JP3615594B2 - Piping laying method and piping structure - Google Patents

Piping laying method and piping structure Download PDF

Info

Publication number
JP3615594B2
JP3615594B2 JP18257695A JP18257695A JP3615594B2 JP 3615594 B2 JP3615594 B2 JP 3615594B2 JP 18257695 A JP18257695 A JP 18257695A JP 18257695 A JP18257695 A JP 18257695A JP 3615594 B2 JP3615594 B2 JP 3615594B2
Authority
JP
Japan
Prior art keywords
pipe
shaft
pipes
sheet
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18257695A
Other languages
Japanese (ja)
Other versions
JPH0931952A (en
Inventor
俊司 東
博彦 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP18257695A priority Critical patent/JP3615594B2/en
Publication of JPH0931952A publication Critical patent/JPH0931952A/en
Application granted granted Critical
Publication of JP3615594B2 publication Critical patent/JP3615594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シールド工法における立坑内に敷設する管を2次履工によって被覆する配管敷設方法及び配管構造に関し、詳しくは、配管構造が沈下しても、管の連結部が剪断破壊することがないようにしたものである。
【0002】
【従来の技術】
都市流域の下水道に使用される管の埋設工事においては、一般に管路の予定地に埋設溝を掘削する開削工法が採用されている。開削工法においては埋設溝を掘削するに際して、予め設定した管路の予定地を挟んだ両側に一対の矢板を打ち込み、土砂が崩れないようにした状態で、矢板間の土砂を掘削して埋設溝を構築する。そして、埋設溝内に管を敷設した後、埋設溝を土砂で埋め戻し、矢板を土中から引き抜く。
【0003】
このような開削工法において使用する矢板は、強度や施工性を向上させるために、板厚が厚いものであったり、あるいは「〔」形状と「〕」形状とを直列に連続させた折版である。したがって、矢板の板厚のために、あるいは「〔」形状の凹部に土が付着しやすいために、矢板を地中から引き抜いた跡に、空間が生じてしまう。矢板は管を埋設する埋設溝よりも深く打ち込まれているため、埋設溝よりも下側の土砂がこの空間内に砂が流れ込み、管が沈下してしまうといった不具合があった。
【0004】
このような不具合に鑑み、矢板を引き抜いた跡に生じる空間内に砂が流入しないようにした管の布設工法が、特開昭56−122433号公報に開示されている。この管の布設工法は、管の両側に流動防護塀を立て、この流動防護塀の杭を深く打ち込むことを特徴とするものである。この流動防護塀によって、矢板を引き抜いた跡に生じる空間内に、土砂が流れ込むことを防止する。
【0005】
また、矢板の凹部に付着した土砂が抜き取られないようにした管の埋設施工方法が、特開昭60−175628号公報に開示されている。この管の埋設施工方法は、矢板の凹部と適合する凸部を形成した掻き落とし具を、埋設溝内の底部に設置して、埋設溝を埋め戻し、矢板を土中から引き抜くことを特徴とするものである。矢板を土中から引き抜いても、凹部に付着した土砂は、掻き落とし具によって掻き落とされるため、矢板を引き抜いた跡に、空間が生じることがなくなる。
【0006】
以上のような開削工法は管の外径よりも大きな間隔で矢板を土中に打ち込まなければならない。したがって、民家が密集して道路幅員が狭い場合など、作業面積が狭い場所においては、矢板を打ち込むことが困難である。また、地下埋設物が輻輳している場所においては、地下埋設物よりも深く、土砂を掘削することが困難である。このような開削工法を採用できないような場所においては、シールド工法が採用される。
【0007】
シールド工法はシールド機械が管路の予定地を横穴式に掘り進み、同時に掘った部分をコンクリートや鋼製のセグメントによって内側を覆ってトンネルを完成させる方法である。シールド機械は、ある程度のスペースを確保できる場所に構築した立坑から堀り進める。立坑は図5に示すように矢板1(簡単のため折版状に図示せず)によって土留めし、シールド機械(図示せず)が堀り進む面に立坑壁面2を形成する。立坑壁面2の底部からシールド機械が横穴式に掘り進み、セグメント3で覆われたトンネル4内には、管10はスペーサ5によって保持された状態で挿通される。
【0008】
トンネル4内の管10は、立坑A内に立設するマンホール20と管11によって連結する。この立坑A内の管11の外周が2次履工30によって被覆されると、配管構造が完成する。2次履工は、トンネル4内を覆ったものと同じセグメント3を360 °巻装するか、あるいは図6に示すように、矢板1との間に隙間を空けたコンクリートによって全周、被覆したものである。このようにしてマンホール20とトンネル4内の管10とを連結した管11に2次履工30を被覆して、配管構造が完成した後、立坑A内に土が埋め戻され、矢板1が土中から引き抜かれると、工事が完了する。
【0009】
【発明が解決しようとする課題】
シールド工法においても開削工法と同様、立坑Aを土砂によって埋め戻した後、矢板1を土中から引き抜く。すると、矢板1を引き抜いた跡に生じる空間内に土砂が流れ込み、管11の外周に2次履工30を被覆した配管構造が没下してしまう。
【0010】
2次履工30がセグメント3を巻装したものであると、2次履工30と管11との間に空間がある。したがって、配管構造が沈下しても、2次履工30のみ沈下し、管11は沈下しないため、特に立坑壁面2の部分でトンネル4内の管10と連結している部分に剪断力が加えられることがなく、その連結部の管11は破壊されない。しかし、セグメント3を巻装するには、トンネル4内では周囲の土砂に押し当てることによって、比較的容易に組み立てることができるが、立坑A内では保持されるものがないため、大変、面倒な作業となる。
【0011】
他方、2次履工30として施工性に優れたコンクリートを使用すると、2次履工30と管11とが一体化される。すると、矢板1を土中から引き抜いた跡に生じる空間内に砂が流れ込み、管11を2次履工30によって被覆した配管構造が沈下した際に、2次履工30とともに管11も沈下する。この管11はトンネル4内に挿通されている管10と連結されているため、その連結部において剪断力が生じ、2次履工30が破損されることがあった。
【0012】
管11の外周にコンクリート製の2次履工30を被覆した配管構造が沈下しないようにするため、開削工法において開示された特開昭56−122433号公報に開示された手段、すなわちコンクリートを被覆した管の両側に、流動防護塀を構築し、矢板1を引き抜いた跡に生じる空間内に土砂が流れ込まないようにすることも考えられる。しかし、開削工法における流動防護塀は、コンクリートによって被覆していない管の両側に構築するものであり、シールド工法のように管11の外周をコンクリートによって被覆する立坑A内では、流動防護塀を構築する余分のスペースがない。したがって、シールド工法を採用する場合の立坑に特開昭56−122433号公報に開示された手段を使用することは困難である。
【0013】
また、矢板1を引き抜いた跡に空間が生じないように、特開昭60−175628号公報に開示された手段、すなわち「〔」形状の凹部と適合する凸部を形成した掻き落とし具を使用することも考えられる。しかし、掻き落とし具は矢板1の方へ傾斜するように設置しても、完全に凹部内に付着した土を完全に掻き落とすことは不可能であった。すなわち、掻き落とし具を使用しても、矢板1を引き抜いた跡には空間が生じてしまい、配管構造は立坑A内で沈下してしまうといった不具合があった。
【0014】
そこで本発明は、管を2次履工によって被覆した配管構造が立坑内で沈下しても、管の連結部に加えられる剪断力が弱くなるようにした配管敷設方法及び配管構造を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するための第1の手段は、一対の矢板同士の間を掘削して立坑を設け、該立坑内に複数の管を配置し、該管同士又は該管と立坑壁面から横穴式に掘り進んだトンネル内の埋設管とを接続し、接続後に該管の外周にエキスパンドポリスチロール又は天然ゴムシート又は合成ゴムシートのいずれかからなる緩衝材を介して2次履工を被覆し、上記接続部は2次履工内で変位を許容しつつ水密性を保持するような接続構造とされて配管構造が完成され、配管構造完成後に立坑内に土砂を埋め戻して矢板を引き抜くことを特徴とする配管敷設方法である。
【0016】
上記第1の手段によれば、配管構造が沈下しても、管の接続構造は2次履工内で変位できるため、管と2次履工内との間に介在させた緩衝材が変形して、管は2次履工内で撓んだ状態に沈下する。したがって、管の連結部を折れ曲げるような剪断力が弱められる配管敷設方法となるのである
【0017】
上記目的を達成するための第2の手段は、地中に埋設された複数の管を2次履工によって被覆した配管構造において、管の接続構造は2次履工内で変位を許容しつつ水密性を保持し、管の底部側に円弧状の踏板を配置し、管と踏板との間に緩衝材を介在させたことを特徴とする配管構造である。
【0018】
上記第2の手段によれば、配管構造が沈下しても、管の接続構造は2次履工内で変位できるため、管は2次履工内で撓んだ状態に変位する。管の変位量は、管と踏板との間に介在させた緩衝材によって、2次履工の沈下量よりも小さくなるため、管の連結部を折り曲げるような剪断力が弱められる配管構造となるのである。
【0019】
上記目的を達成するための第3の手段は、一対の矢板同士の間を掘削して立坑を設け、該立坑内に複数の管を配置し、該管同士又は該管と立坑壁面から横穴式に掘り進んだトンネル内の埋設管とを接続し、接続後に上記それぞれの管の外周にそれぞれ2次覆工を被覆し、該2次履工同士が、複数の管の継ぎ目個所の少なくとも2次履工天部側に、天然ゴムシート又は合成ゴムシート又は塩化ビニル樹脂製止水板のいずれかからなる変位を吸収する目地を介在されて被覆され、上記接続部は2次履工内で変位を許容しつつ水密性を保持するような接続構造とされて配管構造が完成され、配管構造完成後に立坑内に土砂を埋め戻して矢板を引き抜くことを特徴とする配管敷設方法である。
【0020】
上記第3の手段によれば、配管構造が沈下しても、管の接続構造は2次履工内で変位可能で、しかも管の継ぎ目の箇所であって、少なくとも2次履工の天部側に変位を吸収する目地を介在させたことにより、管は2次履工と一体に撓むことが可能となるため、管の連結部を折り曲げるような剪断力が弱められる配管敷設方法となるのである
【0021】
【発明の実施の形態】
本発明に係る実施の形態を図1ないし図4を参照して説明する。図1は、本発明に係る実施の形態1を示す地中の正面断面図である。図2は、本発明に係る実施の形態2を示す地中の正面断面図である。図3は、同じく本発明に係る実施の形態2を示す地中の側面断面図である。図4は、本発明に係る実施の形態3を示す地中の正面断面図である。なお、従来と同一部分は同一符号を付して、その説明は省略する。
【0022】
(実施の形態1)
実施の形態1は、一対の矢板(図示せず)の間を掘削して設けられた立坑A内に敷設した複数の管11と、この管11の外周を被覆するコンクリート製の2次履工30との間に緩衝材31を介在させ、管11が2次履工30内で変位することができるようにしたことを特徴とするものである。この管11は、管同士、又は立坑壁面2から横穴式に掘り込んだトンネル4内の管10と、又は立坑A内に立設したマンホール20とに連結する。管11と立坑壁面2との境界部、及び管11とマンホール20との境界部の接続構造12は、継手の内側にゴム輪をシールしたものとする。ゴム輪をシールしたものとすることにより、管11の連結部は水密性が確保されるとともに、ゴム輪の弾性によって管11が撓んで、2次履工30内で変位することができる。管11及び接続構造12の材質は、物理的特性や耐腐蝕性などが優れたFRPMとすることが望ましい。
【0023】
ただし、管11の連結部が撓むことができるようにすることにより、管11はコンクリート製であっても差し支えない。管11の連結部が撓みやすいようにするため、マンホールと立坑壁面2との間隔が3m以上の場合は、FRPM管の通常定尺が4mであるが、管11の長さは2m以下とする。また管11は2%管を標準として使用する。
【0024】
このような管11の外周を被覆する2次履工30と管11との間に介在させる緩衝材31としては、EPS(Expanded Polystyrol) 、天然ゴムシートや合成ゴムシートなどを使用する。緩衝材31を巻き付けた管11は接続構造12によって、立坑壁面2から構築されたトンネル4内に挿通されている管10と、マンホール20とに連結する。立坑壁面2とマンホール20との間隔が3m以上の場合は、複数の管11を連結するが、この連結部にも接続構造12を接続し、管11が撓むことができるようにする。このようにして立坑A内に管11を敷設した後、管11の外周をコンクリートの2次履工30によって被覆すると、配管構造が完成する。2次履工30はコンクリートの代替としてEPSを用いることもできる。
【0025】
管11の外周に2次履工30を被覆した配管構造が完成した後、立坑A内に土砂を埋め戻し、矢板1を土中から引き抜く。矢板1が引き抜かれた跡に空間が生じ、この空間内に土砂が流れ込むと、管11の外周に2次履工30を被覆した配管構造が沈下する。しかし、管11と2次履工30との間には緩衝材31が介在しており、しかも立坑A内には複数の管11が連結されて撓むことができるため、管11の天側の緩衝材31が圧縮され、管11の底側の緩衝材31が引っ張られる状態となる。したがって、管11の沈下量は2次履工30の沈下量よりも小さくなるため、管11とトンネル4内の管との連結部に加えられる剪断力が小さくなり、管11の連結部が損傷することを防止できる。
【0026】
(実施の形態2)
実施の形態2は立坑A内に敷設した管11と、この管11の外周を被覆するコンクリート製の2次履工30の底部内に、側面形状が円弧状の踏板32を配置し、さらに管11と踏板32との間に緩衝材31を介在させ、管11が2次履工30内で変位することができるようにしたことを特徴とするものである。踏板32はシールド工法によって施工されたトンネル4内を覆うセグメント3と同様、円弧状のチップを組み立てたものとすることができる。したがって、踏板32はトンネル4内のセグメント3の底部を延長させるようにする。踏板32は立坑Aの底面から保持して組み立てる。踏板32は管11の全周ではなく、底部のみ配置するため、容易に組み立てることができる。その踏板32の上面には緩衝材31を載置する。この緩衝材31は実施の形態1と同じく、EPS、天然ゴムシート、合成ゴムシートなどを用いる。管11の材質や長さは実施の形態1と同じである。
【0027】
したがって、立坑壁面2とマンホール20との間隔が3m以上の場合は、接続構造12によって複数の管11を連結する。複数の管11を連結する場合は、立坑壁面2側の管11の底部側にのみ踏板32を配置し、その踏板32と管11との間に緩衝材31を配置する。このような管11と立坑壁面2から構築したトンネル4内に挿通している管10及びマンホール20とを接続構造12によって連結した後、管11の外周をコンクリート又はEPSの2次履工30によって被覆すると配管構造が完成する。
【0028】
そして、立坑A内に土砂を埋め戻し、矢板1を引き抜いた跡に生じる空間内に土砂が流れ込むと、管11の底部側に踏板32と緩衝材31を介在させ、外周に2次履工30を被覆した配管構造が沈下する。しかし、管11は緩衝材31を介在して踏板32によって支えられているため、管11の沈下量は2次履工30の沈下量よりも小さくなる。しかも、トンネル4内の管10と連結している管11は、ゴム輪シール型の接続構造12によって撓むことができるため、管11の連結部に加えられる剪断力が弱められ、管11の連結部が損傷することを防止することができる。
【0029】
(実施の形態3)
実施の形態3は立坑A内に敷設した複数の管11の継ぎ目であって、管11の外周を被覆する少なくとも2次履工30の天部側に、変位を吸収する目地33を介在させたことを特徴とするものである。目地33の材質としては、天然ゴムシート、合成ゴムシートあるいは塩化ビニル製止水板などを使用する。管11の長さや材質及び接続構造12については、実施の形態1や実施の形態2と同じとする。
【0030】
立坑A内に敷設する複数本の管11は、立坑壁面2から構築したトンネル4内に挿通している管10及びマンホール20と連結する。そして、管11の継ぎ目であって管11の外周を被覆する少なくとも2次履工30の天部側に変位を吸収する目地33を介在するように、管11の外周を2次履工30で被覆すると配管構造が完成する。そして、立坑A内に土砂を埋め戻し、矢板1を引き抜いた跡に生じる空間内に土砂が流れ込むと、管11の外周を2次履工30で被覆した配管構造が沈下する。しかし、2次履工30は目地33の部分でズレが生じるため、複数の管11が折れ曲がった状態となる。したがって、トンネル4内に挿通している管10と連結している管11に加えられる剪断力が弱められ、管11が損傷することを防止できる。
【0031】
なお、本発明は上記3つの実施の形態に限定することなく、本発明の要旨内において設計変更することができる。例えば、管と2次履工との間に緩衝材を介在させるとともに、管の継ぎ目部の箇所の少なくとも2次履工の天部側に、変位を吸収する目地を介在させることもできる。
【0032】
【発明の効果】
本発明によれば、配管構造が沈下しても、管の連結部が撓むことができるため、管の連結部に加えられる剪断力が弱められる。したがって、管の損傷を防止することができ、この結果、修復工事などを少なくすることができる。しかも本発明は手間をかけずに施工することができるため、施工費を上昇させるといった不具合もない。
【図面の簡単な説明】
【図1】本発明に係る実施の形態1を示す地中の正面断面図である。
【図2】本発明に係る実施の形態2を示す地中の正面断面図である。
【図3】本発明に係る実施の形態2を示す地中の側面断面図である。
【図4】本発明に係る実施の形態3を示す地中の正面断面図である。
【図5】シールド工法の立坑部分の斜視図である。
【図6】従来のシールド工法の立坑部分の正面断面図である。
【符号の説明】
A 立坑
11 管
12 接続構造
30 2次履工
31 緩衝材
32 踏板
33 目地
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piping laying method and a piping structure for covering a pipe laid in a shaft in a shield method by secondary construction , and more specifically, even if the piping structure sinks, the connecting portion of the pipe may be sheared and broken. It is something that is not.
[0002]
[Prior art]
In burial work of pipes used for sewerage in urban basins, an open-cut method is generally employed in which buried grooves are excavated in the planned site of the pipeline. In excavation method, when excavating the buried groove, a pair of sheet piles are driven on both sides of the preset site of the pipeline to prevent the earth and sand from collapsing. Build up. Then, after laying a pipe in the buried groove, the buried groove is backfilled with earth and sand, and the sheet pile is pulled out from the soil.
[0003]
In order to improve strength and workability, the sheet pile used in such an open-cut method is a thick plate or a folded plate in which the “[” shape and the “]” shape are continuously connected in series. is there. Therefore, because of the sheet thickness of the sheet pile or because the soil easily adheres to the concave portion of the “[” shape, a space is generated in the trace where the sheet pile is pulled out from the ground. Since the sheet pile is driven deeper than the buried groove for burying the pipe, there is a problem that the sand below the buried groove flows into this space and the pipe sinks.
[0004]
In view of such a problem, Japanese Laid-Open Patent Application No. 56-122433 discloses a pipe laying method in which sand does not flow into the space generated in the trace where the sheet pile is pulled out. This pipe laying method is characterized in that a flow protection rod is set up on both sides of the tube and a pile of this flow protection rod is driven deeply. This flow protection rod prevents the earth and sand from flowing into the space created in the trace where the sheet pile was pulled out.
[0005]
Japanese Laid-Open Patent Publication No. 60-175628 discloses a method for embedding a pipe so that earth and sand adhering to a concave portion of a sheet pile are not extracted. This pipe burying construction method is characterized in that a scraping tool formed with a convex part that matches the concave part of the sheet pile is installed at the bottom of the buried groove, the buried groove is backfilled, and the sheet pile is pulled out from the soil. To do. Even if the sheet pile is pulled out from the soil, the earth and sand adhering to the recess is scraped off by the scraping tool, so that no space is created in the trace where the sheet pile is pulled out.
[0006]
In the above open-cut method, sheet piles must be driven into the soil at intervals larger than the outer diameter of the pipe. Therefore, it is difficult to drive sheet piles in places where the work area is small, such as when the houses are densely packed and the road width is narrow. Further, in a place where the underground buried object is congested, it is difficult to excavate the earth and sand deeper than the underground buried object. The shield method is adopted in a place where such an open-cut method cannot be adopted.
[0007]
The shield construction method is a method in which the shield machine digs the planned site of the pipeline in a horizontal hole type, and at the same time covers the inside with a concrete or steel segment to complete the tunnel. The shield machine is dug from a shaft constructed in a place where a certain amount of space can be secured. As shown in FIG. 5, the vertical shaft is earthed by a sheet pile 1 (not illustrated in a folded plate shape for simplicity), and a vertical wall surface 2 is formed on a surface where a shield machine (not illustrated) advances. A shield machine digs in a horizontal hole from the bottom of the shaft wall 2, and the pipe 10 is inserted into the tunnel 4 covered with the segment 3 while being held by the spacer 5.
[0008]
The pipe 10 in the tunnel 4 is connected to the manhole 20 standing in the shaft A by the pipe 11. When the outer periphery of the pipe 11 in the shaft A is covered with the secondary work 30, the piping structure is completed. In the secondary construction, the same segment 3 as that covering the inside of the tunnel 4 is wound 360 °, or as shown in FIG. 6, the entire circumference is covered with concrete with a gap between the sheet pile 1. Is. After covering the secondary work 30 to the pipe 11 connecting the manhole 20 and the pipe 10 in the tunnel 4 in this way and completing the piping structure, the soil is backfilled in the shaft A, and the sheet pile 1 is When pulled out from the ground, the construction is complete.
[0009]
[Problems to be solved by the invention]
In the shield method, as well as the excavation method, after the shaft A is backfilled with earth and sand, the sheet pile 1 is pulled out from the soil. Then, earth and sand flows into the space generated in the trace where the sheet pile 1 is pulled out, and the piping structure covering the secondary work 30 on the outer periphery of the pipe 11 is submerged.
[0010]
If the secondary course 30 is wound around the segment 3, there is a space between the secondary course 30 and the pipe 11. Therefore, even if the piping structure sinks, only the secondary work 30 sinks and the pipe 11 does not sink, so that a shearing force is applied particularly to the portion connected to the pipe 10 in the tunnel 4 at the shaft wall 2 portion. The tube 11 at the connecting portion is not broken. However, in order to wind the segment 3, it can be assembled relatively easily by pressing against the surrounding earth and sand in the tunnel 4, but since there is nothing held in the shaft A, it is very troublesome. It becomes work.
[0011]
On the other hand, when concrete having excellent workability is used as the secondary work 30, the secondary work 30 and the pipe 11 are integrated. Then, when the sand flows into the space generated in the trace where the sheet pile 1 is pulled out from the soil, and the piping structure covering the pipe 11 with the secondary construction 30 sinks, the pipe 11 also sinks together with the secondary construction 30. . Since this pipe 11 is connected to the pipe 10 inserted into the tunnel 4, a shearing force is generated at the connecting portion, and the secondary work 30 may be damaged.
[0012]
In order to prevent the piping structure having the concrete outer cover 30 covered on the outer periphery of the pipe 11 from sinking, the means disclosed in JP-A-56-122433 disclosed in the open-cut method, that is, covering the concrete It is also conceivable that a flow protection rod is constructed on both sides of the pipe so that earth and sand do not flow into the space formed in the trace where the sheet pile 1 is pulled out. However, the flow protection rods in the open-cut method are constructed on both sides of the pipe not covered with concrete, and in the shaft A where the outer periphery of the pipe 11 is covered with concrete like the shield method, a flow protection rod is constructed. There is no extra space to do. Therefore, it is difficult to use the means disclosed in Japanese Patent Application Laid-Open No. 56-122433 for a shaft when adopting the shield method.
[0013]
Further, in order not to create a space in the trace where the sheet pile 1 is pulled out, the means disclosed in Japanese Patent Application Laid-Open No. 60-175628, that is, a scraping tool having a convex portion that matches the concave portion of the “[” shape is used. It is also possible to do. However, even if the scraping tool is installed so as to incline toward the sheet pile 1, it is impossible to completely scrape off the soil adhering completely in the recess. That is, even if the scraping tool is used, a space is generated in the trace where the sheet pile 1 is pulled out, and there is a problem that the piping structure sinks in the shaft A.
[0014]
Therefore, the present invention provides a piping laying method and a piping structure in which the shearing force applied to the connecting portion of the pipe is weakened even if the pipe structure in which the pipe is covered by the secondary construction sinks in the shaft. With the goal.
[0015]
[Means for Solving the Problems]
The first means for achieving the above object is that a shaft is excavated between a pair of sheet piles, a plurality of pipes are arranged in the shaft, and a horizontal hole type is formed from the pipes or from the pipe and the wall surface of the shaft. To the buried pipe in the tunnel that has been dug, and after the connection, the outer circumference of the pipe is covered with a secondary construction via a cushioning material made of either expanded polystyrene, natural rubber sheet or synthetic rubber sheet, The above connecting part has a connecting structure that allows water displacement while allowing displacement in the secondary construction, and the piping structure is completed. After the piping structure is completed, earth and sand are backfilled in the shaft and the sheet pile is pulled out. This is a characteristic pipe laying method .
[0016]
According to the first means, even if the piping structure sinks, the pipe connection structure can be displaced in the secondary construction, so that the cushioning material interposed between the pipe and the secondary construction is deformed. Then, the pipe sinks into a bent state in the secondary construction. Therefore, it becomes a piping laying method in which the shearing force that bends and bends the connecting portion of the pipe is weakened.
[0017]
The second means for achieving the above object is to provide a pipe structure in which a plurality of pipes embedded in the ground are covered by secondary construction, and the pipe connection structure allows displacement within the secondary construction. The piping structure is characterized in that watertightness is maintained, an arc-shaped step board is disposed on the bottom side of the pipe, and a buffer material is interposed between the pipe and the tread board.
[0018]
According to the second means, even if the piping structure sinks, the pipe connection structure can be displaced in the secondary construction, so that the pipe is displaced in a bent state in the secondary construction. The amount of displacement of the pipe is smaller than the amount of subsidence due to the secondary construction due to the cushioning material interposed between the pipe and the tread, so that the shearing force that weakens the connecting portion of the pipe is reduced. It is.
[0019]
The third means for achieving the above object is to dig a space between a pair of sheet piles to provide a shaft, arrange a plurality of tubes in the shaft, and form a horizontal hole type from the tubes or from the tube and the wall surface of the shaft Are connected to the buried pipe in the tunnel that has been dug, and after the connection, the outer periphery of each of the pipes is covered with a secondary lining, and the secondary constructions are at least secondary of the joints of a plurality of pipes. The joint top is covered with a joint that absorbs the displacement consisting of either a natural rubber sheet, a synthetic rubber sheet, or a water stop plate made of a vinyl chloride resin, and the connecting portion is displaced in the secondary construction. The pipe laying method is characterized in that the pipe structure is completed with a connection structure that retains water tightness while allowing water to pass, and after the pipe structure is completed, earth and sand are backfilled in the shaft and the sheet pile is pulled out .
[0020]
According to the third means, even if the piping structure sinks, the connecting structure of the pipe can be displaced in the secondary construction, and at the seam portion of the pipe, at least the top of the secondary construction Since the joint that absorbs the displacement is interposed on the side, the pipe can be bent integrally with the secondary construction, and therefore, a pipe laying method that weakens the shearing force that bends the connecting portion of the pipe is provided. It is .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a front sectional view of the ground showing Embodiment 1 according to the present invention. FIG. 2 is a front sectional view of the underground showing Embodiment 2 according to the present invention. FIG. 3 is an underground side cross-sectional view showing a second embodiment of the present invention. FIG. 4 is an underground front sectional view showing Embodiment 3 according to the present invention. In addition, the same part as the past is attached | subjected the same code | symbol and the description is abbreviate | omitted.
[0022]
(Embodiment 1)
In the first embodiment, a plurality of pipes 11 laid in a shaft A provided by excavating between a pair of sheet piles (not shown), and a concrete secondary construction covering the outer periphery of the pipe 11 A buffer material 31 is interposed between the pipe 11 and the pipe 11 so that the pipe 11 can be displaced in the secondary work 30. The tube 11 is a tube with each other, or the tubes 10 of the vertical shaft walls 2 tunnel 4 which dug into the lateral hole formulas, or connected to the manhole 20 provided upright in the vertical shaft A. The connection structure 12 at the boundary between the pipe 11 and the shaft wall 2 and at the boundary between the pipe 11 and the manhole 20 is a rubber ring sealed inside the joint. By sealing the rubber ring, the connecting portion of the pipe 11 is secured to the water tightness, and the pipe 11 is bent by the elasticity of the rubber ring and can be displaced in the secondary work 30. The material of the tube 11 and the connection structure 12 is desirably an FRPM having excellent physical characteristics and corrosion resistance.
[0023]
However, the pipe 11 may be made of concrete by allowing the connecting portion of the pipe 11 to bend. In order to make the connecting part of the tube 11 easy to bend, when the distance between the manhole and the shaft wall surface 2 is 3 m or more, the normal length of the FRPM tube is 4 m, but the length of the tube 11 is 2 m or less. . The tube 11 uses a 2% tube as a standard.
[0024]
As the buffer material 31 interposed between the secondary work 30 covering the outer periphery of the pipe 11 and the pipe 11, EPS (Expanded Polystyrene), a natural rubber sheet, a synthetic rubber sheet, or the like is used. The pipe 11 around which the buffer material 31 is wound is connected to the manhole 20 and the pipe 10 inserted through the tunnel 4 constructed from the shaft wall surface 2 by the connection structure 12. When the space between the shaft wall 2 and the manhole 20 is 3 m or more, a plurality of pipes 11 are connected, and the connection structure 12 is also connected to this connecting part so that the pipes 11 can be bent. After laying the pipe 11 in the shaft A in this way, the pipe structure is completed when the outer periphery of the pipe 11 is covered with the concrete secondary work 30. The secondary work 30 can also use EPS as an alternative to concrete.
[0025]
After the piping structure in which the outer periphery of the pipe 11 is covered with the secondary work 30 is completed, earth and sand are backfilled in the shaft A, and the sheet pile 1 is pulled out from the soil. When a space is created in the trace where the sheet pile 1 is pulled out, and earth and sand flow into the space, the piping structure covering the secondary work 30 on the outer periphery of the pipe 11 sinks. However, since the buffer material 31 is interposed between the pipe 11 and the secondary construction 30, and a plurality of pipes 11 can be connected and bent in the shaft A, the top side of the pipe 11 can be bent. The buffer material 31 is compressed, and the buffer material 31 on the bottom side of the tube 11 is pulled. Therefore, since the sinking amount of the pipe 11 is smaller than the sinking amount of the secondary work 30, the shearing force applied to the connecting part between the pipe 11 and the pipe in the tunnel 4 is reduced, and the connecting part of the pipe 11 is damaged. Can be prevented.
[0026]
(Embodiment 2)
In the second embodiment, a step plate 32 having an arc-shaped side surface is disposed in the bottom of a pipe 11 laid in the shaft A and a concrete secondary work 30 covering the outer periphery of the pipe 11, and the pipe 11 and the tread 32, a buffer material 31 is interposed so that the pipe 11 can be displaced in the secondary work 30. Similarly to the segment 3 that covers the inside of the tunnel 4 constructed by the shield method, the tread 32 can be an arc-shaped chip assembled. Therefore, the tread 32 extends the bottom of the segment 3 in the tunnel 4. The tread 32 is assembled from the bottom of the shaft A by holding it. Since the tread 32 is arranged not at the entire circumference of the tube 11 but at the bottom, it can be easily assembled. A cushioning material 31 is placed on the upper surface of the tread plate 32. The buffer material 31 is made of EPS, natural rubber sheet, synthetic rubber sheet, or the like as in the first embodiment. The material and length of the tube 11 are the same as those in the first embodiment.
[0027]
Therefore, when the space | interval of the shaft wall 2 and the manhole 20 is 3 m or more, the several pipe | tube 11 is connected with the connection structure 12. FIG. When connecting a plurality of pipes 11, the tread plate 32 is disposed only on the bottom side of the pipe 11 on the shaft wall 2 side, and the cushioning material 31 is disposed between the tread plate 32 and the pipe 11. After connecting the pipe 11 and the manhole 20 inserted through the pipe 11 and the tunnel 4 constructed from the shaft wall 2 with the connection structure 12, the outer periphery of the pipe 11 is made of concrete or EPS secondary construction 30. When covered, the piping structure is completed.
[0028]
Then, when the earth and sand are refilled in the shaft A and the earth and sand flows into the space formed in the trace where the sheet pile 1 is pulled out, the tread 32 and the cushioning material 31 are interposed on the bottom side of the pipe 11, and the secondary work 30 is performed on the outer periphery. The piping structure covered with sunk. However, since the pipe 11 is supported by the tread 32 through the buffer material 31, the amount of settlement of the pipe 11 is smaller than the amount of settlement of the secondary work 30. Moreover, since the pipe 11 connected to the pipe 10 in the tunnel 4 can be bent by the rubber ring seal type connection structure 12, the shearing force applied to the connecting portion of the pipe 11 is weakened. It is possible to prevent the connecting portion from being damaged.
[0029]
(Embodiment 3)
The third embodiment is a joint of a plurality of pipes 11 laid in the shaft A, and a joint 33 that absorbs displacement is interposed at least on the top side of the secondary work 30 that covers the outer periphery of the pipe 11. It is characterized by this. As a material for the joint 33, a natural rubber sheet, a synthetic rubber sheet, a water stop plate made of vinyl chloride, or the like is used. The length and material of the tube 11 and the connection structure 12 are the same as those in the first and second embodiments.
[0030]
A plurality of pipes 11 laid in the vertical shaft A are connected to a pipe 10 and a manhole 20 inserted into the tunnel 4 constructed from the vertical wall surface 2. Then, the outer periphery of the pipe 11 is formed by the secondary work 30 so that a joint 33 that absorbs the displacement is interposed on the top side of the secondary work 30 that is a joint of the pipe 11 and covers the outer periphery of the pipe 11. When covered, the piping structure is completed. And when earth and sand flows back in the space which arises in the trace which pulled back the sheet pile 1 in the shaft A and the sheet pile 1 was pulled out, the piping structure which coat | covered the outer periphery of the pipe | tube 11 with the secondary construction 30 will sink. However, since the secondary work 30 is displaced at the joint 33, the plurality of pipes 11 are bent. Therefore, the shearing force applied to the pipe 11 connected to the pipe 10 inserted into the tunnel 4 is weakened, and the pipe 11 can be prevented from being damaged.
[0031]
The present invention is not limited to the above-described three embodiments, and can be modified within the scope of the present invention. For example, a cushioning material may be interposed between the pipe and the secondary work, and a joint that absorbs the displacement may be interposed at least at the top of the secondary work at the joint part of the pipe.
[0032]
【The invention's effect】
According to the present invention, even if the piping structure sinks, the connecting portion of the pipe can be bent, so that the shearing force applied to the connecting portion of the pipe is weakened. Therefore, damage to the pipe can be prevented, and as a result, repair work and the like can be reduced. Moreover, since the present invention can be constructed without taking time and effort, there is no problem of increasing the construction cost.
[Brief description of the drawings]
FIG. 1 is an underground front sectional view showing Embodiment 1 according to the present invention.
FIG. 2 is an underground front sectional view showing Embodiment 2 according to the present invention.
FIG. 3 is an underground side cross-sectional view showing a second embodiment according to the present invention.
FIG. 4 is an underground front sectional view showing Embodiment 3 according to the present invention.
FIG. 5 is a perspective view of a shaft portion of the shield method.
FIG. 6 is a front sectional view of a shaft portion of a conventional shield method.
[Explanation of symbols]
A Vertical shaft 11 Pipe 12 Connection structure 30 Secondary construction 31 Buffer material 32 Footboard 33 Joint

Claims (3)

一対の矢板同士の間を掘削して立坑を設け、該立坑内に複数の管を配置し、該管同士又は該管と立坑壁面から横穴式に掘り進んだトンネル内の埋設管とを接続し、接続後に該管の外周にエキスパンドポリスチロール又は天然ゴムシート又は合成ゴムシートのいずれかからなる緩衝材を介して2次履工を被覆し、上記接続部は2次履工内で変位を許容しつつ水密性を保持するような接続構造とされて配管構造が完成され、配管構造完成後に立坑内に土砂を埋め戻して矢板を引き抜くことを特徴とする配管敷設方法。Drilling between a pair of sheet piles to provide a vertical shaft, arranging a plurality of pipes in the vertical shaft, and connecting the pipes or the pipe and a buried pipe in a tunnel that has been dug from the wall surface of the vertical shaft After the connection, the outer periphery of the pipe is covered with a secondary finish through a cushioning material made of either expanded polystyrene, natural rubber sheet, or synthetic rubber sheet, and the connecting portion allows displacement within the secondary work. However, the pipe laying method is characterized in that the pipe structure is completed with a connection structure that maintains water tightness, and after the pipe structure is completed, earth and sand are backfilled in the shaft and the sheet pile is pulled out. 地中に埋設された複数の管を2次履工によって被覆した配管構造において、管の接続構造は2次履工内で変位を許容しつつ水密性を保持し、管の底部側に円弧状の踏板を配置し、管と踏板との間に緩衝材を介在させたことを特徴とする配管構造。In a pipe structure in which a plurality of pipes embedded in the ground are covered by secondary construction, the pipe connection structure retains watertightness while allowing displacement within the secondary construction, and is formed in an arc shape on the bottom side of the pipe A piping structure characterized in that a tread is arranged and a cushioning material is interposed between the pipe and the tread. 一対の矢板同士の間を掘削して立坑を設け、該立坑内に複数の管を配置し、該管同士又は該管と立坑壁面から横穴式に掘り進んだトンネル内の埋設管とを接続し、接続後に上記それぞれの管の外周にそれぞれ2次覆工を被覆し、該2次履工同士が、複数の管の継ぎ目個所の少なくとも2次履工天部側に、天然ゴムシート又は合成ゴムシート又は塩化ビニル樹脂製止水板のいずれかからなる変位を吸収する目地を介在されて被覆され、上記接続部は2次履工内で変位を許容しつつ水密性を保持するような接続構造とされて配管構造が完成され、配管構造完成後に立坑内に土砂を埋め戻して矢板を引き抜くことを特徴とする配管敷設方法。Drilling between a pair of sheet piles to provide a shaft, arrange a plurality of pipes in the shaft, and connect the pipes or the pipe and a buried pipe in a tunnel that has been dug in a side-hole manner from the wall surface of the shaft After the connection, the outer periphery of each of the pipes is covered with a secondary lining, and the secondary linings are at least at the secondary lining top of the joints of a plurality of pipes, with natural rubber sheets or synthetic rubber A connection structure that is covered with a joint that absorbs displacement consisting of either a sheet or a water stop plate made of a vinyl chloride resin, and that the connection portion retains water tightness while allowing displacement in the secondary construction. The pipe laying method is characterized in that the pipe structure is completed, and after completion of the pipe structure, earth and sand are backfilled in the shaft and the sheet pile is pulled out.
JP18257695A 1995-07-19 1995-07-19 Piping laying method and piping structure Expired - Lifetime JP3615594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18257695A JP3615594B2 (en) 1995-07-19 1995-07-19 Piping laying method and piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18257695A JP3615594B2 (en) 1995-07-19 1995-07-19 Piping laying method and piping structure

Publications (2)

Publication Number Publication Date
JPH0931952A JPH0931952A (en) 1997-02-04
JP3615594B2 true JP3615594B2 (en) 2005-02-02

Family

ID=16120702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18257695A Expired - Lifetime JP3615594B2 (en) 1995-07-19 1995-07-19 Piping laying method and piping structure

Country Status (1)

Country Link
JP (1) JP3615594B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650554B2 (en) * 2011-02-04 2015-01-07 アイレック技建株式会社 Water stoppage propulsion structure for wellheads in propulsion work
CN103938596B (en) * 2014-05-07 2016-04-27 中国电建集团中南勘测设计研究院有限公司 A kind of conveyance tunnel wire system of crossing over active fault

Also Published As

Publication number Publication date
JPH0931952A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JPS6122698B2 (en)
US20060179730A1 (en) Wall structural member and method for constructing a wall structure
JP2001115458A (en) Deep well construction method using earth retaining wall
JPWO2003008715A1 (en) Construction method of manhole structure, waterproof joint for manhole structure and manhole structure
JP3615594B2 (en) Piping laying method and piping structure
KR101807366B1 (en) A Foundation Method Of Continuous and Cut Off wall By Overlap Casing
KR20040028118A (en) Structure for underground watertight wall and method thereof
KR100673057B1 (en) Plastic pipe for being laid under the ground
JP6542587B2 (en) Manhole levitation prevention method
JP6159295B2 (en) Manhole repair method
CN212202085U (en) Close-adhesion type open-and-underground excavation combined subway station structure
JP2018003264A (en) Pipeline connection structure and construction method for the same
JPH05280664A (en) Piping method and piping material used in this method
JP3753647B2 (en) Open-cut construction method for buried works such as pipes and markers for existing buried objects
KR101352429B1 (en) Water-proofing type temporary soil sheathing construction method using crrugated steel plate segments
JP2953843B2 (en) Pipe line laying method by non-cutting propulsion method
JP2576945B2 (en) Construction method of manhole combined sinking pit and cutting edge to promote sinking
US20010039965A1 (en) Device and method for protecting a subterrainian pipe from damage during excavation
JP3047714U (en) Waterproof packing and stopper device for slide pipe for underground wiring
JP3996162B2 (en) Propulsion pipe underground propulsion base and construction method thereof
JP3240394B2 (en) Construction method of impermeable wall
JPS64424Y2 (en)
JP2985063B2 (en) Caisson prefabricated manhole and its construction method
JP2001207444A (en) Impervious wall and its construction method
JP4024400B2 (en) Construction method of shaft in limited area

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term