生するといった問題があった。そして、ラジオノイズが発生すると、周囲の電子装置の動作に影響を与えることから、例えば、燃料噴射ポンプのスピル弁を駆動する駆動回路のように、各種電子装置を搭載した自動車用の駆動回路として使用するような場合には、このラジオノイズが他の電子装置に影響を与えることのないよう、駆動回路をシールドする等、他の対策が必要となる。
【0012】
一方、駆動回路の応答性を確保しつつラジオノイズを低減する技術として、図3に点線で示すように、電圧クランプ用のツェナーダイオード101に対して並列にコンデンサ103を設け、誘導性負荷7の通電遮断により逆起電力が発生した場合には、その逆起電力にてコンデンサ103をツェナーダイオード101の降伏電圧まで充電させることで、誘導性負荷7の通電を遮断した直後のコレクタ電流Icの急峻な変化を抑えることが考えられる。
【0013】
しかし、このような対策では、ラジオノイズを低減することはできるものの、図4(b)に示すように、誘導性負荷7の通電遮断後、コレクタ電流Icが減衰し始めるまでに遅れ時間が発生するため、高応答性を要求される誘導性負荷の駆動回路としては、良好な駆動特性が得られないといった問題があった。
【0014】
また、この回路では、コンデンサ103をトランジスタのコレクタC1−ベースB1間に直接接続することになるので、トランジスタ3とコンデンサ103との組み合わせによっては、発振する可能性もあった。
本発明は、こうした問題に鑑みなされたものであり、誘導性負荷への通電遮断時に発生した高電圧を誘導性負荷の通電経路を導通・遮断するスイッチング素子を介して放電させるクランプ回路を備えた誘導性負荷の駆動回路において、駆動回路の応答性を確保し、且つラジオノイズの発生を抑制する。
【0015】
【課題を解決するための手段及び発明の効果】
かかる目的を達成するためになされた請求項1に記載の誘導性負荷の駆動回路においては、スイッチング素子と誘導性負荷との接続点と、スイッチング素子の制御入力端子との間に設けられる電圧クランプ手段が、複数のツェナーダイオードの直列回路にて構成され、しかも、その複数のツェナーダイオードの一部には、コンデンサが並列接続される。
【0016】
このため、本発明の駆動回路においては、制御入力端子に入力される駆動信号の変化に伴いスイッチング素子がオン状態からオフ状態に変化し、誘導性負荷への通電が遮断されて誘導性負荷に逆起電力が発生すると、スイッチング素子と誘導性負荷との接続点電圧は、まず、コンデンサが並列接続されていないツェナーダイオードの降伏電圧の和で決定される所定電圧まで急峻に立上がり、その後は、残りのツェナーダイオードに接続されたコンデンサが充電されるに従い、全ツェナーダイオードの降伏電圧の和である所定クランプ電圧まで除々に増加する。
【0017】
この結果、本発明によれば、誘導性負荷への通電遮断後、コンデンサへの充電が完了して上記接続点電圧がクランプ電圧に達するまでの間、スイッチング素子の電流変化が抑制され、コンデンサを設けていない駆動回路に比べて、その電流の減衰が遅れるものの、その遅れ時間は、電圧クランプ手段全体にコンデンサを並列接続した場合に比べて短くなる。
【0018】
そして、この遅れ時間は、コンデンサの容量が一定であるとすれば、コンデンサが並列接続されたツェナーダイオードの降伏電圧に応じて変化し、降伏電圧が小さいほど短くなるので、コンデンサに並列接続されるツェナーダイオードの降伏電圧の和と、コンデンサに並列接続されないツェナーダイオードの降伏電圧の和との割合を変えることで、上記遅れ時間を短くして駆動回路の応答性を重視した構成にもできるし、上記遅れ時間を長くしてラジオノイズの低減を重視した構成にすることもできる。
【0019】
つまり、本発明によれば、誘導性負荷の駆動に要求される応答性及び周囲環境に応じて、コンデンサが並列接続されるツェナーダイオードと他のツェナーダイオードとの降伏電圧の割合を適宜設定することにより、駆動回路の応答性と駆動回路から発生するラジオノイズとを最適に設定することができる。
【0020】
そして、特に通電・非通電を高速に切り換える必要がある誘導性負荷を駆動する場合には、駆動回路の応答性が要求されることから、請求項2に記載のように、コンデンサが並列接続されないツェナーダイオードの降伏電圧の和が、コンデンサが並列接続されたツェナーダイオードの降伏電圧の和よりも大きくなるように、各ツェナーダイオードの降伏電圧を設定すればよい。
【0021】
【発明の実施の形態】
以下に本発明の実施例を図面と共に説明する。
図1は、本発明が適用された実施例の駆動回路1の構成を表す電気回路図である。本実施例の駆動回路1は、ディーゼル機関に燃料を噴射供給する燃料噴射ポンプにおいて燃料の噴射終了タイミングを決定するのに使用されるスピル弁(電磁弁)を駆動するためのものであり、図3に示した従来の駆動回路100と同様、スピル弁のソレノイドである誘導性負荷7の通電経路に設けられたNPN型のバイポーラトランジスタ3を備える。そして、このトランジスタ3のコレクタC1は誘導性負荷7を介して電源ライン(+B)に接続され、エミッタE1は接地され、ベースB1は、駆動信号発生回路5に接続されている。
【0022】
そして、図3に示した従来の駆動回路100と異なる点は、トランジスタ3のコレクタC1とベースB1との間に、アノードをベースB1側,カソードをコレクタC1側にして、互いに直列接続された2つのツェナーダイオード9,11を設け、更に、一方のツェナーダイオード11に対して、コンデンサ13を並列した点である。
【0023】
尚、本実施例では、トランジスタ3の耐圧「100V」に対して、ツェナーダイオード9,11の降伏電圧を夫々同一の電圧「35V」に設定することにより、これら2つのツェナーダイオード9,11にてクランプされるベースB1−コレクタC1間のクランプ電圧が「70V」となるようにされている。
【0024】
このように構成された本実施例の駆動回路1においては、図2に示すように、トランジスタ3がオン状態で、誘導性負荷7が通電されているときに、駆動信号発生回路5からの駆動信号の出力が停止(出力オープン)され、誘導性負荷7への通電が遮断されると、誘導性負荷7に逆起電力が発生して、コレクタ電圧Vcが急峻に立ち上がるが、トランジスタ3のベースB1−コレクタC1間に設けられた2つのツェナーダイオード9,11の一方には、コンデンサ13が並列接続されているため、そのときのコレクタ電圧Vcは、コンデンサ13が接続されていないツェナーダイオード9の降伏電圧Vt(35V)となる。そして、その後、コレクタ電圧Vcは、コンデンサ13が充電されるに連れて除々に増加し、最終的には、2つのツェナーダイオード9,11の降伏電圧の和の電圧(70V)にクランプされる。
【0025】
このため、本実施例の駆動回路1においては、誘導性負荷7への通電遮断後、コンデンサ13への充電が完了して、コレクタ電圧Vcがクランプ電圧(70V)に達するまでの間、コレクタ電流Icは大きく減衰しないことから、コンデンサ13を設けていない図3に示した駆動回路100に比べて、その電流の減衰が遅れ、駆動回路1の応答性は低下するものの、急峻な電流変化によって生じるラジオノイズを低減できる。また逆に、その電流変化の遅れ時間は、ラジオノイズ低減のために、トランジスタ3のベースB1−コレクタC1間にツェナーダイオードとコンデンサとを接続した場合に比べて、短くなることから、この回路に対しては応答性を向上できる。従って、本実施例の駆動回路1によれば、駆動回路の応答性を確保しつつラジオノイズを低減できる。
【0026】
以上に本発明の実施例を説明したが、本発明は、上記実施例に限定されるものではなく、さらに種々なる態様にて実施してもよいことは勿論である。
例えば、上記実施例の駆動回路1では、コンデンサ13が並列接続されるツェナーダイオード11と並列接続されないツェナーダイオード9との降伏電圧を同一にするものとして説明したが、これらの降伏電圧の割合を変えて、例えば、コンデンサ13が並列接続されるツェナーダイオード11の降伏電圧を他のツェナーダイオード9の降伏電圧よりも小さくすれば、駆動回路の高応答性を重視した回路構成にすることができるし、逆に、コンデンサ13が並列接続されるツェナーダイオード11の降伏電圧を他のツェナーダイオード9の降伏電圧よりも大きくすれば、ラジオノイズの発生防止を重視した回路構成にすることができるため、各ツェナーダイオード9,11の降伏電圧については、使用条件に応じて適宜設定すればよい。
【0027】
また、上記実施例では、スイッチング素子となるトランジスタ3を、誘導性負荷7よりも低電位側にローサイドスイッチとして設けた駆動回路1について説明したが、本発明は、例えば、図1(b)に示すように、スイッチング素子として、PNP型のバイポーラトランジスタ23を使用し、これをハイサイドスイッチとして、誘導性負荷7よりも高電位側に設けた駆動回路20であっても適用できる。
【0028】
つまり、この駆動回路20では、トランジスタ23のエミッタE2が電源ライン(+B)に接続され、コレクタC2が誘導性負荷7を介して接地され、ベースB2が駆動信号発生回路5′に接続されるが、このようにトランジスタ23を誘導性負荷7に対してハイサイドスイッチとして設けた場合には、誘導性負荷7に接続されるトランジスタ23のコレクタC2と、トランジスタ23の制御入力端子であるベースB2との間に、ツェナーダイオード9,11の直列回路を、各ツェナーダイオード9,11のアノードをコレクタC2側にして接続し、その一方のツェナーダイオード(図ではツェナーダイオード11)にコンデンサ13を並列接続すれば、上記実施例と同様の効果を得ることができる。
【0029】
尚、この駆動回路20では、スイッチング素子にPNP型のバイポーラトランジスタ23が使用されることから、誘導性負荷7の通電時には、駆動信号発生回路5′からLow レベルの信号が出力され、誘導性負荷7の通電遮断時には、その出力が停止(出力オープン)される。
【0030】
また、図1(a),(b)に示した駆動回路1,20では、スイッチング素子としてバイポーラトランジスタを用いるようにしたが、スイッチング素子としては、バイポーラトランジスタに限ることはなく、例えば、MOS型のFET(電解効果トランジスタ)等、従来より誘導性負荷駆動用のスイッチング素子として使用されているものであれば使用できる。
【0031】
また、図1(a),(b)に示した駆動回路1,20では、電圧クランプ手段として、2つのツェナーダイオードの直列回路を使用するものとしたが、電圧クランプ手段としては、特に2つのツェナーダイオードで構成する必要はなく、3個或いはそれ以上のツェナーダイオードを用いて構成しても良い。
【0032】
また、上記実施例では、燃料噴射ポンプのスピル弁を駆動するものとして説明したが、誘導性負荷7としては、例えば、ソレノイドへの通電により対象物を変位させるアクチュエータ等、スピル弁等の電磁弁以外のものであっても本発明の駆動回路を適用できるのはいうまでもない。
【図面の簡単な説明】
【図1】(a)は実施例の駆動回路1を示す回路図、(b)は変形例の駆動回路20を示す回路図である。
【図2】実施例の駆動回路1において誘導性負荷への通電を遮断したときのコレクタ電圧Vc及びコレクタ電流Icの変化を表すタイムチャートである。
【図3】従来の駆動回路100を示す回路図である。
【図4】従来の駆動回路100において誘導性負荷への通電を遮断したときのコレクタ電圧Vc及びコレクタ電流Icの変化を表すタイムチャートである。
【符号の説明】
1…駆動回路 3…トランジスタ 5…駆動信号発生回路、
7…誘導性負荷 9…ツェナーダイオード 11…ツェナーダイオード
13…コンデンサ 20…駆動回路 23…トランジスタ

Claims (2)

  1. 直流電源から誘導性負荷への電源供給経路に設けられ、該電源供給系路を、制御入力端子に入力される駆動信号に応じて導通・遮断するスイッチング素子と、
    該スイッチング素子と前記誘導性負荷との接続点と、前記スイッチング素子の制御入力端子との間に設けられ、前記スイッチング素子が前記駆動信号によりオン状態からオフ状態に変化した際、前記誘導性負荷に発生する逆起電力により前記スイッチング素子に電流を流し、前記接続点と前記制御入力端子との間に発生する電圧を、前記スイッチング素子の耐圧よりも小さい所定のクランプ電圧にクランプする電圧クランプ手段と、
    を備えた誘導性負荷の駆動回路において、
    前記電圧クランプ手段を、複数のツェナーダイオードの直列回路にて構成すると共に、該複数のツェナーダイオードの一部にコンデンサを並列接続したことを特徴とする誘導性負荷の駆動回路。
  2. 前記コンデンサが並列接続されないツェナーダイオードの降伏電圧の和が、前記コンデンサが並列接続されたツェナーダイオードの降伏電圧の和よりも大きくなるように、前記各ツェナーダイオードの降伏電圧を設定したことを特徴とする請求項1に記載の誘導性負荷の駆動回路。
JP20473797A 1997-07-30 1997-07-30 誘導性負荷の駆動回路 Expired - Fee Related JP3632385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20473797A JP3632385B2 (ja) 1997-07-30 1997-07-30 誘導性負荷の駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20473797A JP3632385B2 (ja) 1997-07-30 1997-07-30 誘導性負荷の駆動回路

Publications (2)

Publication Number Publication Date
JPH1155937A JPH1155937A (ja) 1999-02-26
JP3632385B2 true JP3632385B2 (ja) 2005-03-23

Family

ID=16495488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20473797A Expired - Fee Related JP3632385B2 (ja) 1997-07-30 1997-07-30 誘導性負荷の駆動回路

Country Status (1)

Country Link
JP (1) JP3632385B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068755A1 (ja) 2013-11-08 2015-05-14 株式会社明電舎 半導体スイッチング素子の保護回路および電力変換装置
CN109075781A (zh) * 2017-03-30 2018-12-21 三菱电机株式会社 电力用半导体元件的驱动电路以及电动机驱动装置
SE2150641A1 (en) * 2021-05-20 2022-11-21 Scania Cv Ab Method and circuitry for controlling discharge of a solenoid valve

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598933B2 (ja) * 2000-02-28 2004-12-08 株式会社日立製作所 電力変換装置
JP2007181287A (ja) * 2005-12-27 2007-07-12 Seiko Epson Corp 半導体装置
JP4609401B2 (ja) * 2006-09-20 2011-01-12 株式会社デンソー 電磁弁駆動装置
JP4864622B2 (ja) * 2006-09-27 2012-02-01 株式会社ケーヒン 誘導性負荷の駆動装置
KR101014152B1 (ko) 2008-10-15 2011-02-14 기아자동차주식회사 차량 인버터 회로 및 그를 이용한 차량
JP5309923B2 (ja) * 2008-11-21 2013-10-09 富士電機株式会社 半導体素子の駆動回路
JP5505351B2 (ja) * 2011-03-30 2014-05-28 アイシン・エィ・ダブリュ株式会社 誘導性負荷の駆動回路
JP6214882B2 (ja) * 2013-03-05 2017-10-18 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP6113707B2 (ja) * 2014-12-24 2017-04-12 アンリツ株式会社 デジタル信号オフセット調整装置および方法並びにパルスパターン発生装置
JP7052452B2 (ja) * 2018-03-19 2022-04-12 富士電機株式会社 半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068755A1 (ja) 2013-11-08 2015-05-14 株式会社明電舎 半導体スイッチング素子の保護回路および電力変換装置
US10014763B2 (en) 2013-11-08 2018-07-03 Meidensha Corporation Protection circuit for semiconductor switching element, and power conversion device
CN109075781A (zh) * 2017-03-30 2018-12-21 三菱电机株式会社 电力用半导体元件的驱动电路以及电动机驱动装置
CN109075781B (zh) * 2017-03-30 2020-01-21 三菱电机株式会社 电力用半导体元件的驱动电路以及电动机驱动装置
SE2150641A1 (en) * 2021-05-20 2022-11-21 Scania Cv Ab Method and circuitry for controlling discharge of a solenoid valve
WO2022245269A1 (en) * 2021-05-20 2022-11-24 Scania Cv Ab Method and circuitry for controlling discharge of a solenoid valve
SE544931C2 (en) * 2021-05-20 2023-01-10 Scania Cv Ab Method and circuitry for controlling discharge of a solenoid valve

Also Published As

Publication number Publication date
JPH1155937A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
KR0140227B1 (ko) 전자제어회로, 전자식 정류모터 시스템, 스위칭조정식 전원공급장치 및 그 제어방법
JP3632385B2 (ja) 誘導性負荷の駆動回路
US6633195B2 (en) Hybrid power MOSFET
US7117852B2 (en) Single device for controlling fuel electro-injectors and electrovalves in an internal-combustion engine, and method of operating the same
KR930007999B1 (ko) 내연기관용 점화장치
EP1903202B1 (en) Apparatus for driving electromagnetic valves
JP6679992B2 (ja) 半導体装置
US6191562B1 (en) Circuit configuration for degradation of the stored magnetic energy of a field winding of a generator
JPS5874848A (ja) 自動車の制御装置用電子回路
JPH0213116A (ja) 誘導負荷用制御回路
US20020191424A1 (en) Method for providing current by means of an inductive component
US20080197904A1 (en) Circuit Arrangement for Switching a Load
US7019579B2 (en) Circuit arrangement for rapidly controlling in particular inductive loads
US20210351686A1 (en) Circuit to transfer a signal between different voltage domains and corresponding method to transfer a signal
US7208848B2 (en) Device for power reduction during the operation of an inductive load
KR100207767B1 (ko) 전자석 장치의 구동회로
JP2002084174A (ja) 負荷駆動回路
JP3602011B2 (ja) 制御回路
US5602505A (en) Gate drive circuit
JP3700816B2 (ja) ソレノイド駆動装置
JP3643298B2 (ja) 出力回路
US20050017583A1 (en) Circuit for controlling inductive loads, in particular of electro actuators, at high efficiency
EP0999354B1 (en) Wide voltage range driver circuit for a fuel injector
JP3254639B2 (ja) 誘導負荷駆動装置
JP3801336B2 (ja) 負荷駆動装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees