JP3632186B2 - Method for producing lithium titanate fine sintered grains - Google Patents

Method for producing lithium titanate fine sintered grains Download PDF

Info

Publication number
JP3632186B2
JP3632186B2 JP09164399A JP9164399A JP3632186B2 JP 3632186 B2 JP3632186 B2 JP 3632186B2 JP 09164399 A JP09164399 A JP 09164399A JP 9164399 A JP9164399 A JP 9164399A JP 3632186 B2 JP3632186 B2 JP 3632186B2
Authority
JP
Japan
Prior art keywords
lithium titanate
gel particles
raw material
dispersion
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09164399A
Other languages
Japanese (ja)
Other versions
JP2000281433A (en
Inventor
河村  弘
邦彦 土谷
克宏 淵之上
博司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP09164399A priority Critical patent/JP3632186B2/en
Priority to FR0012344A priority patent/FR2814460B1/en
Publication of JP2000281433A publication Critical patent/JP2000281433A/en
Application granted granted Critical
Publication of JP3632186B2 publication Critical patent/JP3632186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0056Preparation of gels containing inorganic material and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムタイタネート微小焼結粒の製造方法に関し、特に原料粉末が分散されたゲル粒から焼結粒を得る湿式造粒法を利用した微小焼結粒の製造方法に関するものである。
【0002】
【従来の技術】
特開平8−157210号公報には、湿式造粒法を利用して原料粉末を分散したゲル粒を形成し、このゲル粒から焼結粒を得る酸化リチウム(LiO)微小焼結粒の製造方法が提案されている。
【0003】
焼結に先立つ造粒法としてゲル化による湿式造粒法を利用すると、溶融造粒法や転動造粒法による場合に比べて微小な粒径の焼結粒を容易に得ることができるだけでなく、溶融造粒法の場合の原料粉末の加熱溶融中にルツボからの不純物で加熱溶融物が汚染される欠点や、転動造粒法の場合の回転ドラムで得られる真球度に限界があったり粒径分布が広がったりする欠点が回避され、粒径を容易に寸法制御して微小サイズの焼結粒を量産することができる利点がある。
【0004】
上記の特開平8−157210号公報に開示された方法では、ゲル化可能なバインダー水溶液として水酸基を有する水溶性高分子樹脂化合物を用い、これに原料粉末を分散させて凝固浴に滴下することによりゲル粒とし、このゲル粒を乾燥および焼結して微小焼結粒を得ている。
【0005】
【発明が解決しようとする課題】
然しながら、リチウムタイタネート(LiTiO ) 微小焼結粒の製造に上述のような湿式造粒法を利用する場合は、原料粉末のリチウム源としてリチウムタイタネート(LiTiO) を始めとする種々の成分の粉末を、また、チタン源として酸化チタン(TiO)を始めとする種々の成分の粉末を利用し、製品に要求されるリチウム及びチタン含有量に応じてこれら原料粉末を選択的に混合して用いる必要があるが、原料粉末の調製法によってはバインダー水溶液に原料粉末を分散させた時点でその水酸基との反応で高分子樹脂化合物水溶液の凝固を開始させる成分が含まれる可能性があり、従ってこの不所望の凝固を回避するためには使用可能な原料粉末が限定されると言う制限がある。
【0006】
また、水溶性高分子樹脂化合物によるバインダー水溶液に原料粉末を分散させた滴下原液は粘性が高く、滴下ノズルへの送液用のポンプに高い吐出圧が要求され、更には滴下原液が大気に触れると徐々に乾燥して凝固物が形成されるため、滴下ノズルが閉塞を起こして安定な滴下が阻害され、場合によっては滴下が不全となる恐れもある。
【0007】
以上のことから本発明の主要な課題は、滴下原液がゲル化以前に凝固することを回避し、原料粉末の調製の自由度を向上できるリチウムタイタネート微小焼結粒の製造方法を提供することである。
【0008】
本発明の別の課題は、滴下原液の粘性が従来よりも低く、送液ポンプの負荷を低減して安定な滴下を実現し得るリチウムタイタネート焼結粒の製造方法を提供することである。
【0009】
本発明の更に別の課題は、大気との接触で凝固しない滴下原液を用い、滴下ノズルの閉塞を起こすことなく安定な滴下を実現して粒径の寸法制御を容易にし、真球度の高い微小サイズの粒状物を容易に得ることができる量産化に適したリチウムタイタネート焼結粒の製造方法を提供することである。
【0010】
【課題を解決するための手段】
本発明によれば、上記の課題は請求項1に記載された通りのリチウムタイタネートの製造方法によって解決される。
【0011】
即ち、本発明によりリチウム及びチタンを含む原料粉末からリチウムタイタネート焼結粒を製造する方法は、
(a) 多価金属イオンと反応してアルギン酸塩ゲルとなるバインダー水溶液中に前記原料粉末及び有機可塑剤を混合して原料粉末の分散液を調製する工程、
(b) 前記分散液をノズルを通して滴下することにより前記分散液の液滴を形成する工程、
(c) 前記バインダー水溶液との接触で該バインダー水溶液をゲル化させる多価金属を含んだ液浴中に前記液滴を浸漬し、それにより内部に前記原料粉末が分散された球状湿潤ゲル粒を形成する工程、
(d) 前記球状湿潤ゲル粒を乾燥する工程、
(e) 乾燥後のゲル粒を仮焼して前記多価金属が除去された球状リチウムタイタネート粒を得る工程、及び
(f) 前記球状リチウムタイタネート粒を焼結する工程、
を備えたことを特徴とするものである。
【0012】
以上のような各工程を備えた本発明の方法では、先ず始めに多価金属イオンと反応してアルギン酸塩ゲルとなるバインダー水溶液中に原料粉末を混合・分散させた分散液を調製し、この分散液をゲル化用の多価金属イオンを含む液浴中に滴下して、滴下中に分散液の表面張力により液滴を球状に成形させると同時に、球状となった液滴を液浴と接触させてバインダー水溶液をゲル化させ、原料粉末が内部に均一に分散した湿潤ゲル粒を液浴中で形成する。形成された湿潤ゲル粒は真球性の高い球状を呈し、これを液浴中で浸漬状態に保持して熟成し、次いで必要に応じて洗浄し、更に乾燥処理に付して水分を取り除いた後、仮焼によりバインダー及び多価金属塩を熱分解して取り除き、最終的に焼結処理に付してリチウムタイタネート微小焼結粒を得る。バインダー及び多価金属は仮焼工程及び焼結工程で全て取り除かれるので、焼結粒は高純度の球状リチウムタイタネート焼結粒となる。
【0013】
従って、本発明によればバインダー水溶液が水酸基を含まないので、如何なる調製法・組成で準備された原料粉末を用いてもゲル化以前に滴下原液が凝固を起こすことが無く、原料粉末の調製の自由度が向上する。また滴下原液としての分散液は従来の高分子樹脂化合物水溶液に比べて粘度が低く、送液ポンプの負荷を低くすることができるほか、分散液は大気に触れても凝固しないから滴下ノズルの閉塞も起こすことがない。このようにして、本発明によれば、真球性が高く、高純度のリチウムタイタネート微小焼結粒を得ることができる。さらに、本発明の方法では、滴下中に液滴の表面張力により粒の形を球形に成形させるため、滴下の際の条件を一度決定したら恒常的に同じ大きさの球状粒が形成され、これがノズルの閉塞で阻害されることなく維持できるので、安定な粒径制御のもとに大量生産を行うのに好適である。勿論、液滴の大きさ自体も簡単に変えられるので目的に応じた大きさのリチウムタイタネート微小焼結粒を得ることができる。
【0014】
【発明を実施するための形態】
本発明によるリチウムタイタネート微小焼結粒の製造方法は、大別してリチウム化合物粒形成工程とバインダー除去工程とからなり、リチウム化合物粒形成工程は上記工程(a)〜(d)を含み、バインダー除去工程は上記工程(e)(f)を含む。
【0015】
工程(a)は原液調製工程であり、ここでは、多価金属イオンと反応してアルギン酸塩ゲルとなるバインダー水溶液中に原料粉末を混合・分散させた分散液を調製する。
【0016】
バインダーには好ましくはアルギン酸ナトリウムまたはアルギン酸アンモニウムが用いられ、これらの水溶液は多価金属イオンと反応するとアルギン酸塩となってゲル化する性質をもつ。
【0017】
原液の調製に際しては、例えば先ず始めにバインダーのアルギン酸ナトリウムまたはアルギン酸アンモニウムを水に溶解してバインダー水溶液を作成する。次いでこのバインダー水溶液に原料粉末を混合し、に有機可塑剤、例えばテトラヒドロフルフリルアルコール(4HF) を添加して攪拌し、バインダー水溶液中に原料粉末が均一に分散した分散液を調製して滴下原液とする。
【0018】
滴下原液としての分散液の好ましい組成(水以外)は以下の通りである。
原料粉末 :0.1〜60wt%
バインダー:0.1〜 5wt%(但し、有機可塑剤の添加前の全量に対して)
有機可塑剤:60wt% 以下(但し、最終調製後の分散液の全量に対して)
【0019】
分散液の調製に際して、バインダ−水溶液の濃度は、使用するアルギン酸化合物の種類及び後のゲル化工程における液浴との反応性を考慮して上記組成範囲内で最適な濃度に調整すると良い。また、アルギン酸化合物としては好ましくはアルギン酸ナトリウムまたはアルギン酸アンモニウムを使用するが、これら使用するアルギン酸化合物の種類は、ゲル化工程の液浴の種類との組み合わせに応じて適宜選択可能である。
【0020】
バインダー水溶液中に分散させる原料粉末としては酸化チタン(TiO)およびリチウムタイタネート(LiTiO) の混合粉末を用い、製品のチタン含有量を増加したい場合には酸化チタン粉の添加量を増加するが、通常はリチウムタイタネート粉末単独からなる原料粉末を使用してもよい。
【0021】
バインダ−水溶液中に分散させる原料粉末の量は、後の液滴形成工程で形成させるべき液滴の大きさと、最終的に必要なリチウムタイタネート焼結粒の粒径との兼ね合い及び分散液の流動性とにより決定すると良い。例えば、液滴の大きさを、ノズルによる形成が比較的容易な範囲、例えば直径0.1mm以上3mm以下の範囲内とした場合、最終的に得られる焼結粒の粒径が所望の大きさとなるように、分散液中の原料粉末の量を0.1 wt%以上60wt%以下の範囲内で調整する。尚、この範囲とした理由は、原料粉末の量が0.1 wt%よりも少ないと、最小粒径においても乾燥工程における湿潤ゲル粒からの水分蒸発量が過大となってゲル粒にシワが生じ、最終的に真球性のよい焼結粒が得られ難く、逆に60wt%よりも多くなると分散液の粘性が高くなりすぎて、ノズルからの滴下が困難となるからである。
【0022】
液滴の形成に際しては、ノズルを用いて分散液を空中に滴下し、滴下中の分散液の表面張力により液滴を球状にする。これに適したノズルとしては振動ノズルを用いることが望ましく、場合によっては静電微粒化法も使用可能である。
【0023】
振動ノズルにより液滴を形成する場合、液滴の形成に際してノズルを或る振動周波数で振動するように付勢し、且つノズルの振動周波数及び/又はノズルを通る分散液の体積流量を調整することにより、液滴の直径を制御することが可能である。
【0024】
即ち、ノズルと通して吐出される分散液の流量をQ、液滴の直径をd、振動ノズルの振動周波数をfとすると、以下の式(1)が成り立つ。
Q = (π/6) d・f ・・・(1)
【0025】
従って、液滴の大きさは、分散液の流量Qと振動ノズルの振動周波数fとの一方又は両方を調節することにより、自由に制御することが可能である。なお、粒径dが0.1mm以上3mm以下の液滴を形成させる場合は流量Qを任意可変とし、振動ノズルの振動数fを10Hz以上1000Hz以下の範囲で調整することが好ましい。
【0026】
形成された液滴は、バインダ−水溶液との接触で該バインダ−水溶液をゲル化させる多価金属イオンを含む液浴中に滴下浸漬され、バインダ−水溶液の凝固により球状湿潤ゲル粒となる。このゲル化のための液浴は、バインダ−として使用するアルギン酸化合物の種類に応じてゲル化に最適な組成に選ばれ、多価金属の種類としては、亜鉛、カルシウム、アルミニウム、チタン、ジルコニウムなどを挙げることができる。
【0027】
尚、ゲル化反応のための液浴は、液滴のバインダー水溶液をゲル化させるのに最適な組成であればよいが、受け入れる液滴のバインダ−水溶液中に分散した原料粉末を溶出させない性質のものであることが重要である。即ち、液浴の組成がリチウム源やチタン源として使用する原料物質を溶解する性質を持つ場合は、個々の液滴中に含まれるリチウムやチタンの量がゲル化反応中に変化してしまい、最終的に得られるリチウムタイタネート焼結粒の品質や大きさが不均一となる恐れが生じるからである。
【0028】
また、液滴を浸漬する際の液浴の温度は0〜100℃の範囲内であればよく、実操業上で有利には常温であってもよい。この場合、ノズルから液滴の滴下を受ける液浴を常温とし、ある量の液滴を受け入れた後に液浴を加温してゲルの熟成を行うようにすることが好ましい。
【0029】
液浴中への液滴の浸漬時間は、製造効率の面からは短いほどよいが、浸漬時間があまりに短いと次の乾燥工程においてゲル粒が変形するため、液滴のゲル化反応が完全に終結する時間以上とすることが望ましい。ゲル化反応の速度は、液浴の温度、分散液の組成、液滴の大きさ及び液浴中の多価金属イオン濃度により決定されるので、好ましくは、それぞれの場合に応じて最適な浸漬時間を予め求めておき、それ以上の浸漬時間として充分にゲルを熟成させるとよい。
【0030】
ゲル化反応終了後、液浴中から取り出された湿潤ゲル粒は、その表面および内部に含まれる水分を除去するために乾燥処理に付されるが、この乾燥に際して、例えばゲル粒同士が癒着し易い場合には、予め湿潤ゲル粒を水およびエタノールで洗浄して不要な夾雑物や残留有機可塑剤等を除去してから乾燥処理に付すことが好ましい。乾燥工程は一般には大気中で自然乾燥もしくは加温送風乾燥により行われる。
【0031】
乾燥されたゲル粒は次いでバインダ−除去工程に送られ、そこではまず初めに乾燥ゲル粒は還元雰囲気中で加熱されることによって仮焼される。即ち、乾燥工程から送られてくる乾燥ゲル粒中には、液浴中でのゲル化反応に際して取り込まれた多価金属が残留しているが、この残留多金属は還元雰囲気中での仮焼処理により乾燥ゲル粒から取り除かれ、これにより乾燥ゲル粒は不要な夾雑物を含まない球状リチウムタイタネート粒となる。
【0032】
仮焼の際に注意すべきは、粒中にリチウムタイタネートの有意な結晶粒成長が生じないようにすることである。仮焼工程においてリチウムタイタネートの有為な結晶成長が生じると、引き続く焼結工程においてリチウムタイタネートの微小粒の収縮が阻害されるため、高密度のリチウムタイタネート焼結粒を得ることが困難となる。
【0033】
従って、この仮焼処理は、使用した多価金属の消散温度以上でリチウムタイタネートに粒成長が生じない温度以下の加熱条件下にて、量及び粒径に応じて多価金属のほぼ完全な消散に要する時間にわたり実行するのが好ましい。例えば液浴に塩化亜鉛水溶液を使用する場合、多価金属は亜鉛であるので、仮焼処理は600〜1000℃の加熱温度とし、粒の量および粒径により1〜12時間の処理時間で行えば良い。この場合、加熱温度が600 ℃より低いと亜鉛の完全除去に至らず、また加熱温度が1000℃を越えると最終的に得られるリチウムタイタネート焼結粒の高密度化を阻害するに充分な有意の粒成長が生じる。
【0034】
仮焼処理によって得られた球状リチウムタイタネート粒は、さらに熱処理して焼結される。リチウムタイタネート粒は焼結により高密度化すると同時に大きさも小さくなってリチウムタイタネート焼結粒となる。この焼結工程では、焼結雰囲気を、例えばアルゴンガス等のような精製、混合調整された不活性ガスとしてもよいが、特に不活性ガス雰囲気とする必要はなく、大気中、言い換えると酸素を含む雰囲気中で焼結しても構わない。
【0035】
焼結温度は、好ましくは 900℃以上1350℃以下とし、この温度範囲内で15分以上10時間以内の加熱焼結を行わせることが好ましい。焼結温度が 900℃よりも低いと、焼結が充分に進行しないため好ましくなく、1350℃よりも高くなると微小粒同士あるいは微小粒と焼結トレーとが融着を生じる可能性があるため好ましくない。また、焼結時間は、15分より短いと最小粒径の場合でも焼結が不充分になることがあり、10時間よりも長いとリチウムタイタネートの蒸発量が多くなって歩留まりが悪くなるため好ましくない。
【0036】
本発明の特に好ましい形態によれば、リチウム及びチタンを含む原料粉末からリチウムタイタネート微小焼結粒を製造する方法は、
(a) 0.1〜5wt%のアルギン酸ナトリウム又はアルギン酸アンモニウムを含有するバインダー水溶液中に0.1〜60wt%の原料粉末が分散した分散液を準備し、
(b) 前記分散液に60wt%以下のテトラヒドロフルフリルアルコールを添加混合し、
(c) 前記分散液を10〜1000Hzの範囲内の予め定められた周波数で振動するノズルから滴下させて、0.1〜3mmの範囲内の直径をもつ液滴を形成し、
(d) 0.5 wt%濃度以上の塩化亜鉛水溶液からなる液浴中に前記液滴を浸漬して前記液滴中のバインダー水溶液をゲル化させることにより内部に前記原料粉末が分散した球状湿潤ゲル粒を形成し、
(e) 前記球状湿潤ゲル粒を前記塩化亜鉛水溶液中で浸漬状態に保持してゲル粒を熟成し、
(f) 熟成後の球状湿潤ゲル粒を水及びエタノールで洗浄し、
(g) 洗浄後の球状湿潤ゲル粒を大気中加温下で乾燥し、
(h) 乾燥後のゲル粒を還元ガス雰囲気中、600〜1000℃の範囲内の仮焼温度で1〜12時間に亙り加熱して、亜鉛の除去されたリチウムタイタネート粒を得、
(i) 前記リチウムタイタネート粒を、大気中、900 〜1350℃の範囲内の焼結温度で15分以上10時間以下に亙り焼結する、
各工程を備えている。
【0037】
【実施例】
以下に添付図面を参照して本発明の好適な実施例を説明するが、この実施例は単なる例示のためのものであり、本発明の技術的範囲を限定する意図をもつものではない。
【0038】
図1は本発明の好適な一実施例における工程の流れ模式的に示しており、ここでは、バインダ−としてアルギン酸ナトリウム、液浴として塩化亜鉛水溶液を用いている。勿論、本発明はこれらに限定されるものではない。
【0039】
ステップS101では、まず始めにタンク2内において水8にアルギン酸ナトリウムを加えてインペラー4で混合し、0.7 wt%のアルギン酸ナトリウムを含むバインダー水溶液12を準備する。次いでこれに可塑剤として20wt%のテトラヒドロフルフリルアルコール(4HF)と共にリチウムタイタネート(LiTiO)粉末6を加え、インペラー4でよく混合することにより、10wt%のリチウムタイタネート(LiTiO)粉末を含む0.7wt%(分散液中のwt%)濃度のアルギン酸ナトリウム水溶液からなる均一な分散液14を調製し、この分散液14を滴下用容器10に移した。
【0040】
ステップS102では、前記ステップS101において作成された分散液14を、容器10の下部に装着した振動ノズル16から滴下した。この振動ノズル16と容器14との間には分散液の滴下流量を制御するための送液ポンプ18が介装されている。また振動ノズル16には、ノズルを振動させるための振動機構が付設されており、この振動機構は、予め設定された所定の振動周波数で発振する発振器20と、この発振器20の出力を増幅するするアンプ22と、アンプ22により増幅された励振出力でノズルに機械的振動を付与する振動アクチュエータ(加振器)24とを備えている。
【0041】
本実施例では、内径0.49mmの振動ノズル16を用い、ポンプ18による分散液の送液流量を 10cm/minとし、発振器20の振動周波数を80Hzとして振動ノズル16を振動させた。これらの液滴26は、次のステップS103で液浴中に滴下されてゲル化された。
【0042】
即ちステップS103では、予め準備された容器30に、ゲル化用の液浴として10wt%塩化亜鉛水溶液32を満たしておき、この容器30内の液浴32の温度は常温とした。振動ノズル16からの液滴26は大気中で容器30内の液浴32の表面に滴下し、液浴32中で反応させてゲル粒とした。その後、液浴32の温度を60℃に加温し、この温度で1時間に亙りゲル粒36を熟成した。図2には、ここで得られたゲル粒36が概念的に示されている。ゲル粒36はほぼ球形であり、バインダー水溶液のゲル化物34の中にはリチウムタイタネート粉末6が均一に分散している。
【0043】
次にステップS104では、熟成を終えたゲル粒36を液浴32から取り出して洗浄槽40内に写し、60℃の湯で10分ずつ2回、更に60℃のエタノールで15分間洗浄した。
【0044】
次にステップ105では、洗浄された湿潤ゲル粒46を平鍋50内に移し、大気中、60℃にて2時間に亘り乾燥させ、実質的に水分の蒸散した乾燥ゲル粒56を得た。尚、本実施例では、乾燥の方法として、上記条件の自然乾燥を採用したが、この乾燥の目的は、湿潤したゲル粒から水分を除去することであるため、例えば常温下または加熱下における自然乾燥または送風乾燥など、任意の乾燥方法を採用することが可能である。
【0045】
次いでステップ106では、乾燥ゲル粒56を平鍋50ごと図示しない加熱炉に入れ、炉内の温度を徐々に昇温して、水素ガス雰囲気中にて1000℃で4時間加熱処理して仮焼した。このとき、乾燥ゲル粒中の亜鉛が焼散除去され、乾燥ゲル粒はリチウムタイタネート(LiTiO)粒となった。
【0046】
引き続きステップS107では、上記加熱炉内の温度を更に昇温して1350℃で4時間の焼結処理を行った。この焼結処理によりリチウムタイタネート粒は縮径し、密度83%TD及び直径0.3 mmの微小焼結粒となった。図3は、この時の仮焼ステップS106及び焼結ステップS107の炉内の温度変化を経時的にグラフ化して示している。
【0047】
【発明の効果】
以上のように、本発明によればバインダー水溶液が水酸基を含まないので、如何なる調製法・組成で準備された原料粉末を用いてもゲル化以前に滴下原液が凝固を起こすことが無く、原料粉末の調製の自由度が向上する。また滴下原液としての分散液は従来の高分子樹脂化合物水溶液に比べて粘度が低く、送液ポンプの負荷を低くすることができるほか、分散液は大気に触れても凝固しないから滴下ノズルの閉塞も起こすことがない。このようにして、本発明によれば、真球性が高く、高純度のリチウムタイタネート微小焼結粒を得ることができる。さらに、本発明の方法では、滴下中に液滴の表面張力により粒の形を球形に成形させるため、滴下の際の条件を一度決定したら恒常的に同じ大きさの球状粒が形成され、これがノズルの閉塞で阻害されることなく維持できるので、安定な粒径制御のもとに大量生産を行うのに好適である。勿論、液滴の大きさ自体も簡単に変えられるので目的に応じた大きさのリチウムタイタネート微小焼結粒を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る工程の流れを模式的に示す説明図である。
【図2】本発明の方法で得られる湿潤ゲル球の形態を概念的に示す説明図である。
【図3】仮焼及び焼結条件(炉内の温度変化)の一例を示す線図である。
【符号の説明】
2:タンク
4:インペラー
6:原料粉末
8:水
10:滴下容器
12:分散液
14:滴下原液
16:振動ノズル
18:ポンプ
20:発振器
22:アンプ
24:加振器
26:液滴
30:ゲル化容器
32:液浴
36:湿潤ゲル球
40:洗浄槽
50:乾燥容器
56:乾燥ゲル球
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lithium titanate fine sintered particles, and more particularly to a method for producing fine sintered particles utilizing a wet granulation method in which sintered particles are obtained from gel particles in which raw material powder is dispersed.
[0002]
[Prior art]
In JP-A-8-157210, a gel particle in which raw material powder is dispersed is formed using a wet granulation method, and lithium oxide (Li 2 O) micro-sintered particles for obtaining sintered particles from the gel particles are disclosed. Manufacturing methods have been proposed.
[0003]
If the wet granulation method by gelation is used as a granulation method prior to sintering, it is possible to easily obtain sintered particles having a fine particle size as compared with the case of the melt granulation method and the rolling granulation method. In the case of the melt granulation method, there is a defect that the heated melt is contaminated with impurities from the crucible during the heat melting of the raw material powder, and the sphericity obtained by the rotating drum in the case of the rolling granulation method is limited. There is an advantage that the disadvantage that the particle size distribution is widened or the particle size distribution is widened is avoided, and that the sintered particles can be mass-produced by easily controlling the particle size.
[0004]
In the method disclosed in JP-A-8-157210, a water-soluble polymer resin compound having a hydroxyl group is used as a gelling binder aqueous solution, and raw material powder is dispersed therein and dropped into a coagulation bath. The gel particles are dried and sintered to obtain fine sintered particles.
[0005]
[Problems to be solved by the invention]
However, when the wet granulation method as described above is used for the production of lithium titanate (Li 2 Ti O 3 ) micro-sintered grains, lithium titanate (Li 2 TiO 3 ) is used as a lithium source for the raw material powder. In addition, using various component powders including titanium oxide (TiO 2 ) as a titanium source, these raw material powders can be used according to the lithium and titanium content required for the product. It is necessary to selectively mix and use, but depending on the method of preparing the raw material powder, there is a component that initiates solidification of the aqueous polymer resin compound solution by reaction with the hydroxyl group when the raw material powder is dispersed in the aqueous binder solution. Therefore, there is a limitation that the raw material powder that can be used is limited in order to avoid this undesired solidification.
[0006]
In addition, a dripping stock solution in which raw material powder is dispersed in an aqueous binder solution of a water-soluble polymer resin compound has a high viscosity, and a high discharge pressure is required for a pump for feeding to a dripping nozzle, and the dripping stock solution is exposed to the atmosphere. Since the solidified product is formed by drying gradually, the dropping nozzle is blocked, and stable dropping is hindered. In some cases, dropping may be incomplete.
[0007]
From the above, the main problem of the present invention is to provide a method for producing lithium titanate microsintered grains that can prevent the dripping stock solution from solidifying before gelation and improve the degree of freedom of preparation of the raw material powder. It is.
[0008]
Another subject of this invention is providing the manufacturing method of the lithium titanate sintered grain which can implement | achieve stable dripping by reducing the load of a liquid feeding pump, and the viscosity of a dripping stock solution is lower than before.
[0009]
Still another object of the present invention is to use a dripping stock solution that does not solidify in contact with the atmosphere, realize stable dripping without causing clogging of the dripping nozzle, facilitate particle size control, and have high sphericity. It is an object of the present invention to provide a method for producing lithium titanate sintered particles suitable for mass production, which can easily obtain fine-sized particles.
[0010]
[Means for Solving the Problems]
According to the invention, the above problem is solved by a method for producing lithium titanate as claimed in claim 1.
[0011]
That is, according to the present invention, a method for producing lithium titanate sintered grains from a raw material powder containing lithium and titanium,
(a) a step of preparing a dispersion of raw material powder by mixing the raw material powder and an organic plasticizer in an aqueous binder solution that reacts with a polyvalent metal ion to form an alginate gel;
(b) forming a droplet of the dispersion by dripping the dispersion through a nozzle;
(c) The droplets are immersed in a liquid bath containing a polyvalent metal that gels the aqueous binder solution by contact with the aqueous binder solution, thereby forming spherical wet gel particles in which the raw material powder is dispersed. Forming step,
(d) drying the spherical wet gel particles,
(e) a step of obtaining spherical lithium titanate particles from which the polyvalent metal has been removed by calcining the gel particles after drying; and
(f) sintering the spherical lithium titanate grains,
It is characterized by comprising.
[0012]
In the method of the present invention including the above steps, first, a dispersion is prepared by mixing and dispersing raw material powder in an aqueous binder solution that reacts with polyvalent metal ions to form an alginate gel. The dispersion is dropped into a liquid bath containing polyvalent metal ions for gelation, and droplets are formed into a spherical shape by the surface tension of the dispersion during the dropwise addition. The binder aqueous solution is gelled by contact, and wet gel particles in which the raw material powder is uniformly dispersed are formed in a liquid bath. The formed wet gel particles had a highly spherical shape and were aged by being immersed in a liquid bath, then washed as necessary, and further subjected to a drying treatment to remove moisture. Thereafter, the binder and the polyvalent metal salt are pyrolyzed and removed by calcination, and finally subjected to a sintering treatment to obtain lithium titanate fine sintered particles. Since the binder and the polyvalent metal are all removed in the calcination step and the sintering step, the sintered particles become high-purity spherical lithium titanate sintered particles.
[0013]
Therefore, according to the present invention, since the aqueous binder solution does not contain a hydroxyl group, the raw material powder prepared by any preparation method / composition does not cause solidification of the dropping stock solution before gelation, and the preparation of the raw material powder The degree of freedom is improved. In addition, the dispersion liquid as the dropping stock solution has a lower viscosity than conventional polymer resin compound aqueous solutions, and can reduce the load of the liquid feeding pump. It will not happen. Thus, according to the present invention, highly spherical lithium titanate fine sintered grains having high sphericity can be obtained. Furthermore, in the method of the present invention, since the shape of the particles is formed into a spherical shape by the surface tension of the droplets during dropping, once the conditions for the dropping are determined, spherical particles of the same size are constantly formed. Since it can be maintained without being obstructed by nozzle blockage, it is suitable for mass production under stable particle size control. Of course, since the size of the droplet itself can be easily changed, lithium titanate fine sintered particles having a size suitable for the purpose can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing lithium titanate fine sintered particles according to the present invention is roughly divided into a lithium compound particle forming step and a binder removing step, and the lithium compound particle forming step includes the steps (a) to (d) described above, and the binder removal is performed. The step includes the steps (e) and (f).
[0015]
Step (a) is a stock solution preparation step, in which a dispersion is prepared by mixing and dispersing raw material powders in an aqueous binder solution that reacts with polyvalent metal ions to form an alginate gel.
[0016]
As the binder, sodium alginate or ammonium alginate is preferably used, and these aqueous solutions have a property of becoming an alginate and a gel when reacted with a polyvalent metal ion.
[0017]
In preparing the stock solution, for example, first, a binder aqueous solution is prepared by dissolving sodium alginate or ammonium alginate as a binder in water. Then mixing the raw material powder into the aqueous binder solution, further organic plasticizers such as added and stirred tetrahydrofurfuryl alcohol (4HF), added dropwise to prepare a raw material powder in a binder solution is uniformly dispersed dispersion Use stock solution.
[0018]
A preferred composition (other than water) of the dispersion as the dropping stock solution is as follows.
Raw material powder: 0.1-60 wt%
Binder: 0.1 to 5 wt% (however, based on the total amount before addition of organic plasticizer)
Organic plasticizer: 60 wt% or less (however, based on the total amount of the dispersion after final preparation)
[0019]
In preparing the dispersion, the concentration of the binder aqueous solution is preferably adjusted to an optimum concentration within the above composition range in consideration of the type of alginic acid compound to be used and the reactivity with the liquid bath in the subsequent gelation step. Moreover, although sodium alginate or ammonium alginate is preferably used as the alginate compound, the type of the alginate compound to be used can be appropriately selected according to the combination with the type of the liquid bath in the gelation step.
[0020]
The raw material powder to be dispersed in the binder aqueous solution is a mixed powder of titanium oxide (TiO 2 ) and lithium titanate (Li 2 TiO 3 ). If you want to increase the titanium content of the product, add the amount of titanium oxide powder. Although it increases, the raw material powder which consists of lithium titanate powder normally may be used.
[0021]
The amount of the raw material powder to be dispersed in the binder aqueous solution depends on the balance between the size of the droplets to be formed in the subsequent droplet forming step and the final required particle size of the lithium titanate sintered particles and the dispersion liquid. It is good to decide by fluidity. For example, when the size of the droplets is in a range that is relatively easy to form with a nozzle, for example, in a range of 0.1 mm to 3 mm in diameter, the final size of the sintered grains is the desired size. Thus, the amount of the raw material powder in the dispersion is adjusted within the range of 0.1 wt% to 60 wt%. The reason for this range is that if the amount of the raw material powder is less than 0.1 wt%, the amount of water evaporated from the wet gel particles in the drying process is excessive even at the minimum particle size, and the gel particles are wrinkled. This is because it is difficult to obtain sintered particles with good sphericity in the end. On the other hand, when the amount exceeds 60 wt%, the viscosity of the dispersion liquid becomes too high and it becomes difficult to drop from the nozzle.
[0022]
In forming the droplet, the dispersion is dropped into the air using a nozzle, and the droplet is made spherical by the surface tension of the dispersion being dropped. As a nozzle suitable for this, it is desirable to use a vibrating nozzle. In some cases, an electrostatic atomization method can also be used.
[0023]
When droplets are formed by a vibrating nozzle, the nozzle is urged to vibrate at a certain vibration frequency when the droplet is formed, and the vibration frequency of the nozzle and / or the volume flow rate of the dispersion liquid passing through the nozzle is adjusted. Thus, the diameter of the droplet can be controlled.
[0024]
That is, when the flow rate of the dispersion discharged through the nozzle is Q, the diameter of the droplet is d, and the vibration frequency of the vibration nozzle is f, the following equation (1) is established.
Q = (π / 6) d 3 · f (1)
[0025]
Accordingly, the droplet size can be freely controlled by adjusting one or both of the flow rate Q of the dispersion liquid and the vibration frequency f of the vibration nozzle. When forming droplets having a particle diameter d of 0.1 mm or more and 3 mm or less, it is preferable that the flow rate Q is arbitrarily variable and the frequency f of the vibrating nozzle is adjusted in the range of 10 Hz to 1000 Hz.
[0026]
The formed droplets are dipped and immersed in a liquid bath containing polyvalent metal ions that gel the binder-water solution upon contact with the binder-water solution, and become spherical wet gel particles by coagulation of the binder-water solution. The liquid bath for this gelation is selected for the optimal composition for gelation according to the type of alginic acid compound used as the binder, and the types of polyvalent metals include zinc, calcium, aluminum, titanium, zirconium, etc. Can be mentioned.
[0027]
The liquid bath for the gelation reaction may have an optimum composition for gelling the aqueous binder solution of the droplets, but it does not elute the raw material powder dispersed in the binder aqueous solution of the received droplets. It is important to be a thing. That is, when the composition of the liquid bath has the property of dissolving the raw material used as a lithium source or a titanium source, the amount of lithium or titanium contained in each droplet changes during the gelation reaction, This is because the quality and size of the finally obtained lithium titanate sintered grains may be nonuniform.
[0028]
Moreover, the temperature of the liquid bath at the time of immersing a droplet should just be in the range of 0-100 degreeC, and normal temperature may be advantageous on an actual operation. In this case, it is preferable that the liquid bath that receives the droplets dropped from the nozzle is at room temperature, and the gel is aged by warming the liquid bath after receiving a certain amount of droplets.
[0029]
The shorter the immersion time of the droplets in the liquid bath, the better from the viewpoint of production efficiency, but if the immersion time is too short, the gel particles are deformed in the next drying step, so the droplet gelation reaction is completely completed. It is desirable to make it more than the closing time. Since the rate of the gelation reaction is determined by the temperature of the liquid bath, the composition of the dispersion, the size of the droplets and the concentration of the polyvalent metal ions in the liquid bath, it is preferable that the optimum soaking is performed in each case. It is advisable to obtain the time in advance, and sufficiently ripen the gel for a longer immersion time.
[0030]
After completion of the gelation reaction, the wet gel particles taken out from the liquid bath are subjected to a drying treatment in order to remove moisture contained in the surface and inside thereof. During this drying, for example, the gel particles adhere to each other. When it is easy, it is preferable that the wet gel particles are washed with water and ethanol in advance to remove unnecessary impurities, residual organic plasticizer, and the like, and then subjected to a drying treatment. The drying process is generally carried out in the air by natural drying or warm blast drying.
[0031]
The dried gel particles are then sent to the binder removal process, where the dried gel particles are first calcined by heating in a reducing atmosphere. That is, in the dried gel particles sent from the drying process, the polyvalent metal incorporated during the gelation reaction in the liquid bath remains, but this residual multimetal is calcined in a reducing atmosphere. The treatment removes the dried gel particles from the particles, thereby turning the dried gel particles into spherical lithium titanate particles that do not contain unwanted impurities.
[0032]
Care should be taken during calcination to avoid significant grain growth of lithium titanate in the grains. If significant crystal growth of lithium titanate occurs in the calcining process, shrinkage of the lithium titanate microparticles is inhibited in the subsequent sintering process, making it difficult to obtain high-density lithium titanate sintered grains. It becomes.
[0033]
Therefore, this calcining treatment is almost complete of the polyvalent metal depending on the amount and the particle size under the heating condition below the temperature at which the lithium titanate does not cause grain growth above the dissipation temperature of the polyvalent metal used. It is preferable to carry out over the time required for dissipation. For example, when an aqueous zinc chloride solution is used for the liquid bath, since the polyvalent metal is zinc, the calcining treatment is performed at a heating temperature of 600 to 1000 ° C., and the treatment time is 1 to 12 hours depending on the amount and the particle size of the particles. Just do it. In this case, if the heating temperature is lower than 600 ° C., the zinc is not completely removed, and if the heating temperature exceeds 1000 ° C., it is significant enough to inhibit the densification of the finally obtained lithium titanate sintered grains. Grain growth occurs.
[0034]
The spherical lithium titanate grains obtained by the calcination treatment are further heat-treated and sintered. The lithium titanate grains are densified by sintering, and at the same time the size is reduced to become lithium titanate sintered grains. In this sintering step, the sintering atmosphere may be an inert gas that is purified and mixed and adjusted, for example, argon gas, etc., but it is not particularly necessary to have an inert gas atmosphere, and in other words, oxygen is used in the atmosphere. You may sinter in the atmosphere containing.
[0035]
The sintering temperature is preferably 900 ° C. or higher and 1350 ° C. or lower, and it is preferable to perform heating and sintering for 15 minutes or more and 10 hours or less within this temperature range. When the sintering temperature is lower than 900 ° C., sintering is not sufficiently performed, and it is not preferable. When the sintering temperature is higher than 1350 ° C., there is a possibility that the fine particles or the fine particles and the sintering tray may be fused. Absent. Also, if the sintering time is shorter than 15 minutes, sintering may be insufficient even in the case of the minimum particle size, and if it is longer than 10 hours, the evaporation amount of lithium titanate increases and the yield deteriorates. It is not preferable.
[0036]
According to a particularly preferred embodiment of the present invention, a method for producing lithium titanate microsintered grains from a raw material powder containing lithium and titanium,
(A) preparing a dispersion in which 0.1 to 60 wt% of raw material powder is dispersed in an aqueous binder solution containing 0.1 to 5 wt% of sodium alginate or ammonium alginate;
(B) 60 wt% or less of tetrahydrofurfuryl alcohol is added to the dispersion and mixed;
(C) dropping the dispersion from a nozzle that vibrates at a predetermined frequency in the range of 10 to 1000 Hz to form droplets having a diameter in the range of 0.1 to 3 mm;
(D) Spherical moistening in which the raw material powder is dispersed by immersing the droplets in a liquid bath composed of a zinc chloride aqueous solution having a concentration of 0.5 wt% or more to gel the aqueous binder solution in the droplets Forming gel grains,
(E) The spherical wet gel particles are kept immersed in the zinc chloride aqueous solution to age the gel particles,
(F) Washing the spherical wet gel particles after aging with water and ethanol,
(G) Drying the spherical wet gel particles after washing under atmospheric heating,
(H) The dried gel particles are heated in a reducing gas atmosphere at a calcining temperature in the range of 600 to 1000 ° C. for 1 to 12 hours to obtain lithium titanate particles from which zinc has been removed,
(I) The lithium titanate grains are sintered in the atmosphere at a sintering temperature in the range of 900 to 1350 ° C. for 15 minutes to 10 hours,
Each step is provided.
[0037]
【Example】
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings, but these embodiments are merely illustrative and are not intended to limit the technical scope of the present invention.
[0038]
FIG. 1 schematically shows a process flow in a preferred embodiment of the present invention, wherein sodium alginate is used as a binder and zinc chloride aqueous solution is used as a liquid bath. Of course, the present invention is not limited to these.
[0039]
In step S101, first, sodium alginate is added to water 8 in tank 2 and mixed with impeller 4 to prepare binder aqueous solution 12 containing 0.7 wt% sodium alginate. Next, lithium titanate (Li 2 TiO 3 ) powder 6 together with 20 wt% tetrahydrofurfuryl alcohol (4HF) as a plasticizer was added thereto, and mixed well with impeller 4 to obtain 10 wt% lithium titanate (Li 2 TiO 2). 3 ) A uniform dispersion 14 composed of a sodium alginate aqueous solution having a concentration of 0.7 wt% (wt% in the dispersion) containing the powder was prepared, and this dispersion 14 was transferred to the dropping container 10.
[0040]
In step S102, the dispersion 14 prepared in step S101 was dropped from the vibrating nozzle 16 attached to the lower part of the container 10. A liquid feed pump 18 for controlling the dropping flow rate of the dispersion is interposed between the vibration nozzle 16 and the container 14. The vibration nozzle 16 is provided with a vibration mechanism for vibrating the nozzle. The vibration mechanism amplifies the oscillator 20 that oscillates at a predetermined vibration frequency that is set in advance and the output of the oscillator 20. An amplifier 22 and a vibration actuator (vibrator) 24 that applies mechanical vibration to the nozzle by the excitation output amplified by the amplifier 22 are provided.
[0041]
In this example, the vibration nozzle 16 having an inner diameter of 0.49 mm was used, the liquid feed flow rate of the dispersion liquid by the pump 18 was 10 cm 3 / min, the vibration frequency of the oscillator 20 was 80 Hz, and the vibration nozzle 16 was vibrated. These droplets 26 were dropped into a liquid bath and gelled in the next step S103.
[0042]
That is, in step S103, the container 30 prepared in advance was filled with a 10 wt% zinc chloride aqueous solution 32 as a gelling liquid bath, and the temperature of the liquid bath 32 in the container 30 was set to room temperature. The droplets 26 from the vibrating nozzle 16 were dropped on the surface of the liquid bath 32 in the container 30 in the atmosphere and reacted in the liquid bath 32 to form gel particles. Thereafter, the temperature of the liquid bath 32 was heated to 60 ° C., and the gel particles 36 were matured at this temperature for 1 hour. FIG. 2 conceptually shows the gel particles 36 obtained here. The gel particles 36 are substantially spherical, and the lithium titanate powder 6 is uniformly dispersed in the gelled product 34 of the binder aqueous solution.
[0043]
Next, in step S104, the matured gel particles 36 were taken out of the liquid bath 32, transferred into the washing tank 40, and washed twice with 60 ° C. hot water for 10 minutes and further with ethanol at 60 ° C. for 15 minutes.
[0044]
Next, in step 105, the washed wet gel particles 46 were transferred into a flat pan 50 and dried in the atmosphere at 60 ° C. for 2 hours to obtain dry gel particles 56 substantially transpiration of moisture. In this example, natural drying under the above conditions was adopted as a drying method. However, since the purpose of this drying is to remove moisture from the wet gel particles, for example, natural drying at room temperature or under heating. Any drying method such as drying or blow drying may be employed.
[0045]
Next, in step 106, the dried gel particles 56 are placed in a heating furnace (not shown) together with the flat pot 50, the temperature inside the furnace is gradually raised, and calcined by heat treatment at 1000 ° C. for 4 hours in a hydrogen gas atmosphere. . At this time, zinc in the dried gel particles was removed by burning, and the dried gel particles became lithium titanate (Li 2 TiO 3 ) particles.
[0046]
Subsequently, in step S107, the temperature in the heating furnace was further increased, and a sintering process was performed at 1350 ° C. for 4 hours. By this sintering treatment, the lithium titanate grains were reduced in diameter to become fine sintered grains having a density of 83% TD and a diameter of 0.3 mm. FIG. 3 shows the temperature change in the furnace in the calcination step S106 and the sintering step S107 at this time as a graph over time.
[0047]
【The invention's effect】
As described above, according to the present invention, since the aqueous binder solution does not contain a hydroxyl group, the raw material powder prepared by any preparation method / composition does not cause the dripping stock solution to solidify before gelation, and the raw material powder The degree of freedom of preparation is improved. In addition, the dispersion liquid as the dropping stock solution has a lower viscosity than conventional polymer resin compound aqueous solutions, and can reduce the load of the liquid feeding pump. It will not happen. Thus, according to the present invention, highly spherical lithium titanate fine sintered grains having high sphericity can be obtained. Furthermore, in the method of the present invention, since the shape of the particles is formed into a spherical shape by the surface tension of the droplets during dropping, once the conditions for the dropping are determined, spherical particles of the same size are constantly formed. Since it can be maintained without being obstructed by nozzle blockage, it is suitable for mass production under stable particle size control. Of course, since the size of the droplet itself can be easily changed, lithium titanate fine sintered particles having a size suitable for the purpose can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a process flow according to an embodiment of the present invention.
FIG. 2 is an explanatory view conceptually showing the form of a wet gel sphere obtained by the method of the present invention.
FIG. 3 is a diagram showing an example of calcination and sintering conditions (temperature change in the furnace).
[Explanation of symbols]
2: Tank 4: Impeller 6: Raw material powder 8: Water 10: Dropping container 12: Dispersion 14: Dropping stock solution 16: Vibrating nozzle 18: Pump 20: Oscillator 22: Amplifier 24: Vibrator 26: Droplet 30: Gel Container 32: liquid bath 36: wet gel sphere 40: washing tank 50: dry container 56: dry gel sphere

Claims (9)

リチウム及びチタンを含む原料粉末からリチウムタイタネート微小焼結粒を製造する方法であって、
(a) 多価金属イオンと反応してアルギン酸塩ゲルとなるバインダー水溶液中に前記原料粉末及び有機可塑剤を混合して原料粉末の分散液を調製する工程、
(b) 前記分散液をノズルを通して滴下することにより前記分散液の液滴を形成する工程、
(c) 前記バインダー水溶液との接触で該バインダー水溶液をゲル化させる多価金属を含んだ液浴中に前記液滴を浸漬し、それにより内部に前記原料粉末が分散された球状湿潤ゲル粒を形成する工程、
(d) 前記球状湿潤ゲル粒を乾燥する工程、
(e) 乾燥後のゲル粒を仮焼して前記多価金属が除去された球状リチウムタイタネート粒を得る工程、及び
(f) 前記球状リチウムタイタネート粒を焼結する工程、
を備えたことを特徴とするリチウムタイタネート微小焼結粒の製造方法。
A method for producing lithium titanate fine sintered grains from a raw material powder containing lithium and titanium,
(a) a step of preparing a dispersion of the raw material powder by mixing the raw material powder and the organic plasticizer in an aqueous binder solution that reacts with the polyvalent metal ion to become an alginate gel;
(b) forming a droplet of the dispersion by dripping the dispersion through a nozzle;
(c) The droplets are immersed in a liquid bath containing a polyvalent metal that gels the aqueous binder solution in contact with the aqueous binder solution, thereby forming spherical wet gel particles in which the raw material powder is dispersed. Forming step,
(d) drying the spherical wet gel particles,
(e) a step of obtaining spherical lithium titanate particles from which the polyvalent metal has been removed by calcining the gel particles after drying; and
(f) sintering the spherical lithium titanate grains,
A method for producing finely sintered lithium titanate grains, comprising:
前記バインダー水溶液としてアルギン酸ナトリウム水溶液を用いることを特徴とする請求項1に記載の方法。The method according to claim 1, wherein a sodium alginate aqueous solution is used as the binder aqueous solution. 前記バインダー水溶液としてアルギン酸アンモニウム水溶液を用いることを特徴とする請求項1に記載の方法。The method according to claim 1, wherein an aqueous ammonium alginate solution is used as the aqueous binder solution. 前記液浴が、前記多価金属として亜鉛、カルシウム、アルミニウム、チタン、ジルコニウムからなる群から選ばれた少なくとも1種の金属イオンを含むことを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the liquid bath contains at least one metal ion selected from the group consisting of zinc, calcium, aluminum, titanium, and zirconium as the polyvalent metal. 前記液浴として塩化亜鉛水溶液を用いることを特徴とする請求項1に記載の方法。The method according to claim 1, wherein an aqueous zinc chloride solution is used as the liquid bath. 記球状湿潤ゲル粒を乾燥する前に洗浄して該球状湿潤ゲル粒から前記有機可塑剤を除去することを特徴とする請求項1に記載の方法。The method according to claim 1, characterized in that the removal of the organic plasticizer is washed prior to drying the pre-Symbol spherical wet gel particles from the spherical wet gel particles. 有機可塑剤としてテトラヒドロフルフリルアルコール(4HF)を前記分散液に添加することを特徴とする請求項6に記載の方法。The method according to claim 6, wherein tetrahydrofurfuryl alcohol (4HF) is added to the dispersion as an organic plasticizer. 前記乾燥後のゲル粒の仮焼を還元性雰囲気中で行うことを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the calcination of the gel particles after drying is performed in a reducing atmosphere. リチウム及びチタンを含む原料粉末からリチウムタイタネート微小焼結粒を製造する方法であって、
(a) 0.1〜5wt%のアルギン酸ナトリウム又はアルギン酸アンモニウムを含有するバインダー水溶液中に0.1〜60wt%の原料粉末が分散した分散液を準備し、
(b) 前記分散液に60wt%以下のテトラヒドロフルフリルアルコールを添加混合し、
(c) 前記分散液を10〜1000Hzの範囲内の予め定められた周波数で振動するノズルから滴下させて、0.1〜3mmの範囲内の直径をもつ液滴を形成し、
(d) 0.5 wt%濃度以上の塩化亜鉛水溶液からなる液浴中に前記液滴を滴下して前記液滴中のバインダー水溶液をゲル化させることにより内部に前記原料粉末が分散した球状湿潤ゲル粒を形成し、
(e) 前記球状湿潤ゲル粒を前記塩化亜鉛水溶液中で浸漬状態に保持してゲル粒を熟成し、
(f) 熟成後の球状湿潤ゲル粒を水及びエタノールで洗浄し、
(g) 洗浄後の球状湿潤ゲル粒を大気中加温下で乾燥し、
(h) 乾燥後のゲル粒を還元ガス雰囲気中、600〜1000℃の範囲内の仮焼温度で1〜12時間に亙り加熱して亜鉛の除去されたリチウムタイタネート粒を得、
(i) 前記リチウムタイタネート粒を、大気中、900 〜1350℃の範囲内の焼結温度で15分以上10時間以下に亙り焼結する、
ことを特徴とするリチウムタイタネート微小焼結粒の製造方法。
A method for producing lithium titanate fine sintered grains from a raw material powder containing lithium and titanium,
(A) preparing a dispersion in which 0.1 to 60 wt% of raw material powder is dispersed in an aqueous binder solution containing 0.1 to 5 wt% of sodium alginate or ammonium alginate;
(B) 60 wt% or less of tetrahydrofurfuryl alcohol is added to the dispersion and mixed;
(C) dropping the dispersion from a nozzle that vibrates at a predetermined frequency in the range of 10 to 1000 Hz to form droplets having a diameter in the range of 0.1 to 3 mm;
(D) Spherical moistening in which the raw material powder is dispersed inside by dropping the droplets into a liquid bath composed of a zinc chloride aqueous solution having a concentration of 0.5 wt% or more to gel the aqueous binder solution in the droplets. Forming gel grains,
(E) The spherical wet gel particles are kept immersed in the zinc chloride aqueous solution to age the gel particles,
(F) Washing the spherical wet gel particles after aging with water and ethanol,
(G) Drying the spherical wet gel particles after washing under atmospheric heating,
(H) Lithium titanate particles from which zinc was removed by heating the gel particles after drying in a reducing gas atmosphere at a calcining temperature in the range of 600 to 1000 ° C. for 1 to 12 hours,
(I) The lithium titanate grains are sintered in the atmosphere at a sintering temperature in the range of 900 to 1350 ° C. for 15 minutes to 10 hours,
A method for producing lithium titanate fine sintered grains characterized by the above.
JP09164399A 1999-03-31 1999-03-31 Method for producing lithium titanate fine sintered grains Expired - Fee Related JP3632186B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09164399A JP3632186B2 (en) 1999-03-31 1999-03-31 Method for producing lithium titanate fine sintered grains
FR0012344A FR2814460B1 (en) 1999-03-31 2000-09-28 PROCESS FOR THE PREPARATION OF LITHIUM TITANATE FRITTED GRANULES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09164399A JP3632186B2 (en) 1999-03-31 1999-03-31 Method for producing lithium titanate fine sintered grains
FR0012344A FR2814460B1 (en) 1999-03-31 2000-09-28 PROCESS FOR THE PREPARATION OF LITHIUM TITANATE FRITTED GRANULES

Publications (2)

Publication Number Publication Date
JP2000281433A JP2000281433A (en) 2000-10-10
JP3632186B2 true JP3632186B2 (en) 2005-03-23

Family

ID=26212639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09164399A Expired - Fee Related JP3632186B2 (en) 1999-03-31 1999-03-31 Method for producing lithium titanate fine sintered grains

Country Status (2)

Country Link
JP (1) JP3632186B2 (en)
FR (1) FR2814460B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632186B2 (en) * 1999-03-31 2005-03-23 日本原子力研究所 Method for producing lithium titanate fine sintered grains
SE0101852D0 (en) * 2001-05-23 2001-05-23 Svenska Rymdaktiebolaget Method of preparing granules
DE102007001724A1 (en) * 2007-01-11 2008-07-17 Technische Universität Bergakademie Freiberg Making formed particles used to manufacture silicate-, refractory, structural or functional ceramics, jet-atomizes dense ceramic slip into lower-viscosity slip
US8137087B2 (en) * 2007-04-05 2012-03-20 Ricoh Company, Ltd. Toner preparation method and apparatus, and toner prepared thereby
JP5278897B2 (en) * 2008-09-13 2013-09-04 独立行政法人産業技術総合研究所 Method and apparatus for manufacturing ceramic precision sphere by hydrocasting
DE102010064537B3 (en) * 2010-07-26 2014-11-06 Süd-Chemie Ip Gmbh & Co. Kg Process for reducing magnetic and / or oxidic impurities in lithium-metal-oxygen compounds
DE102010032207B4 (en) * 2010-07-26 2014-02-13 Süd-Chemie Ip Gmbh & Co. Kg Process for reducing magnetic and / or oxidic impurities in lithium-metal-oxygen compounds
KR101328807B1 (en) * 2012-03-27 2013-11-13 한국기초과학지원연구원 Fabrication Method Of Lithium Ceramics Pebbles Using Slurry Droplet Wetting Method
BE1022015B1 (en) * 2014-07-16 2016-02-04 Magotteaux International S.A. CERAMIC GRAINS AND PROCESS FOR THEIR PRODUCTION.
CN106450264A (en) * 2016-12-03 2017-02-22 合肥国轩高科动力能源有限公司 Preparing method of nanometer lithium titanate composite material dually modified by being wrapped with carbon and doped with ion
JP2019073410A (en) * 2017-10-16 2019-05-16 日本特殊陶業株式会社 Method of manufacturing sintered body
CN110280192B (en) * 2019-07-10 2022-05-20 南京理工大学 Preparation method of carbon nano tube-polyvinyl alcohol gel microspheres
CN111686635B (en) * 2020-07-30 2022-06-21 江西理工大学 Integrated granulation drying method for coking desulfurization sulfur foam and desulfurization waste liquid
CN112174662A (en) * 2020-10-28 2021-01-05 中科传感技术(青岛)研究院 Method for preparing zirconium-aluminum composite ball by titration method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186418A (en) * 1984-10-05 1986-05-01 Mitsui Alum Kogyo Kk Preparation of sintered particle of alumina
JPH03202138A (en) * 1989-12-27 1991-09-03 Suzuki Sogyo Kk Granulating dripping nozzle and granulator using the same
DE4125133C2 (en) * 1991-07-30 1993-09-30 Nukem Gmbh Method and device for producing alginate balls
JP3092041B2 (en) * 1994-11-30 2000-09-25 日本原子力研究所 Method for producing Li2O particles
JP3013297B2 (en) * 1997-03-21 2000-02-28 日本原子力研究所 Method for producing lithium titanate fine sintered particles
JP3632186B2 (en) * 1999-03-31 2005-03-23 日本原子力研究所 Method for producing lithium titanate fine sintered grains

Also Published As

Publication number Publication date
JP2000281433A (en) 2000-10-10
FR2814460B1 (en) 2005-11-25
FR2814460A1 (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP3632186B2 (en) Method for producing lithium titanate fine sintered grains
JP5128036B2 (en) A mixture of two particulate phases used in the production of green compacts that can be fired at high temperatures
JP2001512531A (en) Tantalum powder, its production method and sintered anode obtained therefrom
CN103068771B (en) The manufacture method of ceramic honeycomb structural body
JP5637220B2 (en) Polycrystalline silicon ingot casting mold, manufacturing method thereof, silicon nitride powder for mold release material of polycrystalline silicon ingot casting mold, and slurry containing the same
US3883337A (en) Method of manufacturing a glass object by molding and sintering glass powder
EP0283933B1 (en) Process for producing unsintered cristobalite silica
CN103071764A (en) CaZrO3 mold shell used for titanium and titanium alloy precision casting and preparation method
JP4951908B2 (en) Method for producing spherical zinc oxide or acid carbide fine particles
JP3013297B2 (en) Method for producing lithium titanate fine sintered particles
JPS601765A (en) Coating powder for producing electrolyte supporting base of carbonate fuel battery
JP3092041B2 (en) Method for producing Li2O particles
JP4236076B2 (en) Method for producing lithium titanate fine sintered grains
JP2006206944A (en) Method for producing granulated powder and granulated powder
JP4443077B2 (en) Method for producing porous calcium phosphate ceramic sintered body and porous calcium phosphate ceramic sintered body
JP4017229B2 (en) Method for producing fine sintered particles of lithium zirconate
WO2003106082A1 (en) Method for producing metal powder and formed product of raw material for metal
JPH02289446A (en) Production of complete and dense half- solid parts from appropriate sol-gel induction powder as ring laser gyro parts
SU1699346A3 (en) Method of producing powdered ferrum
JP4236100B2 (en) Method for producing lithium titanate fine sintered grains
JPH06135776A (en) Foamed porous ceramic and its production
JPH07138094A (en) Method for growing single crystal of zinc oxide
JP4231217B2 (en) Ceramic precursor, heat-treated body thereof, and method for producing porous calcium phosphate ceramic sintered body using them
JP2005336539A (en) Porous sintered compact and its production method
JPH06279190A (en) Method for growing zinc oxide single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050810

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees