JP3624239B2 - Liquid plasma generator, thin film forming method, and silicon carbide film - Google Patents

Liquid plasma generator, thin film forming method, and silicon carbide film Download PDF

Info

Publication number
JP3624239B2
JP3624239B2 JP2002313979A JP2002313979A JP3624239B2 JP 3624239 B2 JP3624239 B2 JP 3624239B2 JP 2002313979 A JP2002313979 A JP 2002313979A JP 2002313979 A JP2002313979 A JP 2002313979A JP 3624239 B2 JP3624239 B2 JP 3624239B2
Authority
JP
Japan
Prior art keywords
liquid
bubbles
generating
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002313979A
Other languages
Japanese (ja)
Other versions
JP2004152523A5 (en
JP2004152523A (en
Inventor
洋通 豊田
信福 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002313979A priority Critical patent/JP3624239B2/en
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to KR1020047015057A priority patent/KR100709923B1/en
Priority to AU2003221072A priority patent/AU2003221072A1/en
Priority to US10/507,919 priority patent/US7067204B2/en
Priority to PCT/JP2003/004139 priority patent/WO2003086615A1/en
Priority to EP03715684A priority patent/EP1504813A4/en
Priority to CNB038074613A priority patent/CN100336586C/en
Publication of JP2004152523A publication Critical patent/JP2004152523A/en
Publication of JP2004152523A5 publication Critical patent/JP2004152523A5/ja
Application granted granted Critical
Publication of JP3624239B2 publication Critical patent/JP3624239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体中においてプラズマを発生させるための装置および液体中においてプラズマを発生させて薄膜を形成する技術に関するものである。
【0002】
【従来の技術】
従来より、プラズマを用いた蒸着技術として気相プラズマによる蒸着技術が幅広く利用されている。たとえば特開平10−81589号公開特許公報にはプラズマCVD法によってシリコンまたは立方晶シリコンカーバイトの表面にダイヤモンド膜を形成することが記載されている。また、第4回愛媛大学全学シンポジウムの予稿集第56頁には超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成に関する研究が記載されている。
【0003】
【特許文献1】
特開平10−81589号公報
【非特許文献】
野村 信福、豊田 洋通、「第4回愛媛大学全学シンポジウム予稿集」、愛媛大学全学シンポジウム実施準備委員会、平成13年11月12日、p.56
【0004】
【発明が解決しようとする課題】
【0005】
特開平10−81589号公報に記載の方法等プラズマCVD法では蒸着物質を大量に合成することは困難である。従って、ある程度厚みのある膜を形成しようとすれば、長時間を要する。あえて蒸着速度を上げるために、メタン等の原材料物質を急速に供給することは危険を招くことにもなりかねない。また、気相で高エネルギーのプラズマを発生させると高温になり、熱に弱い基板材料へ蒸着することはできない。一方、第4回愛媛大学全学シンポジウムの予稿集第56頁に記載の超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成は、液体中でプラズマを発生させようとする極めて有望な考え方ではあるが、当該文献および発表は、この研究を開始するに当たっての方針を発表したものでありその詳細は全く記載されておらず、同発表者であり本願発明者によってなされた特願2002−98193に係る発明において具体的なものとして完成されている。これにより、液中プラズマが始めて実現されるが、プラズマ発生装置には超音波発生装置が必要である。本発明の目的は、液体中において高エネルギーのプラズマを発生する簡易な方法、装置および液体中において高エネルギーのプラズマを発生させてアモルファス状炭素膜形成を行う方法を提供することである。
【課題を解決するための手段】
【0006】
上記の課題を解決するために、本発明に係る液中プラズマ発生装置は、液体中で気泡を発生させるための加熱手段または真空装置、或いはその両者と、液中に電磁波を放射するための電磁波プローブを有するものである。加熱手段として、膜を形成する対象の基材を加熱する手段を設けることもできる。本発明に係る薄膜形成方法は、有機物を含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にアモルファス状炭素の膜を形成するものである。また、シリコンを含む液中で気泡を発生させるとともに、電磁波を照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にシリコンカーバイトの膜を形成するものでもよい。
【発明の実施の形態】
【0007】
本発明に係る液中プラズマ発生装置および薄膜形成方法の実施の形態について、実施例に基づいて詳細に説明する。
【0008】
【実施例1】
図1は本発明の第1の実施例を示す説明図である。容器1の内部には液体2が入れられている。液体2は発生するプラズマの用途に応じて様々なものが選択できる。表面蒸着を行う場合には、蒸着物質の原料となる液体や蒸着物質の原料を含む溶液等を使用する。また、ダイヤモンド膜やアモルファス炭素膜を形成するために、膜の原料となる炭素を含む液体が使用できる。特に水素を含む炭化水素を使用すると蒸着時にダイヤモンド層中に発生するグラファイトを還元して排除するため純粋なダイヤモンド膜の蒸着に有利である。特にドデカン(C1226)は室温でも液体でありかつ粘性が小さく電磁波が減衰しにくいので有効である。本実施例においてもドデカンを使用する。液体2の中には電極3が設けられている。電極3には図示しない発振回路が接続されており、高周波が供給される。電極3上では電磁波が発生するが、本実施例では電磁波を電極先端に集中させるようにしている。このため電極先端は電磁波により誘導加熱される。ここで発生した熱により、電極3と接する液体2は加熱され、沸騰して気泡4が発生する。すなわち、本実施例においては、電極3は気泡を発生させるための加熱手段としても作用する。また、電極3は電磁波プローブとして作用し、電極3に集中された電磁波は液体2に放射される。気泡4の内部はプラズマが発生しやすい状態になっているが、ここに強力な電磁波を照射することによりプラズマが形成される。本実施例においては、液体容器1を覆うようにさらに大きな容器6が設けられており、真空ポンプにより容器6内を減圧できるようにしてある。減圧することは必ずしも必要ではないが、気泡の発生およびプラズマの生成を容易にするという利点がある。ここでは、容器1の内部の気圧を10Pa程度に減圧した。このようにして、高温・高エネルギーのプラズマが得られるが、プラズマの発生は気泡内やその周辺に限られるため、マクロには低温な液体であり、安全かつ容易に取り扱うことができる。また、液中で発生するプラズマであるため、液体を保持できる程度の簡易な容器であれば、容器内にプラズマを閉じ込めることができ、気相プラズマのようなプラズマを閉じ込めるための困難さはない。
【0009】
放射する電磁波は13MHz〜2.5GHz程度の周波数から用途に応じて選択すればよいが、本例においてはダイヤモンド状膜の形成に効果的であるとともに、加熱により気泡を発生させるのに有利なように2.5GHzの周波数で100Wの出力の電磁波を使用した。
【0010】
気泡中に発生したプラズマは気泡と共に上昇し、基材5に接触する。これにより、高エネルギーのプラズマとなった炭素が基材5の表面に膜を形成する。図2に形成された膜を表面粗さ計で測定したグラフを示す。3分間の膜形成時間でシリコン基板の基材5の表面には450μmという厚い膜が形成された。すなわち、膜の形成速度は9mm/hに達しており、従来の気相プラズマによるダイヤモンド状膜の形成速度が低圧力型で10μm/h、高圧力型で300μm/h程度であるのに比べて、格段に高速の膜形成速度が実現されている。
【0011】
図3に形成された膜のラマンスペクトルを示す。1335cm−1あたりと1560cm−1あたりに2つの山をもつ広がった形のスペクトルとなっており、膜の構造がアモルファスであることがわかる。膜の硬度はビッカース硬さでHv=1500程度であり、摩擦抵抗が低い。本実施例で形成される膜は、刃物などの硬度を高めて耐久性を向上させたり、化学的に不活性であることを利用して耐腐食性を向上させたり、接触する部分に適用して潤滑性を向上させたりする用途に使用することができる。
【0012】
本実施例においては、電極3は気泡発生手段と電磁波発生手段(電磁波プローブ)の機能を兼ね備え、電磁波供給回路も1組で済むので構成が簡素となる利点がある。また、膜形成を行う対象の基材5を直接通電加熱しないので、木材や紙等の導電性のない素材や合成樹脂・生体材料等の熱に弱い素材に対しても表面に膜を形成することができる。
【0013】
【実施例2】
本発明の第2の実施例を図4に示す。本実施例においては、基材5を加熱するための電源8が設けられており、基材5へ通電して加熱するようになっている。本実施例では基材5としてシリコン基板を用いる。このように電磁波放射手段(電磁波プローブ)とは別に加熱手段を設けることにより、気泡の発生を容易にし、ひいてはプラズマの発生を容易にできるという利点がある。例えばシリコン基板に通電し、700℃程度に加熱することにより、表面にダイヤモンド膜を形成することができる。本実施例でも電磁波を液中に放射する電極3は基材5の下に設けているが、これにより基材5の下側に発生する気泡に対して集中的に電磁波を照射することができる。基材5の上側で発生する気泡は上昇してすぐに基材5から遠ざかってしまうが、下側で発生する気泡は基材5に接しながらしばらくとどまるので、気泡内で発生したプラズマを効果的に基板に接触されることができる。
【0014】
本実施例においては、液体2としてドデカンとシリコンオイルを1:1に混合したものを用い、シリコン板の基材5にシリコンカーバイトの膜を生成した。電磁波は周波数が2.5GHzで出力が100Wであり、3分間照射したところ、基材5上に厚さ1.2mmのシリコンカーバイト膜を生成することができた。従って、膜の形成速度は0.4mm/minに達する。本実施例においても、真空ポンプを作動させて、容器1内を10Pa程度に減圧した。このようにして生成したシリコンカーバイト膜は硬度が高く、切削工具の硬度を向上させて寿命や切れ味を向上させること等に適用することができる。
【0015】
以上、アモルファス炭素膜やシリコンカーバイト膜等の薄膜形成の実施例により本発明に係るプラズマ発生装置の実施の形態を説明した。説明したとおり、本発明に係るプラズマ発生装置は膜形成に特に有用なものであるが、適用範囲はこれにとどまらない。液中で局所的には高密度・高温の高エネルギーのプラズマを簡易かつ安全に発生することができ、有機物を含む液体に適用することによりカーボンナノチューブやフラーレン等のニューカーボンの生成をすることができる。この場合、生成されたフラーレン等はベンゼン等に溶かして抽出し、ベンゼンを気化する等により回収する。また、フロン、ハロン、ダイオキシン等の有害な難分解物質を分解し無害化するための高速化学反応装置として適用することもできる。
【0016】
【発明の効果】
本発明に係るプラズマ発生装置は、気泡を発生させるとともに気泡へ電磁波を照射することにより、液中で高エネルギーのプラズマを簡易かつ安全に発生することができる。これは、ダイヤモンド状のアモルファス炭素膜等に生成するのに効果的である。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す断面図である。
【図2】形成されたアモルファス炭素膜の表面形状を示すグラフである。
【図3】形成されたアモルファス炭素膜のラマンスペクトルを示すグラフである。
【図4】本発明の第2の実施例を示す断面図である。
【符号の説明】
1.液体容器
2.液体
3.電極
4.気泡
5.基材
6.容器
7.真空ポンプ
8.電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for generating plasma in a liquid and a technique for forming a thin film by generating plasma in a liquid.
[0002]
[Prior art]
Conventionally, vapor deposition technology using vapor phase plasma has been widely used as a deposition technology using plasma. For example, Japanese Laid-Open Patent Publication No. 10-81589 discloses that a diamond film is formed on the surface of silicon or cubic silicon carbide by plasma CVD. Also, page 56 of the 4th Ehime University Campus Symposium describes research on generation of plasma in liquid by superposition of ultrasonic cavitation and local electromagnetic field.
[0003]
[Patent Document 1]
JP-A-10-81589 [Non-patent Document]
Nomura Shinfuku, Toyoda Hiromichi, "4th Ehime University Campus Symposium", Ehime University Campus Symposium Preparatory Committee, November 12, 2001, p. 56
[0004]
[Problems to be solved by the invention]
[0005]
In plasma CVD methods such as the method described in JP-A-10-81589, it is difficult to synthesize vapor deposition materials in large quantities. Therefore, it takes a long time to form a film having a certain thickness. In order to increase the deposition rate, the rapid supply of raw materials such as methane can be dangerous. Further, when high energy plasma is generated in the gas phase, the temperature becomes high, and it cannot be deposited on a substrate material that is vulnerable to heat. On the other hand, the generation of plasma in liquid by superposition of ultrasonic cavitation and local electromagnetic field described on page 56 of the 4th Ehime University Campus Symposium is a very promising idea to generate plasma in liquid. However, the document and the announcement are the ones that announced the policy for starting this research, the details are not described at all, and it is related to Japanese Patent Application No. 2002-98193 made by the presenter and the present inventor. It has been completed as specific in the invention. Thereby, submerged plasma is realized for the first time, but the plasma generator requires an ultrasonic generator. An object of the present invention is to provide a simple method and apparatus for generating high energy plasma in a liquid and a method for forming an amorphous carbon film by generating high energy plasma in a liquid.
[Means for Solving the Problems]
[0006]
In order to solve the above-described problems, a plasma generator in liquid according to the present invention includes a heating means and / or a vacuum apparatus for generating bubbles in a liquid, or both, and an electromagnetic wave for radiating electromagnetic waves in the liquid. It has a probe. As a heating means, a means for heating a substrate on which a film is to be formed can be provided. The thin film forming method according to the present invention generates bubbles in a liquid containing an organic substance, irradiates electromagnetic waves, generates plasma in the bubbles, and brings the bubbles into contact with the substrate, thereby forming an amorphous state on the substrate. A carbon film is formed. In addition, a film of silicon carbide is formed on a substrate by generating bubbles in a liquid containing silicon, irradiating electromagnetic waves, generating plasma in the bubbles, and bringing the bubbles into contact with the substrate. But you can.
DETAILED DESCRIPTION OF THE INVENTION
[0007]
Embodiments of an in-liquid plasma generator and a thin film forming method according to the present invention will be described in detail based on examples.
[0008]
[Example 1]
FIG. 1 is an explanatory view showing a first embodiment of the present invention. A liquid 2 is placed inside the container 1. Various liquids 2 can be selected according to the application of the generated plasma. In the case of performing surface vapor deposition, a liquid as a raw material for the vapor deposition material, a solution containing the vapor deposition material, or the like is used. In addition, in order to form a diamond film or an amorphous carbon film, a liquid containing carbon as a film raw material can be used. In particular, the use of a hydrocarbon containing hydrogen is advantageous for vapor deposition of a pure diamond film because graphite generated in the diamond layer during vapor deposition is reduced and eliminated. In particular, dodecane (C 12 H 26 ) is effective because it is liquid even at room temperature and has low viscosity and is difficult to attenuate electromagnetic waves. Also in this embodiment, dodecane is used. An electrode 3 is provided in the liquid 2. An oscillation circuit (not shown) is connected to the electrode 3, and a high frequency is supplied. An electromagnetic wave is generated on the electrode 3, but in this embodiment, the electromagnetic wave is concentrated on the tip of the electrode. For this reason, the electrode tip is induction-heated by electromagnetic waves. Due to the heat generated here, the liquid 2 in contact with the electrode 3 is heated and boiled to generate bubbles 4. That is, in the present embodiment, the electrode 3 also functions as a heating means for generating bubbles. The electrode 3 acts as an electromagnetic wave probe, and the electromagnetic wave concentrated on the electrode 3 is radiated to the liquid 2. The inside of the bubble 4 is in a state where plasma is likely to be generated, but plasma is formed by irradiating a strong electromagnetic wave here. In this embodiment, a larger container 6 is provided so as to cover the liquid container 1, and the inside of the container 6 can be depressurized by a vacuum pump. Although it is not always necessary to reduce the pressure, there is an advantage of facilitating bubble generation and plasma generation. Here, the pressure inside the container 1 was reduced to about 10 4 Pa. In this way, high-temperature and high-energy plasma can be obtained. However, since the generation of plasma is limited to the inside of the bubble and the periphery thereof, the macro is a low-temperature liquid and can be handled safely and easily. In addition, since the plasma is generated in the liquid, if the container is simple enough to hold the liquid, the plasma can be confined in the container, and there is no difficulty in confining the plasma such as gas phase plasma. .
[0009]
The electromagnetic wave to be radiated may be selected from a frequency of about 13 MHz to 2.5 GHz according to the application. In this example, it is effective for forming a diamond-like film and is advantageous for generating bubbles by heating. In addition, an electromagnetic wave having an output of 100 W at a frequency of 2.5 GHz was used.
[0010]
The plasma generated in the bubbles rises with the bubbles and contacts the substrate 5. Thereby, the carbon that has become high-energy plasma forms a film on the surface of the substrate 5. The graph which measured the film | membrane formed in FIG. 2 with the surface roughness meter is shown. A film having a thickness of 450 μm was formed on the surface of the base material 5 of the silicon substrate in a film formation time of 3 minutes. That is, the film formation rate reaches 9 mm / h, compared to the conventional diamond-type film formation rate by vapor phase plasma of 10 μm / h for the low pressure type and about 300 μm / h for the high pressure type. A remarkably high film formation speed has been realized.
[0011]
FIG. 3 shows the Raman spectrum of the film formed. 1335cm per -1 per the 1560 cm -1 has a spectrum spread form with two peaks, it can be seen that the structure of the film is amorphous. The hardness of the film is Vickers hardness of about Hv = 1500, and the frictional resistance is low. The film formed in this example increases the hardness of a blade or the like to improve the durability, improves the corrosion resistance by utilizing the chemical inertness, or is applied to the contact portion. It can be used for applications that improve lubricity.
[0012]
In this embodiment, the electrode 3 has the functions of bubble generating means and electromagnetic wave generating means (electromagnetic wave probe), and there is an advantage that the configuration is simple because only one set of electromagnetic wave supply circuits is required. In addition, since the base material 5 to be subjected to film formation is not directly energized and heated, a film is formed on the surface even for non-conductive materials such as wood and paper, and heat-sensitive materials such as synthetic resins and biological materials. be able to.
[0013]
[Example 2]
A second embodiment of the present invention is shown in FIG. In the present embodiment, a power supply 8 for heating the base material 5 is provided, and the base material 5 is energized and heated. In this embodiment, a silicon substrate is used as the base material 5. Thus, by providing the heating means separately from the electromagnetic wave radiation means (electromagnetic wave probe), there is an advantage that the generation of bubbles can be facilitated and thus the generation of plasma can be facilitated. For example, when a silicon substrate is energized and heated to about 700 ° C., a diamond film can be formed on the surface. Also in this embodiment, the electrode 3 that radiates electromagnetic waves into the liquid is provided under the base material 5, but this makes it possible to irradiate the electromagnetic waves intensively to the bubbles generated under the base material 5. . The bubbles generated on the upper side of the base material 5 rise and move away from the base material 5 immediately, but the bubbles generated on the lower side stay for a while while in contact with the base material 5, so that the plasma generated in the bubbles is effective. The substrate can be contacted.
[0014]
In the present example, a mixture of dodecane and silicon oil in a ratio of 1: 1 was used as the liquid 2, and a silicon carbide film was formed on the substrate 5 of the silicon plate. The electromagnetic wave had a frequency of 2.5 GHz and an output of 100 W. When irradiated for 3 minutes, a silicon carbide film having a thickness of 1.2 mm could be formed on the substrate 5. Therefore, the film formation rate reaches 0.4 mm / min. Also in the present example, the inside of the container 1 was depressurized to about 10 4 Pa by operating the vacuum pump. The silicon carbide film thus produced has a high hardness, and can be applied to improve the hardness of the cutting tool to improve the life and sharpness.
[0015]
The embodiments of the plasma generating apparatus according to the present invention have been described above by the examples of forming a thin film such as an amorphous carbon film or a silicon carbide film. As explained, the plasma generator according to the present invention is particularly useful for film formation, but the scope of application is not limited to this. High density and high temperature high energy plasma can be generated easily and safely locally in the liquid, and it can generate new carbon such as carbon nanotubes and fullerenes by applying it to liquids containing organic matter. it can. In this case, the produced fullerene or the like is dissolved in benzene and extracted, and recovered by vaporizing benzene or the like. Moreover, it can also be applied as a high-speed chemical reaction apparatus for decomposing and detoxifying harmful hardly decomposed substances such as chlorofluorocarbon, halon, and dioxin.
[0016]
【The invention's effect】
The plasma generator according to the present invention can easily and safely generate high-energy plasma in a liquid by generating bubbles and irradiating the bubbles with electromagnetic waves. This is effective for producing a diamond-like amorphous carbon film or the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a graph showing a surface shape of a formed amorphous carbon film.
FIG. 3 is a graph showing a Raman spectrum of the formed amorphous carbon film.
FIG. 4 is a cross-sectional view showing a second embodiment of the present invention.
[Explanation of symbols]
1. 1. Liquid container Liquid 3. Electrode 4. Bubble 5 Base material 6. Container 7. Vacuum pump8. Power supply

Claims (8)

液体中で気泡を発生させるための加熱手段と、液体中で電磁波を継続的に放射するための電磁波プローブを有する液中プラズマ発生装置。A heating means for generating a bubble in the liquid, liquid plasma generator having an electromagnetic probe for continuously radiate electromagnetic waves in the liquid. 液体中で気泡を発生させるための真空装置と、液体中で電磁波を継続的に放射するための電磁波プローブを有する液中プラズマ発生装置。Liquid plasma generator having an electromagnetic probe for continuously emitting a vacuum device, an electromagnetic wave in the liquid for generating a bubble in the liquid. 液体中で気泡を発生させるための加熱手段を有する請求項2に記載の液中プラズマ発生装置。The in-liquid plasma generator according to claim 2, further comprising a heating unit for generating bubbles in the liquid. 膜を形成する対象の基材を加熱する手段を有する請求項1または請求項3に記載の液中プラズマ発生装置。The in-liquid plasma generator of Claim 1 or Claim 3 which has a means to heat the base material of the object which forms a film | membrane. シリコンを含む液体を入れる容器と、液体中で気泡を発生させるための気泡発生手段と、液体中電磁波を継続的に放射するための電磁波プローブを有し、シリコンカーバイト膜を形成する液中プラズマ発生装置。A liquid containing silicon containing liquid, a bubble generating means for generating bubbles in the liquid, and an electromagnetic wave probe for continuously radiating electromagnetic waves in the liquid, and forming a silicon carbide film Plasma generator. 有機物を含む液中で気泡を発生させるとともに、電磁波プローブにより液体中で電磁波を継続的に照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にアモルファス状炭素の膜を形成する薄膜形成方法。In addition to generating bubbles in a liquid containing organic matter, and continuously irradiating electromagnetic waves in the liquid with an electromagnetic probe to generate plasma in the bubbles and bringing the bubbles into contact with the substrate, it is amorphous on the substrate. A thin film forming method for forming a carbon film. シリコンを含む液中で気泡を発生させるとともに、電磁波プローブにより液体中で電磁波を継続的に照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上にシリコンカーバイトの膜を形成する薄膜形成方法。Silicon bubbles are generated on the substrate by generating bubbles in a liquid containing silicon and continuously irradiating electromagnetic waves in the liquid with an electromagnetic probe to generate plasma in the bubbles and bringing the bubbles into contact with the substrate. A thin film forming method for forming a bite film. シリコンを含む液中で気泡を発生させるとともに、電磁波プローブにより液体中で電磁波を継続的に照射し、気泡中にプラズマを発生させ、気泡を基材に接触させることにより、基材上に形成されるシリコンカーバイト膜。It is formed on the substrate by generating bubbles in the liquid containing silicon, and continuously irradiating electromagnetic waves in the liquid with an electromagnetic probe , generating plasma in the bubbles, and bringing the bubbles into contact with the substrate. Silicon carbide film.
JP2002313979A 2002-04-01 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film Expired - Lifetime JP3624239B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002313979A JP3624239B2 (en) 2002-10-29 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film
AU2003221072A AU2003221072A1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
US10/507,919 US7067204B2 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
PCT/JP2003/004139 WO2003086615A1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
KR1020047015057A KR100709923B1 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
EP03715684A EP1504813A4 (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
CNB038074613A CN100336586C (en) 2002-04-01 2003-03-31 Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313979A JP3624239B2 (en) 2002-10-29 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film

Publications (3)

Publication Number Publication Date
JP2004152523A JP2004152523A (en) 2004-05-27
JP2004152523A5 JP2004152523A5 (en) 2005-02-10
JP3624239B2 true JP3624239B2 (en) 2005-03-02

Family

ID=32458427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313979A Expired - Lifetime JP3624239B2 (en) 2002-04-01 2002-10-29 Liquid plasma generator, thin film forming method, and silicon carbide film

Country Status (1)

Country Link
JP (1) JP3624239B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
KR100934139B1 (en) * 2004-12-03 2009-12-29 가부시키가이샤 도요다 지도숏키 Submerged plasma electrode, submerged plasma generating apparatus and submerged plasma generating method
JP4678718B2 (en) * 2005-03-14 2011-04-27 国立大学法人名古屋大学 Plasma generator
JP5518281B2 (en) * 2005-03-25 2014-06-11 三菱レイヨン株式会社 Surface treatment method
JP4665111B2 (en) * 2005-03-30 2011-04-06 株式会社豊田自動織機 Method for manufacturing silicon oxide film
DE112006000772T5 (en) * 2005-03-30 2008-01-24 Ehime University Process for producing an amorphous carbon film
WO2007063987A1 (en) * 2005-12-02 2007-06-07 Osaka University Method for processing/washing with ultra-pure water plasma foams and apparatus for the method
JP5295485B2 (en) * 2006-02-01 2013-09-18 株式会社栗田製作所 Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus
JP5156913B2 (en) * 2006-08-09 2013-03-06 本多電子株式会社 Plasma processing apparatus and plasma processing method
JP4930918B2 (en) * 2006-12-18 2012-05-16 国立大学法人愛媛大学 Diamond manufacturing method
JP4915697B2 (en) * 2007-06-14 2012-04-11 株式会社豊田自動織機 Film forming method using liquid plasma and liquid plasma forming apparatus
US8685360B2 (en) 2008-02-07 2014-04-01 Kabushiki Kaisya Toyota Jidosyokki Method for the production of diamond
JP5182989B2 (en) 2008-03-07 2013-04-17 株式会社豊田自動織機 Liquid plasma film forming apparatus, liquid plasma electrode, and film forming method using liquid plasma
JP5247323B2 (en) * 2008-09-16 2013-07-24 株式会社豊田自動織機 Submerged plasma film forming method, coating film formed by the method, and submerged plasma film forming apparatus
JP5246710B2 (en) * 2009-06-16 2013-07-24 国立大学法人愛媛大学 Film forming method using liquid plasma and liquid plasma forming apparatus
KR101150004B1 (en) 2009-09-02 2012-05-31 한국기초과학지원연구원 Liquid plasma discharge generation apparatus
WO2016129431A1 (en) 2015-02-13 2016-08-18 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for substance to be treated, and method for producing mixed liquid of treated substance and dispersion medium produced thereby

Also Published As

Publication number Publication date
JP2004152523A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3624239B2 (en) Liquid plasma generator, thin film forming method, and silicon carbide film
JP5182989B2 (en) Liquid plasma film forming apparatus, liquid plasma electrode, and film forming method using liquid plasma
JP4909741B2 (en) Electrode for submerged plasma, submerged plasma generator and submerged plasma generating method
US7067204B2 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
JP3624238B2 (en) Method and apparatus for generating plasma
EP2674396A1 (en) Method for producing graphene and graphene
JP2009054557A (en) In-liquid plasma generating device
Roch et al. Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning
JPS60221395A (en) Manufacture of diamond thin film and its use
JP4446030B2 (en) Liquid plasma generator and liquid plasma generation method
KR100883940B1 (en) Process for producing amorphous carbon film
Escobar-Alarcón et al. Hydrogen production by laser irradiation of metals in water under an ultrasonic field: A novel approach
JP2004152523A5 (en)
JP3769625B1 (en) Liquid plasma generator and liquid plasma generation method
JP4930918B2 (en) Diamond manufacturing method
CN112645683B (en) Processing method of graphene film with thermal control function
JPS60122796A (en) Vapor phase synthesis method of diamond
Molian et al. CO2 laser deposition of diamond thin films on electronic materials
JP4370378B2 (en) Porous membrane, production apparatus and production method thereof
Al Rafi et al. Effects of Argon (Ar) on Synthesis and Photocatalytic Activities of Graphene
JP2005230753A (en) Plasma reactor in liquid, and reaction method and crystal synthetic method by plasma in liquid
JP5247323B2 (en) Submerged plasma film forming method, coating film formed by the method, and submerged plasma film forming apparatus
Biswas Carbonization of Polyimide using CO2 laser and Femtosecond laser for Sensor Applications
JPH0369878B2 (en)
JP2005235662A (en) Plasma device in liquid, and plasma generating method in liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040317

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Ref document number: 3624239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term