JP3629542B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP3629542B2
JP3629542B2 JP2002199527A JP2002199527A JP3629542B2 JP 3629542 B2 JP3629542 B2 JP 3629542B2 JP 2002199527 A JP2002199527 A JP 2002199527A JP 2002199527 A JP2002199527 A JP 2002199527A JP 3629542 B2 JP3629542 B2 JP 3629542B2
Authority
JP
Japan
Prior art keywords
sample
mask
ray
sample holder
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199527A
Other languages
Japanese (ja)
Other versions
JP2004045064A (en
Inventor
繁生 鎌田
悦久 山本
慎治 中杉
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP2002199527A priority Critical patent/JP3629542B2/en
Publication of JP2004045064A publication Critical patent/JP2004045064A/en
Application granted granted Critical
Publication of JP3629542B2 publication Critical patent/JP3629542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料における任意の部位について分析できる蛍光X線分析装置に関する。
【0002】
【従来の技術】
従来、例えば特開2002−39972に示されるように、試料にX線源から1次X線を照射し、任意の位置の試料表面およびその深さ方向における近傍(以下、試料の部位という)から発生する蛍光X線の強度を検出手段で測定して、強度分布測定(マッピング測定)を行う蛍光X線分析装置がある。
【0003】
このような装置においては、試料を収納した試料ホルダに基準識別部(基準マーク)として側面の溝などが設けられ、その基準識別部を基準に試料の位置が初期化されて(試料が所定の回転位置にされて)、測定すべき部位が指定される。そして、試料は測定のために測定位置に搬送され、部位が指定されたときと同様に初期化され(同じ回転位置にされ)、指定された部位が測定されるように、X線源および検出手段に対して試料がrθステージなどにより移動される。
【0004】
【発明が解決しようとする課題】
しかし、測定位置にある試料について基準識別部の位置を検出するために、レーザー変位計などの検出器を用いるので、装置の構成が複雑になり、コストも増大する。
【0005】
本発明は前記従来の問題に鑑みてなされたもので、簡単な構成で、試料における任意の部位について分析できる蛍光X線分析装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明は、試料を収納した試料ホルダまたは試料に設けられた基準識別部を基準として指定された試料の部位にX線源から1次X線を照射して、発生する蛍光X線の強度を検出手段で測定する蛍光X線分析装置であって、前記試料ホルダが、試料表面の周辺部を覆う輪状のマスクを含み、第1の構成では、前記基準識別部が、前記マスクの表面に設けられた凸部または凹部であり、中心軸まわりに回転される前記試料ホルダのマスクから発生する散乱線の強度を前記検出手段で測定することにより前記基準識別部の位置を検出する。第2の構成では、前記基準識別部が、前記マスクの表面において他の部分と異なる識別用元素で構成された部分であり、中心軸まわりに回転される前記試料ホルダのマスクから発生する前記識別用元素の蛍光X線の強度を前記検出手段で測定することにより前記基準識別部の位置を検出する。
【0007】
本発明の装置によれば、測定位置において、試料から発生する蛍光X線の強度を測定するための検出手段を用いて基準識別部の位置をも検出するので、レーザー変位計などの検出器が不要であり、装置の構成が複雑にならず、コストも増大しない。したがって、簡単な構成で、試料における任意の部位について分析できる。
【0008】
【発明の実施の形態】
以下、第1実施形態の装置を図面にしたがって説明する。まず、この装置の構成について説明する。図1に示すように、この装置は、試料1を収納した試料ホルダ3に設けられた基準識別部2Aを基準として指定された試料1の部位にX線源4から1次X線24を照射して、発生する蛍光X線25の強度を検出手段5で測定する蛍光X線分析装置であって、前記検出手段5を用いて前記基準識別部2Aの位置を検出する。X線源4は、X線管4a、そのX線管4aから発生するX線を絞る1次X線スリット4bを含み、検出手段5は、X線検出器5a、そのX線検出器5aへ入射する蛍光X線25を絞る視野制限スリット5bのほか、図示しないソーラースリットや分光素子を含む。スリット4b,5bは、いずれか一方のみ備えてもよい。
【0009】
試料ホルダ3は、板状試料1の表面1a(バルク試料の平坦な表面でもよい)の周辺部を覆う輪状のマスク3a、そのマスク3aが開口部に取り付けられる底付き円筒状のホルダ本体3b、試料1の裏面に当接する支持板3c、その支持板3cを介して試料表面1aの周辺部をマスク3aの裏に押し当てるスプリング3dを含む。また、前記基準識別部2Aは、マスク3aの表面に設けられた凸部であり、移動手段(rθステージ)6により中心軸まわりに回転される試料ホルダ3のマスク3aから発生する散乱線の強度を、前記検出手段5で測定することにより基準識別部2Aの位置が検出される。移動手段6は、XYθステージでもよい。また、図2に示すように、基準識別部2Bは、マスク3aの表面に設けられた凹部であってもよい。この装置の他の構成については、次述の動作の説明とともに説明する。
【0010】
次に、この装置の動作について説明する。図1に示すように、まず、撮像位置Cにおいて試料1を収納した試料ホルダ3が撮像台16に載置され、CCDカメラなどの撮像手段8により撮像された試料表面1a(マスク3aに覆われていない部分)および基準識別部2Aの画像が、CRTなどの表示手段9の画面9aに表示される。このとき、試料表面1aの中心が画面9aの中心にあり、基準識別部2Aが0時の方向(画面9aでの上方向)にあるように、試料ホルダ3が撮像台16上で位置調整される。この位置調整、つまり、撮像位置Cにおける、基準識別部2Aを基準とする試料1の位置の初期化は、例えば操作者により手動で行われる。なお、図示の容易のため、撮像位置Cにある試料ホルダ3のマスク3aの断面図においては、基準識別部2Aを、上方から見た場合の9時の方向(図1での左方向)に表している。
【0011】
そして、操作者により、表示手段9の画面9aに表示された試料表面1aおよび基準識別部2Aの画像に基づいて、試料1の測定すべき部位が指定される。この指定は、この装置の制御手段10に含まれる指定手段13を用いて、例えばマウス13aで画面上9aのポインタ13bを所望の部位まで移動させ、そこでクリックすることにより行われる。指定された部位のデータは、前記位置調整された状態での試料表面1aの中心(画面9aの中心でもある)を原点とする座標値(rθ座標値やXY座標値)として指定手段13に記憶される。
【0012】
部位の指定後、試料ホルダ3は、測定のために測定位置Mに搬送手段7により搬送され、移動手段(rθステージ)6上に載置される。搬送手段7には、試料ホルダ3を支持して回転する円板状のターレットやロボットハンドを用いることができる。搬送手段7を用いず、操作者が手動で搬送してもよい。
【0013】
さて、制御手段10で移動手段6を制御し、指定された部位が測定されるように、X線源4および検出手段5に対して試料1を移動させるためには、指定したときの座標と測定するときの座標とが同じでなければならない。つまり、測定のための移動の前に、部位が指定されたときと同様に、基準識別部2Aを基準として試料1の位置が初期化されなければならないが、この装置では、以下のように行われる。
【0014】
まず、例えばθステージ6aの上面に試料ホルダ3の底部が嵌入する凹部を設けておくことにより、試料ホルダ3がθステージ6aに載置される際、つまり移動手段6の初期状態において、移動手段6の回転軸と試料ホルダ3の中心軸つまり試料表面1a(マスク3aに覆われていない部分)の中心とが合致するように載置されるものとする。したがって、部位が指定されたときと同様に試料1の位置を初期化するには、試料1の回転位置を、基準識別部2Aが上方から見て0時の方向(図1での紙面奥方向)にくるように調整すればよい。そのためには、試料ホルダ3がθステージ6aに載置された直後における基準識別部2Aの回転方向の位置を知る必要がある。なお、図示の容易のため、測定位置Mにある試料ホルダ3のマスク3aの断面図においては、基準識別部2Aを、上方から見た場合の9時の方向(図1での左方向)に表している。
【0015】
そこで、まず、試料ホルダ3の中心(試料表面1aの中心)から基準識別部2Aまでの距離R(図)だけ、rステージ6bによりθステージ6aを右へ移動させる。これにより、検出手段5で測定される部位は、試料表面1aの中心から左へRだけ移動して、マスク3a上であって図4〜6にSで示す位置になる。
【0016】
そして、図1のように1次X線24を照射し、検出手段5でマスク3aから発生する散乱線(X線管4aのターゲット材の元素の散乱線)の強度を測定しながら、θステージ6aで試料ホルダ3を1回転させる。すると、例えば図に示す状態から、半径Rでマスク3aの周上を一回り測定することになり、0度〜360度の回転角度のうちどこかで、図に示すように、測定強度が所定の閾値f以上になる回転角度θ1 〜θ2 が現れる。これは、突出しているために散乱線の測定強度が大きくなる基準識別部2Aを測定したときの回転角度範囲θ1 〜θ2 である。図2のように基準識別部2Bがマスク3aの表面に設けられた凹部である場合には、測定強度が所定の閾値以下になる回転角度を求める。
【0017】
のように基準識別部2Aの中心を測定したときの回転角度θB は、図に示すように、θ1 とθ2 とのちょうど中間と考えられるから、θB =(θ1 +θ2 )/2で求められる。つまり、図1で中心軸まわりに回転される試料ホルダ3のマスク3aから発生する散乱線の強度を検出手段5で測定することにより、図に示すように、検出手段5で測定される位置Sを基準として、基準識別部2A(2点鎖線で示す)の位置(θB )が検出される。適切に位置検出できるためには、位置Sにおいて検出手段5で測定される範囲が、基準識別部2Aの上面よりも小さいことが条件であり、例えば、前者の直径が0.5〜1mm、後者の直径が2mm程度であることが好ましい。
【0018】
一方、図に示すように、検出手段5で測定される位置Sから0時の方向までの角度は、θA (ここでは90度)に設定しており、既知である。したがって、図に示すように、位置検出のために1周してもとの回転位置に戻っている基準識別部2A(2点鎖線で示す)が0時の方向にくる(実線で示す)ようにするには、θステージ6aで試料ホルダ3をθC =θB +θA だけ回転させればよい。そして、図1のr方向(左右方向)については、rステージ6bで前記距離R(図)だけθステージ6aを左へ移動させ、もとに戻す。これで、部位が指定されたときと同様に試料1の位置が初期化される(同じ回転位置にされる)。以上の測定位置Mにおける基準識別部2Aの位置検出および試料1の位置の初期化は、制御手段10に含まれる位置検出手段14により自動的に行われる。続いて、初期化された状態から、X線源4および検出手段5に対して試料1が移動手段6により適切に移動され、指定された部位が測定される。移動、測定は、制御手段10により自動的に行われる。
【0019】
第1実施形態の装置によれば、測定位置Mにおいて、試料1から発生する蛍光X線25の強度を測定するための検出手段5を用いて基準識別部2A,2Bの位置をも検出するので、レーザー変位計などの検出器が不要であり、装置の構成が複雑にならず、コストも増大しない。したがって、簡単な構成で、試料1における任意の部位について分析できる。
【0020】
次に、本発明の第2実施形態の蛍光X線分析装置について説明する。第2実施形態の蛍光X線分析装置では、図3に示すような試料ホルダ3を用いる。この試料ホルダ3では、基準識別部2Cが、マスク3aの表面において他の部分と異なる識別用元素で構成されている。例えば、アルミニウムからなるマスク3aの表面から深さ方向に孔が形成され、その孔に銅(識別用元素)からなる基準識別部2Cが埋め込まれるように接合されている。そして、測定位置Mにおいて、中心軸まわりに回転される試料ホルダ3のマスク3aから発生する識別用元素(ここでは銅)の蛍光X線の強度を検出手段5で測定することにより、図と同様の測定強度変化を得て、基準識別部2Cの位置を検出する。他の構成は、第1実施形態の蛍光X線分析装置と同様であるので説明を省略する。第2実施形態の蛍光X線分析装置によれば、第1実施形態の蛍光X線分析装置と同様の効果がある。
【0023】
なお、以上の実施形態においては、測定すべき部位が指定される位置(撮像位置C)から、指定された部位が測定される位置(測定位置M)へ、試料が搬送される例を挙げたが、蛍光X線分析装置には、測定位置にある試料が撮像されて部位が指定され、搬送されずに測定されるものもある。このような装置についても本発明は適用でき、部位の指定や測定のために試料の位置を初期化する必要がある場合に、測定位置において、試料から発生する蛍光X線の強度を測定するための検出手段を用いて基準識別部の位置をも検出するので、レーザー変位計などの検出器が不要であり、装置の構成が複雑にならず、コストも増大しない。したがって、簡単な構成で、試料における任意の部位について分析できる。
【0024】
【発明の効果】
以上詳細に説明したように、本発明の蛍光X線分析装置によれば、測定位置において、試料から発生する蛍光X線の強度を測定するための検出手段を用いて基準識別部の位置をも検出するので、レーザー変位計などの検出器が不要であり、装置の構成が複雑にならず、コストも増大しない。したがって、簡単な構成で、試料における任意の部位について分析できる。
【図面の簡単な説明】
【図1】本発明の第1、第2実施形態の蛍光X線分析装置を示す概略図である。
【図2】同装置で用いられる別の試料ホルダを示す縦断面図である。
【図3】本発明の第2実施形態の蛍光X線分析装置で用いられる試料ホルダを示す縦断面図である。
【図4】前記第1実施形態の蛍光X線分析装置により基準識別部の位置検出のために回転される前の試料ホルダを示す平面図である。
【図5】同装置により基準識別部の位置検出のために回転中の試料ホルダを示す平面図である。
【図6】同装置により位置が初期化された試料ホルダを示す平面図である。
【図7】同装置により基準識別部の位置検出のために得た測定強度変化を示す図である。
【符号の説明】
1…試料、2…基準識別部、3…試料ホルダ、3a…マスク、4…X線源、5…検出手段、24…1次X線、25…蛍光X線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluorescent X-ray analyzer that can analyze an arbitrary part in a sample.
[0002]
[Prior art]
Conventionally, as shown in, for example, JP-A-2002-39972, a sample is irradiated with primary X-rays from an X-ray source, and the sample surface at an arbitrary position and its vicinity in the depth direction (hereinafter referred to as a sample part) There is a fluorescent X-ray analyzer that measures intensity distribution measurement (mapping measurement) by measuring the intensity of generated fluorescent X-rays with a detection means.
[0003]
In such an apparatus, a side holder or the like is provided as a reference identification portion (reference mark) in a sample holder that contains a sample, and the position of the sample is initialized with the reference identification portion as a reference (the sample is set to a predetermined position). The position to be measured is specified. The sample is then transported to the measurement position for measurement, initialized (and rotated to the same rotational position) as when the site was specified, and the X-ray source and detection so that the specified site is measured The sample is moved with respect to the means by an rθ stage or the like.
[0004]
[Problems to be solved by the invention]
However, since a detector such as a laser displacement meter is used to detect the position of the reference identification unit for the sample at the measurement position, the configuration of the apparatus becomes complicated and the cost increases.
[0005]
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an X-ray fluorescence analyzer that can analyze an arbitrary part of a sample with a simple configuration.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention irradiates a primary X-ray from an X-ray source to a specified sample portion with reference to a sample holder containing a sample or a reference identification unit provided on the sample, A fluorescent X-ray analyzer that measures the intensity of generated fluorescent X-rays with a detection means , wherein the sample holder includes a ring-shaped mask that covers a peripheral portion of a sample surface, and in the first configuration, the reference identifying unit Is a convex portion or a concave portion provided on the surface of the mask, and the intensity of scattered radiation generated from the mask of the sample holder rotated around the central axis is measured by the detecting means, thereby detecting the reference identifying portion. Detect position. In the second configuration, the reference identification unit is a part made of an identification element different from other parts on the surface of the mask, and the identification generated from the mask of the sample holder rotated around a central axis. The position of the reference identifying unit is detected by measuring the intensity of the fluorescent X-ray of the working element with the detecting means.
[0007]
According to the apparatus of the present invention, since the position of the reference identification unit is also detected using the detection means for measuring the intensity of the fluorescent X-ray generated from the sample at the measurement position, a detector such as a laser displacement meter is provided. It is not necessary, the configuration of the apparatus is not complicated, and the cost is not increased. Therefore, it is possible to analyze any part of the sample with a simple configuration.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the apparatus of 1st Embodiment is demonstrated according to drawing. First, the configuration of this apparatus will be described. As shown in FIG. 1, this apparatus irradiates a primary X-ray 24 from an X-ray source 4 onto a portion of a sample 1 designated with reference to a reference identification unit 2 </ b> A provided in a sample holder 3 containing a sample 1. Then, the fluorescent X-ray analysis apparatus measures the intensity of the generated fluorescent X-rays 25 by the detection means 5, and detects the position of the reference identification unit 2 </ b> A using the detection means 5. The X-ray source 4 includes an X-ray tube 4a and a primary X-ray slit 4b for narrowing X-rays generated from the X-ray tube 4a, and the detection means 5 is connected to the X-ray detector 5a and the X-ray detector 5a. In addition to the visual field limiting slit 5b for narrowing the incident fluorescent X-rays 25, a solar slit and a spectral element (not shown) are included. Only one of the slits 4b and 5b may be provided.
[0009]
The sample holder 3 includes a ring-shaped mask 3a that covers the periphery of the surface 1a of the plate-like sample 1 (which may be a flat surface of a bulk sample), a cylindrical holder body 3b with a bottom to which the mask 3a is attached to the opening, A support plate 3c that contacts the back surface of the sample 1 and a spring 3d that presses the periphery of the sample surface 1a against the back of the mask 3a via the support plate 3c. The reference identifying portion 2A is a convex portion provided on the surface of the mask 3a, and the intensity of scattered rays generated from the mask 3a of the sample holder 3 rotated around the central axis by the moving means (rθ stage) 6. Is detected by the detecting means 5 to detect the position of the reference identifying unit 2A. The moving means 6 may be an XYθ stage. Further, as shown in FIG. 2, the reference identifying portion 2B may be a recess provided on the surface of the mask 3a. Other configurations of this apparatus will be described together with the following description of the operation.
[0010]
Next, the operation of this apparatus will be described. As shown in FIG. 1, first, a sample holder 3 storing a sample 1 at an imaging position C is placed on an imaging stage 16, and the sample surface 1a (covered by a mask 3a) imaged by an imaging means 8 such as a CCD camera. And the image of the reference identifying unit 2A are displayed on the screen 9a of the display means 9 such as a CRT. At this time, the position of the sample holder 3 is adjusted on the imaging stand 16 so that the center of the sample surface 1a is at the center of the screen 9a and the reference identifying portion 2A is in the direction of 0 o'clock (upward on the screen 9a). The This position adjustment, that is, initialization of the position of the sample 1 with reference to the reference identifying unit 2A at the imaging position C is manually performed by an operator, for example. For ease of illustration, in the cross-sectional view of the mask 3a of the sample holder 3 at the imaging position C, the reference identifying portion 2A is in the 9 o'clock direction (left direction in FIG. 1) when viewed from above. Represents.
[0011]
Then, based on the sample surface 1a displayed on the screen 9a of the display means 9 and the image of the reference identifying unit 2A, the operator designates the part to be measured of the sample 1. This designation is performed by using the designation means 13 included in the control means 10 of this apparatus, for example, by moving the pointer 13b on the screen 9a to a desired part with the mouse 13a and clicking there. The data of the designated part is stored in the designation means 13 as coordinate values (rθ coordinate value or XY coordinate value) with the center of the sample surface 1a (which is also the center of the screen 9a) in the adjusted state as the origin. Is done.
[0012]
After designating the site, the sample holder 3 is transported to the measurement position M by the transport means 7 and placed on the moving means (rθ stage) 6 for measurement. As the transport means 7, a disk-shaped turret or a robot hand that supports and rotates the sample holder 3 can be used. Instead of using the transport means 7, the operator may transport it manually.
[0013]
In order to move the sample 1 with respect to the X-ray source 4 and the detection means 5 so that the designated means is measured by controlling the moving means 6 with the control means 10, the coordinates at the designated time and Coordinates when measuring must be the same. That is, before the movement for measurement, the position of the sample 1 must be initialized with reference to the reference identifying unit 2A as in the case where the part is designated. In this apparatus, the following operation is performed. Is called.
[0014]
First, for example, by providing a recess into which the bottom portion of the sample holder 3 is fitted on the upper surface of the θ stage 6a, the moving means when the sample holder 3 is placed on the θ stage 6a, that is, in the initial state of the moving means 6. 6 and the center axis of the sample holder 3, that is, the center of the sample surface 1a (the portion not covered with the mask 3a) are placed so as to coincide with each other. Therefore, in order to initialize the position of the sample 1 in the same manner as when the part is designated, the rotation position of the sample 1 is set to the direction of 0 o'clock as viewed from above by the reference identifying unit 2A (the depth direction in FIG. 1). ) To adjust. For this purpose, it is necessary to know the position in the rotational direction of the reference identifying unit 2A immediately after the sample holder 3 is placed on the θ stage 6a. For ease of illustration, in the cross-sectional view of the mask 3a of the sample holder 3 at the measurement position M, the reference identifying portion 2A is in the 9 o'clock direction (left direction in FIG. 1) when viewed from above. Represents.
[0015]
Therefore, first, the θ stage 6a is moved to the right by the r stage 6b by a distance R (FIG. 5 ) from the center of the sample holder 3 (center of the sample surface 1a) to the reference identifying portion 2A. Thus, the site to be measured by the detection means 5, from the center of the sample surface 1a moved by R to the left, the position indicated by S a on the mask 3a in Figures 4-6.
[0016]
Then, the primary X-ray 24 is irradiated as shown in FIG. 1, and the θ stage is measured while measuring the intensity of the scattered radiation generated from the mask 3a by the detection means 5 (the scattered radiation of the target material element of the X-ray tube 4a). The sample holder 3 is rotated once by 6a. Then, for example, from the state shown in FIG. 4, it will be measured slightly over the peripheral of the masks 3a in the radius R, somewhere of the rotation angle of 0 degrees to 360 degrees, as shown in FIG. 7, the measured intensity Rotational angles θ1 to θ2 that become greater than a predetermined threshold f appear. This is the rotation angle range θ1 to θ2 when measuring the reference discriminating section 2A where the scattered ray measurement intensity increases due to protrusion. As shown in FIG. 2, when the reference identifying unit 2B is a recess provided on the surface of the mask 3a, the rotation angle at which the measured intensity is equal to or less than a predetermined threshold value is obtained.
[0017]
As shown in FIG. 7 , the rotation angle θB when the center of the reference identification unit 2A is measured as shown in FIG. 5 is considered to be exactly halfway between θ1 and θ2, and therefore is obtained by θB = (θ1 + θ2) / 2. It is done. In other words, by measuring the intensity of the scattered rays generated from the mask 3a of the sample holder 3 to be rotated around the central axis in FIG. 1 by the detection means 5, as shown in FIG. 5, is measured by the detection means 5 position Using S as a reference, the position (θB) of the reference identifying unit 2A (indicated by a two-dot chain line) is detected. In order to be able to detect the position appropriately, it is a condition that the range measured by the detection means 5 at the position S is smaller than the upper surface of the reference identification unit 2A. For example, the former has a diameter of 0.5 to 1 mm and the latter The diameter is preferably about 2 mm.
[0018]
On the other hand, as shown in FIG. 4 , the angle from the position S measured by the detection means 5 to the direction of 0 o'clock is set to θA (90 degrees here) and is known. Accordingly, as shown in FIG. 6 , the reference identifying unit 2A (indicated by a two-dot chain line) that has returned to the original rotational position after one round for position detection comes in the direction of 0 o'clock (indicated by a solid line). For this purpose, the sample holder 3 may be rotated by θC = θB + θA on the θ stage 6a. Then, in the r direction (left-right direction) in FIG. 1, the θ stage 6a is moved to the left by the distance R (FIG. 5 ) by the r stage 6b and returned to its original state. Thus, the position of the sample 1 is initialized (set to the same rotational position) as when the part is designated. The position detection of the reference identifying unit 2A and the initialization of the position of the sample 1 at the measurement position M are automatically performed by the position detection unit 14 included in the control unit 10. Subsequently, the sample 1 is appropriately moved by the moving unit 6 with respect to the X-ray source 4 and the detecting unit 5 from the initialized state, and the designated site is measured. Movement and measurement are automatically performed by the control means 10.
[0019]
According to the apparatus of the first embodiment, at the measurement position M, the detection means 5 for measuring the intensity of the fluorescent X-ray 25 generated from the sample 1 is also used to detect the positions of the reference identification units 2A and 2B. In addition, a detector such as a laser displacement meter is unnecessary, the configuration of the apparatus is not complicated, and the cost is not increased. Therefore, it is possible to analyze any part of the sample 1 with a simple configuration.
[0020]
Next, a fluorescent X-ray analyzer according to the second embodiment of the present invention will be described. In the fluorescent X-ray analyzer of the second embodiment, a sample holder 3 as shown in FIG. 3 is used. In this sample holder 3, the reference identifying portion 2C is composed of an identifying element different from other portions on the surface of the mask 3a. For example, a hole is formed in the depth direction from the surface of the mask 3a made of aluminum, and the reference identifying portion 2C made of copper (identification element) is embedded in the hole. Then, in the measurement position M, by measuring the intensity of the fluorescent X-ray detection unit 5 of the identification elements originating from the mask 3a of the sample holder 3 to be rotated around the central axis (here copper), and 7 A similar measurement intensity change is obtained, and the position of the reference identifying unit 2C is detected. Other configurations are the same as those of the fluorescent X-ray analysis apparatus of the first embodiment, and thus description thereof is omitted. According to the X-ray fluorescence analyzer of the second embodiment, there are the same effects as the X-ray fluorescence analyzer of the first embodiment.
[0023]
In the above embodiment, an example is given in which a sample is transported from a position (imaging position C) where a site to be measured is specified to a position (measurement position M) where the specified site is measured. However, in some X-ray fluorescence analyzers, a sample at a measurement position is imaged, a part is designated, and measurement is performed without being transported. The present invention can also be applied to such an apparatus, and in order to measure the intensity of fluorescent X-rays generated from a sample at the measurement position when it is necessary to initialize the position of the sample for designating or measuring a part. Since the position of the reference identification unit is also detected using this detection means, a detector such as a laser displacement meter is unnecessary, the configuration of the apparatus is not complicated, and the cost does not increase. Therefore, it is possible to analyze any part of the sample with a simple configuration.
[0024]
【The invention's effect】
As described in detail above, according to the X-ray fluorescence analyzer of the present invention, the position of the reference identification unit is set using the detection means for measuring the intensity of the X-ray fluorescence generated from the sample at the measurement position. Since the detection is performed, a detector such as a laser displacement meter is not required, the configuration of the apparatus is not complicated, and the cost is not increased. Therefore, it is possible to analyze any part of the sample with a simple configuration.
[Brief description of the drawings]
[1] first present invention, is a schematic diagram showing a fluorescent X-ray analysis apparatus of the second implementation embodiment.
FIG. 2 is a longitudinal sectional view showing another sample holder used in the apparatus.
FIG. 3 is a longitudinal sectional view showing a sample holder used in a fluorescent X-ray analyzer according to a second embodiment of the present invention.
FIG. 4 is a plan view showing a sample holder before being rotated for detecting the position of a reference identifying unit by the X-ray fluorescence analyzer of the first embodiment.
FIG. 5 is a plan view showing a rotating sample holder for detecting the position of a reference identification unit by the apparatus.
FIG. 6 is a plan view showing a sample holder whose position is initialized by the apparatus.
FIG. 7 is a diagram showing a change in measurement intensity obtained for detecting the position of the reference identification unit by the apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample, 2 ... Reference | standard identification part, 3 ... Sample holder, 3a ... Mask, 4 ... X-ray source, 5 ... Detection means, 24 ... Primary X-ray, 25 ... X-ray fluorescence

Claims (2)

試料を収納した試料ホルダまたは試料に設けられた基準識別部を基準として指定された試料の部位にX線源から1次X線を照射して、発生する蛍光X線の強度を検出手段で測定する蛍光X線分析装置であって
前記試料ホルダが、試料表面の周辺部を覆う輪状のマスクを含み、
前記基準識別部が、前記マスクの表面に設けられた凸部または凹部であり、
中心軸まわりに回転される前記試料ホルダのマスクから発生する散乱線の強度を前記検出手段で測定することにより前記基準識別部の位置を検出する蛍光X線分析装置。
The primary X-rays are irradiated from the X-ray source to the designated sample portion with reference to the sample holder containing the sample or the reference identification unit provided on the sample, and the intensity of the generated fluorescent X-rays is measured by the detection means An X-ray fluorescence analyzer ,
The sample holder includes a ring-shaped mask that covers the periphery of the sample surface;
The reference identifying portion is a convex portion or a concave portion provided on the surface of the mask;
An X-ray fluorescence analyzer that detects the position of the reference identification unit by measuring the intensity of scattered radiation generated from the mask of the sample holder rotated around a central axis by the detection means.
試料を収納した試料ホルダまたは試料に設けられた基準識別部を基準として指定された試料の部位にX線源から1次X線を照射して、発生する蛍光X線の強度を検出手段で測定する蛍光X線分析装置であって
前記試料ホルダが、試料表面の周辺部を覆う輪状のマスクを含み、
前記基準識別部が、前記マスクの表面において他の部分と異なる識別用元素で構成された部分であり、
中心軸まわりに回転される前記試料ホルダのマスクから発生する前記識別用元素の蛍光X線の強度を前記検出手段で測定することにより前記基準識別部の位置を検出する蛍光X線分析装置。
The primary X-rays are irradiated from the X-ray source to the designated sample portion with reference to the sample holder containing the sample or the reference identification unit provided on the sample, and the intensity of the generated fluorescent X-rays is measured by the detection means An X-ray fluorescence analyzer ,
The sample holder includes a ring-shaped mask that covers the periphery of the sample surface,
The reference identifying portion is a portion made of an identifying element different from other portions on the surface of the mask,
A fluorescent X-ray analyzer for detecting the position of the reference identifying unit by measuring the intensity of fluorescent X-rays of the identifying element generated from the mask of the sample holder rotated around a central axis by the detecting means.
JP2002199527A 2002-07-09 2002-07-09 X-ray fluorescence analyzer Expired - Fee Related JP3629542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199527A JP3629542B2 (en) 2002-07-09 2002-07-09 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199527A JP3629542B2 (en) 2002-07-09 2002-07-09 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2004045064A JP2004045064A (en) 2004-02-12
JP3629542B2 true JP3629542B2 (en) 2005-03-16

Family

ID=31706639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199527A Expired - Fee Related JP3629542B2 (en) 2002-07-09 2002-07-09 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3629542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655018B2 (en) 2006-04-03 2011-03-23 ソニー株式会社 Display device, data processing method and data processing system using the display device
JP4514785B2 (en) * 2007-11-29 2010-07-28 株式会社リガク Total reflection X-ray fluorescence analyzer
JP5470527B2 (en) * 2011-12-19 2014-04-16 株式会社リガク X-ray fluorescence analyzer
JP6559601B2 (en) * 2016-03-23 2019-08-14 信越半導体株式会社 Detection apparatus and detection method

Also Published As

Publication number Publication date
JP2004045064A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US9625257B2 (en) Coordinate measuring apparatus and method for measuring an object
US20080285710A1 (en) Processes and a device for determining the actual position of a structure of an object to be examined
TWI388821B (en) X-ray fluorescence spectrometer and x-ray fluorescence analyzing method
JP2011019707A (en) X-ray imaging device, control method for x-ray imaging device, and program
US9128029B2 (en) X-ray analysis apparatus
US9074992B2 (en) X-ray diffraction apparatus and X-ray diffraction measurement method
US20100118027A1 (en) Method and measuring arrangement for producing three-dimensional images of measuring objects by means of invasive radiation
JP2017211380A (en) Two-dimensional x-ray detector position calibration and correction with diffraction pattern
JP4589882B2 (en) Back reflection X-ray diffraction image observation device
JP3629542B2 (en) X-ray fluorescence analyzer
JP2005241571A (en) X-ray analytical equipment
US20130129052A1 (en) Method and its apparatus for x-ray diffraction
JPH05126768A (en) Fluorescent x-ray analyzing method
EP3671111A1 (en) Method for calibrating a 3d camera for patient thickness measurements
US5872830A (en) Device and method of imaging or measuring of a radiation source
JPH1144662A (en) Minute part x-ray analysis device
JP3049313B2 (en) X-ray imaging analysis method and apparatus
JPH03209119A (en) X-ray ct apparatus
JP2004045067A (en) Fluorescent x-ray analyzer
JP3765530B2 (en) X-ray measuring method and X-ray apparatus
JP2000258366A (en) Minute part x-ray diffraction apparatus
JPH0358058B2 (en)
JPS6118129B2 (en)
JP3664483B2 (en) Pole measurement method
JP3612701B2 (en) X-ray fluorescence analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Ref document number: 3629542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350