JP3614231B2 - Semiconductor memory element and semiconductor memory device - Google Patents

Semiconductor memory element and semiconductor memory device Download PDF

Info

Publication number
JP3614231B2
JP3614231B2 JP04032696A JP4032696A JP3614231B2 JP 3614231 B2 JP3614231 B2 JP 3614231B2 JP 04032696 A JP04032696 A JP 04032696A JP 4032696 A JP4032696 A JP 4032696A JP 3614231 B2 JP3614231 B2 JP 3614231B2
Authority
JP
Japan
Prior art keywords
thin film
region
low resistance
resistance region
film region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04032696A
Other languages
Japanese (ja)
Other versions
JPH08288469A (en
Inventor
智之 石井
和男 矢野
浩一 関
利之 峰
小林  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP04032696A priority Critical patent/JP3614231B2/en
Publication of JPH08288469A publication Critical patent/JPH08288469A/en
Application granted granted Critical
Publication of JP3614231B2 publication Critical patent/JP3614231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高集積に適した半導体素子およびこれを用いた半導体記憶装置に関する。
【0002】
【従来の技術】
本発明に関連した従来技術として、K. Yano et al, IEEE International Electron Devices Meeting pp541−544, 1993年に記載されている多結晶シリコンを用いた単一電子メモリをあげる。この技術においては多結晶シリコン薄膜によって電流経路であるチャネル及び電子を捕獲する記憶領域を同時形成する。記憶領域に電子が捕獲されるとしきい電圧が変化することを利用し、情報の記憶を行なう。電子一個の蓄積で1ビットの記憶を行なうところに特徴がある。多結晶シリコンの結晶粒の利用によって実効的に小さい構造が実現され、室温においても動作が可能となる。
【0003】
従来、浮遊ゲートと制御ゲートとを有するMOSFETを用いることによって、フラッシュEEPROMのような不揮発性記憶装置が実現されている。浮遊ゲ−トにキャリアを蓄積することによりMOSFETのしきい電圧が変化することを利用し、情報の記憶、読出しを行うものである。浮遊ゲ−トには通常多結晶シリコンが用いられる。この浮遊ゲート付きMOSFETを用いることにより、1トランジスタのみで1ビットの情報を長期間にわたって記憶できる。フラッシュEEPROMのメモリセル構造として、Nikkei Electronics no.444 pp151−157, 1988年に記載されている従来構造及びコンタクトレスセル構造を挙げる。
【0004】
又、絶縁膜上に多結晶シリコン薄膜を形成する際の下地絶縁膜の影響に関する従来技術として、 T.Hashimoto et al, Conference on Solid State Devices and Materials, pp97−100, 1989年に記載されている多結晶シリコンMOSを挙げる。この論文では8nm 程度の多結晶シリコン膜形成において連続的な膜を得るのには下地はSi3N4膜、又はCVD−SiO2膜が熱酸化膜よりも優れていることが述べられている。
【0005】
【発明が解決しようとする課題】
小数の蓄積電子で情報を記憶する単一電子メモリは、一素子で1ビット以上の情報の記憶が行え、蓄積電荷を一個単位で制御可能ということから、ナノメータレベルになっても動作できる可能性がある。又、蓄積電子数が少ないことから書換え時間、書換え回数において飛躍的な向上が期待できる。しかし、前記従来技術の単一電子メモリは1ビットを記憶する単体素子であり、2ビット以上の情報を記憶する手段については知られていない。単純にこの単体素子を用いてNビット(例えば64Kビットメモリの場合65536個)の情報を記憶しようとするとN個の制御電極とN個の電流駆動経路を必要とし、これをチップ外部から制御することが必要となる。これには2N個の端子(131072個)が必要となるので現実的ではない。発明者等はこれを避けるためには複数の記憶素子で端子を共有化することが重要であると考え、独自に検討した結果、図3に示す構造で2ビットの記憶を行うことを当初思い付いた。すなわち、絶縁体上の薄膜領域(150)が第一(151)と第二(152)の低抵抗領域を接続し、絶縁体上の薄膜領域(180)が第三(181)と第四(182)の低抵抗領域を接続し、制御電極(153)が第一の薄膜領域(150)及び第二の薄膜領域(180)と直交する形で第一の薄膜領域(150)及び第二の薄膜領域(180)の一部分を覆うという構造である。この構造では、2つの記憶素子で、制御電極を共有化することにより外部から駆動すべき端子の数を減らすことができる。しかし、この構造では薄膜領域1(150)、薄膜領域2(180)の制御電極(153)に覆われていない部分があるため、この部分の抵抗が高く大きな電流を流すことができないという課題が残った。また、この薄膜領域1(150)、薄膜領域2(180)の制御電極(153)に覆われていない部分は他の電極との容量結合や電磁波により電位が変動し、記憶情報が安定に保持できない恐れがある。又、図で横方向にのびる制御電極の占有する面積の他に薄膜多結晶シリコンやコンタクトの占有面積が必要であるため1ビットの情報の記憶に必要な面積が大きい点も課題であった。さらに制御電極(153)が薄膜領域1(150)又は薄膜領域2(180)上に正しく設けられるために合わせ余裕を見る必要があり、低抵抗領域1(151)と低抵抗領域2(152)の間の距離及び低抵抗領域3(181)と低抵抗領域4(182)の間の距離はある程度以上小さくできないという制約が生ずるという課題もあった。
【0006】
本発明は、この発明者の事前検討に基づくものであり、その目的は複数の記憶素子間で容易に端子を共有でき、かつ大きな電流を流すことができ、また雑音に強い半導体記憶素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、制御電極が薄膜部の全体を覆う構造をとることによって、低抵抗で、外部からの擾乱に強く、小面積で作製可能であることを特徴とする。
【0008】
詳しく述べると、本発明の代表的な実施形態による半導体素子は、
絶縁体上に形成された半導体よりなる薄膜領域(1)を有し、
第一(2)、第二(3)の低抵抗領域を有し、
上記薄膜領域の一方の端部は第一の低抵抗領域(2)と接続され、
上記薄膜領域の他方の端部は第二の低抵抗領域(3)と接続され、
薄膜領域を制御する第一の制御電極(4)を有し、
上記制御電極(4)が上記薄膜領域の全体を覆うことを特徴とする(第1図参照)。
【0009】
本実施形態の記憶素子(図1)においては、制御電極(4)が薄膜部(1)の全体を覆うため、制御電極(4)が薄膜(1)全体を制御でき、薄膜の高抵抗部分がなくなり大きな電流が流せるために読みだし時間が短縮される。又、薄膜領域(1)の全体が制御電極(4)に覆われてるため外部と薄膜領域(1)の容量結合が小さく、外部からの擾乱を受けにくい。さらに、制御電極(4)との合わせが楽になる分低抵抗領域1(2)と低抵抗領域2(3)の間の距離も小さく設定可能となり、加えて図3における制御電極(153)と異なり長方形の形状をとることができるため制御電極(4)の面積も小さくてよい。
【0010】
このように制御電極(4)が全面を覆う構造でもYano等によって報告されたメモリ効果が現れるかどうかは当初明らかでなかった。そこで、発明者等が実際にこのような素子を試作した結果、動作を確認することができた。すなわち本実施形態の記憶素子(図1)のは、低抵抗領域1(2)と低抵抗領域2(3)との間の電圧を一定として、制御電極(4)と低抵抗領域1(2)との間の電位差を所定の範囲で繰返し増減させる時、薄膜領域(1)のコンダクタンスが室温においてもヒステリシスを示すことを確認した(図2参照)。
【0011】
図2に本実施形態の記憶素子(図1)についての実験結果を示す。左側の電流電圧特性(167)は低抵抗領域1(2)を0V、低抵抗領域2(3)を1Vとし、制御電極(4)の電位を−6Vにした後の特性を、右側の電流電圧特性(168)は低抵抗領域1(2)を0V、低抵抗領域2(3)を1Vとし、制御電極(4)の電位を12Vにした後の特性である。12V書き込みと−6V消去でしきい電圧として見て約1Vのシフトが見られる。1nA程度の、検出可能な電流が流れることが確認された。注目すべきは、低抵抗領域1(2)、低抵抗領域2(3)に与える電位差を1Vまで大きい値に設定しても動作可能な点である。量子効果素子に関しては、電位差を大きく与えると効果が消えていくことが常識となっており、この結果のように1Vという値でメモリ動作が可能であるということは発明者らが実験的に発見したものである。尚、書き込み、消去条件により薄膜領域のコンダクタンスの変化が異なることを利用して一つの薄膜領域で1ビット以上の記憶を行うことが可能であり、情報の記録密度を向上させることが可能である。
【0012】
単体の記憶素子を単純に並べた場合と比較し、電流駆動経路の端子数を減らすことができ、集積化に適した実施形態としては、
絶縁体上に形成された半導体よりなる第一(21)、第二(22)の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一(23)、第二(24)の低抵抗領域を有し、
上記第一の薄膜領域(21)の一方の端部は第一の低抵抗領域(23)と接続され、
上記第一の薄膜領域(21)の他方の端部は第二の低抵抗領域(24)と接続され、
上記第二の薄膜領域(22)の一方の端部は第一の低抵抗領域(23)と接続され、
上記第二の薄膜領域(22)の他方の端部は第二の低抵抗領域(24)と接続され、
同上記第一の薄膜領域(21)を制御する第一の制御電極(26)を有し、
同上記第二の薄膜領域(22)を制御する第二の制御電極(27)を有することを特徴とする2ビット以上を記憶することを特徴とする(第4図参照)。
【0013】
本実施形態では2個の記憶素子で同一の低抵抗領域(23) (24)を共有し、面積を小さくすることができる。
【0014】
単体の記憶素子を単純に並べた場合と比較し、制御電極の端子数を減らすことができ、集積化に適した実施形態としては、
絶縁体上に形成された半導体よりなる第一(143)、第二(144)の薄膜領域を有し、
薄膜領域よりも厚い、第一(145)、第二(146)、第三(147)、第四(148)の低抵抗領域を有し、
上記第一の薄膜領域の一方の端部は第一の低抵抗領域(145)と接続され、
上記第一の薄膜領域の他方の端部は第二の低抵抗領域(146)と接続され、
上記第二の薄膜領域の一方の端部は第三の低抵抗領域(147)と接続され、
上記第二の薄膜領域の他方の端部は第四の低抵抗領域(148)と接続され、
同上記第一(143)、第二(144)の薄膜領域を制御する共通の制御電極(149)を有することを特徴とする2ビット以上を記憶することを特徴とする(第6図参照)。
【0015】
この実施形態においては2個の記憶素子で同一の制御電極(149)を共有しており、面積を小さくすることができる。
【0016】
以上の利点を組み合わせ、行列状に素子を並べ、少ない端子で制御可能な集積化に適した実施形態によれば、
絶縁体上に形成された半導体よりなる第一(79)、第二(80)、第三(81)、第四(82)の薄膜領域を有し、
薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一(83)、第二(84)、第三(85)、第四(86)の低抵抗領域を有し、
上記第一の薄膜領域(79)の一方の端部は第一の低抵抗領域(83)と接続され、
上記第一の薄膜領域(79)の他方の端部は第二の低抵抗領域(84)と接続され、
上記第二の薄膜領域(80)の一方の端部は第一の低抵抗領域(83)と接続され、
上記第二の薄膜領域(80)の他方の端部は第二の低抵抗領域(84)と接続され、
上記第三の薄膜領域(81)の一方の端部は第三の低抵抗領域(85)と接続され、
上記第三の薄膜領域(81)の他方の端部は第四の低抵抗領域(86)と接続され、
上記第四の薄膜領域(82)の一方の端部は第三の低抵抗領域(85)と接続され、
上記第四の薄膜領域(82)の他方の端部は第四の低抵抗領域(86)と接続され、
長辺が短辺の二倍以上の実質的に長方形の、上記第一(79)、第三(81)の薄膜領域を制御する第一の制御電極(87)を有し、
長辺が短辺の二倍以上の実質的に長方形の、上記第二(80)、第四(82)の薄膜領域を制御する第二の制御電極(88)を有することを特徴とする4ビット以上を記憶することを特徴とするものである。(第14図参照)
本実施形態のように4個の記憶素子を行列状に並べた場合にも制御電極(87)(88)及び低抵抗領域(83)〜(86)を共有し、小さい面積での作製が可能である。図4、図6、図14のように制御電極や低抵抗領域を共有化してもそれぞれの素子に独立に情報を書き込んだり読みだすことが可能である。図4、図6、図14の、情報の書き込み、読みだしの方法については実施例の項で述べる。
【0017】
本発明の他の目的と特徴は、以下の実施例から明らかになろう。
【0018】
【発明の実施の形態】
以下には、本発明の具体的な実施例による記憶素子を説明する。
【0019】
実施例1
図1は本実施例による記憶素子の構造図を示す。薄膜領域(1)はノンドープの多結晶シリコンよりなり、低抵抗領域1(2)および低抵抗領域2(3)は、より膜厚が厚く、高不純物濃度n型の多結晶シリコンからなる。実際に発明者らが試作した例では、薄膜領域(1)の厚さは平均3nm、幅は0.1ミクロン、長さは0.2ミクロンであり、低抵抗領域1(2)および低抵抗領域2(3)の厚さは40nmである。薄膜領域(1)、低抵抗領域1(2)、低抵抗領域2(3)の下地はSi3N4(7)でありその下はSiO2(6)よりなる。高不純物濃度n型の多結晶シリコンよりなる制御電極(4)は薄膜領域(1)、低抵抗領域1(2)、低抵抗領域2(3)上にSiO2(8)を堆積し、その上に形成される。
【0020】
また、本実施例においては、薄膜部(1)はSi3N4(7)を下地としてa(アモルファス)−Siを堆積した後、750度Cの熱処理により結晶化を行なって形成した。下地がSi3N4である場合には下地がSiO2である場合と比べ、ガスソースを流し始めてから実際に
Siがウエハ表面につきはじめるまでの時間が短いため、a−Si薄膜堆積の制御性がよくなる。尚、Si3N4膜の形成のかわりに表面を窒化することでも同様な効果があるため、この方法を用いてもよい。本方法はa−Si薄膜堆積の膜厚制御性を向上するためSi3N4を用いており、従来技術のように膜の連続性を向上させる場合と目的が異なる。又、従来技術においてはCVD−Si3N4とCVD−SiO2が同等の効果を持つとされているが、本発明の目的においてはSi3N4がCVD−SiO2よりも優れている。
【0021】
小数の蓄積電荷によるコンダクタンス変化を読みだすためには薄膜領域(1)と制御電極(4)の間の容量が小さく設定することが有効である。薄膜領域(1)を絶縁膜(6)上に設けることにより、薄膜領域(1)と制御電極(4)の間の容量を小さく設定することが可能となる(図5)。又、さらに低抵抗領域1(2)と低抵抗領域2(3)をも絶縁体(6)上に設けて素子の全体を絶縁体(6)上に作製することにより、この記憶素子を積層構造に何段も作製して記憶密度を上げたり、基板表面を利用して周辺回路等の素子を作製して面積を小さくしたりすることが可能となっている他、低抵抗領域(2)(3)の電位を正負どちらにも設定できるという特徴がある。このため制御電極(4)と低抵抗領域(2)(3)の相対的な電位差の自由度が増えるという利点を持つ。通常MOSFETのようにバルクに低抵抗領域を設ける構造では、接合のバイアス方向を一定にしておかなければ基板との間に電流が流れてしまうため、このようなことは不可能である。これは以下の実施例においても同様にあてはまる。
【0022】
本実施例ではキャリアに電子を用いたが、ホールを用いてもよい。この場合には書き込み、消去、読みだしにおける各構造の設定電圧の相対値はキャリアに電子を用いた場合と符号が逆になる。又、低抵抗領域1(2)、低抵抗領域2(3)、制御電極(4)にシリコンを用いたが、他の半導体を用いてもよいし、金属を用いてもよい。薄膜領域(1)はノンドープの多結晶シリコンを用いたが、他の半導体材料を用いてもよいし、不純物が入ってもよい。制御電極(4)は薄膜部(1)の上に設けられているが、これは下でも構わない。さらに、本実施例では薄膜部(1)が低抵抗領域間の電流経路であると同時に記憶を行う電荷蓄積の機能を兼ねているが、薄膜部に低抵抗領域間の電流経路の機能のみ持たせ、他に記憶を行う電荷蓄積部を設けてもよい。この際、電荷蓄積部の材料は半導体でもよいし、金属を用いてもよい。この構造の場合電流経路と電荷蓄積部を別々に設計できるため、大きさ、材料等の自由度が増えるという特徴がある。又、SOI(Silicon on Insulator)基板を用いて低抵抗領域1(2)、低抵抗領域2(3)あるいは薄膜領域(1)を形成してもよい。この構造では低抵抗領域1(2)、低抵抗領域2(3)あるいは薄膜領域(1)に単結晶シリコンを用いるために抵抗が小さいという利点を持つ。他に低抵抗領域の抵抗を小さくする手段として低抵抗領域を、金属材料(例えばW、TiN、WSi2、MoSi、TiSi等が考えられる)で裏打ちする方法があり、この方法を採用してもよい。制御電極についても、抵抗低減のため金属材料で裏打ちしてもよい。これらは以下の実施例でも同様である。
【0023】
本実施例の記憶素子を繰り返し並べてより多くの記憶を行うことができる。これは以下の実施例の記憶素子においても同様である。
【0024】
本実施例の動作原理を図29を用いて説明する。薄膜領域(1)は多結晶シリコンを平均3nmと非常に薄くしたものである。3nmと非常に薄い為、主に厚さの変化に起因して場所によりポテンシャルが大きく異なる。従って低電流の条件下では電流経路(190)は薄膜内の低ポテンシャルの結晶の連結により形成された部分に限られる。又、低ポテンシャルであるが電流経路とは高ポテンシャル部分によって切り離されている結晶からなる孤立領域(191)が存在する。このような孤立領域(191)に電子を蓄積し、記憶を行なう。すなわち、本実施例においては薄膜領域(1)は電流経路と電荷蓄積部の両方の役割を果たす。このように薄膜内のポテンシャルが場所によって異なることを利用して実効的に微細な構造を実現する素子では膜が薄いことが本質的であり、膜厚が大きくなるに従い効果が小さくなる。本実施例の場合膜厚が大きくなるに従い情報記憶によるしきい値シフトが小さくなってくることが観察された。膜厚を変化させて試作を行なった結果、室温で素子動作させるためには6nm程度以下の膜厚とすべきであることがわかった。制御電極(4)に電圧を加えて行くと電流経路(190)と孤立領域(191)の間の電位差が大きくなって行き、やがて電子が熱励起又はトンネルによって高ポテンシャル部分を越えて孤立領域(191)に飛び込む。孤立領域(191)の各々は非常に小さい為電子一個の注入でもそのポテンシャル変化が大きく、次の電子が注入される確率に大きな影響を及ぼす。従って書き込み条件における蓄積電子の個数ばらつきが極めて小さい。さらに記憶の保持においても、電子一個の出入りにおけるエネルギー変化が大きいということは、熱励起や外部の電位ゆらぎのような要因で蓄積電子個数が変化しにくいことを意味している。電流経路(190)は狭く蓄積電子による影響を大きく受ける為、電子蓄積の有無を所定の制御電極(4)の電位における電流値の大きさで区別することが出来、情報の読みだしが可能である。蓄積電子を放出させる(消去動作)には制御電極(4)の電位を所定の低電位に設定すればよい。ここでは電子の注入を書き込みに、放出を消去に対応させ、以下でもこの意味で用いる。文献によっては逆の対応関係で呼ぶ場合もある。
【0025】
次に本実施例の製造工程を図5を用いて説明する。初め、n型Si基板(5)の表面を酸化し、その上にSi3N4膜(7)を堆積する。この上に高不純物濃度n型の多結晶シリコンを堆積し、加工して低抵抗領域1(2)、低抵抗領域2(3)を形成する(図5(a))。さらにa−Siを堆積し、加工することで薄膜領域(1)を形成する(図5(b))。この後750度Cの温度でSiO2を堆積するがこのとき同時にa−Siが結晶化し、多結晶シリコンとなる。その上に高不純物濃度n型の多結晶シリコンを堆積し、加工して制御電極(4)を形成する(図5(c))。この後層間の絶縁膜(18)を堆積し、表面の凹凸を小さくする平坦化を行ない、金属配線を行う。この製造工程からわかるように通常のバルクを用いたMOSデバイスと異なり、LOCOS工程が不要であるため少ない工程数で作製可能である。
【0026】
実施例2
図7は、本発明の第2の実施例を示す。
【0027】
各構造の材料は実施例1と同じであるが、薄膜領域1(9)に接続された低抵抗領域1(11)と薄膜領域2(10)に接続された低抵抗領域1(11)が共通であるという点に特徴がある。低抵抗領域1(11)、低抵抗領域2(12)、低抵抗領域3(14)、制御電極(14)の電圧を所定の値に設定することにより薄膜領域1(9)と薄膜領域2(10)の一方のみの情報の書き込み、消去、読みだしが可能である。薄膜領域1(9)への書き込みにおいては低抵抗領域1(23)を低い電位(例えば0V)にし、低抵抗領域2(12)、低抵抗領域3(13)をより高い電位(例えば両方とも5V)に設定し、制御電極(14)を所定の高電位Vw(例えば10V)にする。高電位Vwの印加時間を一定時間内に設定すれば薄膜領域2(10)には書き込みは行われない。尚、このとき低抵抗領域3(4)の電位も低抵抗領域1(11)と同様の低い電位(0V)に設定することで薄膜領域1(9)と薄膜領域2(10)に同時に書き込むことも可能である。薄膜領域1(9)の記憶情報の消去においては、低抵抗領域2(12)、低抵抗領域3(13)を低い電位(例えば両方とも0V)に設定し、低抵抗領域1(23)をより高い電位(例えば5V)にし、制御電極(14)を所定の低電位Ve(例えば−5V)にすればよい。低電位Veの印加時間を一定時間内に設定すれば薄膜領域2(10)の情報は消去されない。消去においても書き込みと同様に低抵抗領域2(12)の電位を低抵抗領域1(23)と同じ電位に設定して薄膜領域1(9)と薄膜領域2(10)の一括消去が可能である。
【0028】
本実施例においては、実施例1の記憶素子の二倍の情報が記憶できるが、実施例1の記憶素子を二素子互いに離して並べた場合よりも小面積で作製可能であるという特徴を持つ。
【0029】
実施例3
図6は、本発明の第3の実施例を示す。
【0030】
二つの薄膜領域(143)、(144)と四つの低抵抗領域(145)〜(148)一つの制御電極(149)からなる。実施例2の共通の低抵抗領域(11)を共有化せず、分離した構造である。低抵抗領域が独立になっていることで電圧設定の自由度が増え、薄膜領域1(143) の書き込み、消去動作時に薄膜領域2(144) への影響を少なくすることが可能であり、安定動作に適しているという特徴を持つ。
【0031】
低抵抗領域1(145)、低抵抗領域2(146)、低抵抗領域3(147)、低抵抗領域4(148)、制御電極(149)の電圧を適当に設定することにより薄膜領域1(143)と薄膜領域2(144)の一方にのみ情報の書き込みを行い、他方には書き込まないという動作が可能である。同様に薄膜領域1(143)と薄膜領域2(144)の一方のみ情報の消去を行い、他方は消去しないという動作も可能である。薄膜領域1(143)への書き込みにおいては低抵抗領域1(145)を低い電位(例えば0V)にし、低抵抗領域2(146)、低抵抗領域3(147)、低抵抗領域4(148)をより高い電位(例えばすべて5V)に設定し、制御電極(149)を所定の高電位Vw(例えば10V)にする。ただし低抵抗領域2(146)はより低い電位で構わない。高電位Vwの印加時間を一定時間内に設定すれば薄膜領域2(144)には書き込みは行われない。尚、このとき低抵抗領域3(147)の電位も低抵抗領域1(145)と同様の低い電位(0V)に設定することで薄膜領域1(143)と薄膜領域2(144)に同時に書き込むことも可能である。薄膜領域1(143)の記憶情報の消去においては、低抵抗領域2(144)、低抵抗領域3(147)、低抵抗領域4(148)を低い電位(例えばすべて0V)に設定し、低抵抗領域1(145)をより高い電位(例えば5V)にし、制御電極(149)を所定の低電位Ve(例えば−5V)にすればよい。ここでも低抵抗領域2(146)はより高い電位で構わない。低電位Veの印加時間を一定時間内に設定すれば薄膜領域2(144)の情報は消去されない。消去においても書き込みと同様に低抵抗領域3(147)の電位を低抵抗領域1(145)と同じ電位に設定して薄膜領域1(143)と薄膜領域2(144)の一括消去が可能である。
【0032】
実施例4
図8は、本発明の第4の実施例を示す。
【0033】
各部分の材料、二つの薄膜領域(15)、(16)と三つの低抵抗領域(17)〜(19)一つの制御電極(20)からなるという点において実施例2と同様であるが、二つの薄膜領域(15)(16)が共通の低抵抗領域1(17)の同じ側にあり、制御電極(20)の長手方向と共通の低抵抗領域1(17)の長手方向が平行であるという点で異なる。情報の書き込み、消去は実施例2と同様に行う。共通の低抵抗領域1(17)を用いることで小面積で作製可能であり、さらに制御電極と共通の低抵抗領域1(17)が平行になっており、制御電極が共通の低抵抗領域1(17)上を横断することがないため制御電極の電位変動の影響を受けにくいという特徴を持つ。
【0034】
実施例5
図4は、本発明の第5の実施例を示す。
【0035】
本実施例においては、実施例2、実施例4と薄膜領域の数は同じであるが、制御電極が二つあり(26)、(27)低抵抗領域が二つのみ(23)、(24)であるという点において上述の実施例2、実施例4と異なる。従ってコンタクトの数も少なくてよく、低抵抗領域の占める面積が小さいという特徴を持つ。低抵抗領域1(23)、低抵抗領域2(24)、制御電極(26)(27)はドープした多結晶シリコンよりなり、薄膜領域1(21)、薄膜領域2(22)はノンドープの多結晶シリコンよりなることは同様である。
【0036】
本実施形態においては、薄膜領域1(21)と薄膜領域2(22)が低抵抗領域1(23)、低抵抗領域2(24)を共有化しているため、電流駆動経路(低抵抗領域)の本数を低減できるという特徴がある。このように低抵抗領域を共有化しても、低抵抗領域1(23)、低抵抗領域2(24)、制御電極1(26)、制御電極2(27)の電圧を適当に設定することにより薄膜領域1(21)と薄膜領域2(22)の一方にのみ情報の書き込みを行い、他方には書き込まないという動作が可能である。同様に薄膜領域1(9)と薄膜領域2(10)の一方のみ情報の消去を行い、他方は消去しないという動作も可能である。本実施例における情報の書き込み、消去の方法を述べる。低抵抗領域1(23)、低抵抗領域2(24)の電位をそれぞれ固定し(例えば各々0Vと5V)、制御電極1(26)を所定の高電位Vw(例えば10V)にすることで薄膜領域1(21)への書き込みを行う。制御電極2(27)の電位を高く設定しなけ
れば(例えば5Vに設定する)薄膜領域2(22)には書き込みは行われない。消去においては、低抵抗領域(23)(24)を所定の電位に設定し(例えば各々0Vと5V)制御電極1(26)を所定の低電位Ve(例えば−5V)に設定することで薄膜領域1(21)の記憶情報が消去される。このとき制御電極2(27)の電位を低く設定しなければ(例えば5Vに設定する)薄膜領域2(22)の情報は消去されない。
【0037】
実施例6
図21は本発明の第6の実施例を示す。
【0038】
二つの薄膜領域1(134)、2(135)、三つの低抵抗領域1〜3(136)〜(138)、二つの制御電極(139)(140)を持つ。ここで低抵抗領域1〜3(136)〜(138)という記述は、番号の若いもの同士が対応する、つまり低抵抗領域1が(136)、低抵抗領域2が(137)、低抵抗領域3が(138)に対応することを意味するこことし、以下でもこの意味に用いる。本実施例は実施例5において低抵抗領域2(24)を低抵抗領域2(137)と低抵抗領域3(138)に分けた構造である。低抵抗領域2(137)、低抵抗領域3(138)はコンタクト孔を通じて別層の配線と接続されている。別層の配線の材料を選択して、低抵抗の素子の実現が可能となる。さらに低抵抗領域1(135)についてもこれを分割し別層の配線と接続してもよい。
【0039】
実施例7
図9は本発明の第7の実施例を示す。
【0040】
本記憶素子は4ビット以上の情報を記憶する。四つの薄膜領域1〜4(28)〜(31)、三つの低抵抗領域1〜3(32)〜(34)、二つの制御電極(35)(36)を持つ。第一の薄膜領域、第二の薄膜領域がともに第一(32)と第二(33)の低抵抗領域を、第三の薄膜領域、第四の薄膜領域がともに第一(32)と第三(34)の低抵抗領域を接続しており、第一の制御電極(35)は第一の薄膜領域(28)と第三の薄膜領域(30)を、第二の制御電極(36)は第二の薄膜領域(29)と第四の薄膜領域(31)を覆う形で設けられている。共通の低抵抗領域1(32)を用いることで低抵抗領域2(33)と低抵抗領域3(34)の間隔を小さくでき、従って小面積で作製可能である。さらに本構造においては薄膜領域毎にコンタクトを設ける必要がないため、面積が小さくできると同時に本構造を縦方向に繰り返し積む積層構造が作りやすいという特徴ももつ。薄膜領域1(28)への書き込みにおいては低抵抗領域2(33)を低い電位(例えば0V)にし、低抵抗領域1(32)、低抵抗領域3(34)をより高い電位(例えば両方とも5V)に設定し、制御電極1(35)を所定の高電位Vw(例えば10V)にする。制御電極2(36)の電位は高電位に設定しない(例えば5Vに設定する)。このとき薄膜領域2(29)、薄膜領域3(30)、薄膜領域4(31)には書き込みは行われない。尚、このとき低抵抗領域3(34)の電位も低抵抗領域2(33)と同様の低い電位(0V)に設定することで薄膜領域1(28)と薄膜領域3(30)に同時に書き込むことも可能である。消去においては、低抵抗領域1(32)と低抵抗領域3(34)を所定の低電位に設定し(例えばともに0V)、低抵抗領域2(33)をより高い電位(例えば5V)に設定して制御電極1(35)を所定の低電位Ve(例えば−5V)に設定することで薄膜領域1(28)の記憶情報が消去される。制御電極2(36)の電位は低く設定しない(例えば5Vに設定する)。ただし高電位Vw及び低電位Veの印加時間は一定時間内とする。このとき薄膜領域2(29)、薄膜領域3(30)、薄膜領域4(31)の情報は消去されない。消去においても書き込みと同様に低抵抗領域3(34)の電位を低抵抗領域2(33)と同じ電位に設定して薄膜領域1(28)と薄膜領域3(30)の一括消去が可能である。このような同一制御電極で制御される情報の一括書き込み、消去は本構造を繰り返し用いて多くの記憶を行った際には特に有効であり、書き込み、消去時間の大幅な短縮が可能である。これら電圧設定は以下の実施例でも本質的に同じである。本構造のように制御電極(35)(36)を薄膜領域(28)〜(31)の上側に設ける構造においては、基板の電位を上げ下げすることで薄膜領域1〜4(28)〜(31)の情報を一括して書き込み、消去する動作も可能である。これは制御電極(35)(36)を薄膜領域(28)〜(31)の上側に設ける構造を採る他の実施例でも同様である。薄膜領域1の情報の読み出しは低抵抗領域1(32)と低抵抗領域2(33)の間に電位差を与え(例えば0Vと1V)、制御電極2(36)の電位を所定の低電位(例えば−1V)に設定し制御電極1(35)を制御電極2(36)の電位より高い読みだし電位Vr(例えば1V)に設定し、低抵抗領域1(32)と低抵抗領域2(33)の間に流れる電流値を測定することで薄膜領域1(28)のコンダクタンスを読みだして行う。制御電極2(36)の電位を各薄膜領域の記憶している情報の如何にかかわらず各薄膜領域が低コンダクタンスである程度に低く設定することにより、薄膜領域1(28)のみの情報が読み出せる。
【0041】
本実施例における他の設定電圧の例を図30に示す。以下説明における呼びかたを簡単にするため図30に示すように低抵抗領域をデータ線1(33)(D1と略す)、ソース線(32)(Sと略す)、データ線2(34)(D2と略す)と呼び、制御電極をワード線1(36)(W1と略す)、ワード線2(35)(W2と略す)と呼ぶ。さらにワード線1(36)とデータ線1(33)で制御される薄膜領域2(29)を含むメモリセルをセル1(301)、ワード線1(36)とデータ線2(34)で制御される薄膜領域4(31)を含むメモリセルをセル2(302)と呼ぶこととする。図30の書き込み条件は、セル1、セル2に書き込む情報に対応した条件が示してある。ここでセル1に情報“1”を、セル2に情報“0”を書き込むことを{1,0}のようにあらわしている。この他のワード線2(35)で制御される2セルについては書き込みを行わない条件である。消去条件はセル1、セル2を消去し、他の2セルについては消去しない条件であり、読みだし条件はセル1、セル2を読みだし、他の2セルについては読みださない条件である。本設定では、同じワード線で制御されるセルについて消去を一括して行う。又、ここまでの説明では消去と情報の“0”書き込みを同一視してきたが、本動作においてはこの二つは異なる。情報の記憶は消去後に“0”書き込みか“1”書き込みのいずれかを行う事でなされる。図31には消去後(303)、“0”書き込み後(304)、“1”書き込み後(305)の読み出し条件における電流値を示している。このように一旦強く消去した後で弱い書き込みを行って“0”状態を定義することにより、情報書き換え後の“0”状態の電流値のばらつき及び時間変化が小さくなる。強い消去は、起こる確率が低いものの動作中に偶然入ってしまったトラップ等を掃き出し状態を揃える役割を果たすと考えられる。弱い書き込みは、トラップされる確率の高いトラップを埋めて保持又は読みだし中の電子トラップによる電流変化を小さくしていると解釈できる。多くの電子を蓄積する通常のメモリの場合にはこのような電子トラップの影響はあまり大きくないが、本発明のように少ない蓄積キャリア数で記憶を行うメモリでは非常に影響が大きい。また、電子の蓄積、放出と書き込み、消去の対応関係を逆転させても同様の効果がある。尚、本設定電圧においては読みだしのワード線電圧を0.1Vと−5Vとしているが、これは素子の電流電圧特性にから“0”と“1”の状態をを明確に区別できるように決める値であり、しきい電圧やワード線電圧に対する電流の立ち上がりが異なるセルを用いる場合には最適値が変わってくる。
【0042】
又、本実施例における異なる設定電圧の例を図32、図33に示す。図32の電圧設定は負の電圧を用いないという特徴があり、負電圧を発生をさせなくて良い分電源回路が簡単で済むという利点がある。図33は、図30よりもしきい電圧が高いセルを用いた場合の電圧設定例である。
【0043】
本構造を4つ繰り返し並べ、薄膜領域を16個設けた構造を図24に示す。W1〜W4はワード線、D1〜D4はデ−タ線、S1〜S2はソース線である。さらに、本構造を繰り返し並べ、120ビット分のメモリセルを行列状に並べて作製した試作素子の電子顕微鏡写真を図25に示す。写真で横に走るのが制御電極(ワード線W1〜W8,ダミーワード線DW1,DW2)で10本設けられている。縦に走るのが低抵抗領域で、デ−タ線、ソース線及びダミーソース線として、計18本が設けられている。この低抵抗領域の三本(例えばD3,S2,D4)を一組(低抵抗領域1〜3に対応する。一つの制御電極に対し薄膜領域1、2に対応する二つの薄膜領域が設けられている。)として1つのワード線につき2つのメモリセルが構成され、図24と同様の構成でメモリアレイが構成されている。図25では、制御電極10本と、メモリセルの数は低抵抗領域の三本の組の6組が形成されているので、10本×6組×2つで120個のメモリセルが並んでいる。大規模な記憶においても書き込み、消去、読み出しの方法は基本的に同じに行える。
【0044】
図25においては120個のメモリセルによりアレイを形成しているが、外周部分の構造はバッファとして設けたもので、実際に書き込み、消去を行なうメモリアレイは64ビット分である。両端の計二本の制御電極(ダミーワード線DW1,DW2)及び両端の三本組(ソース線S1の外側三本からなるダミーソース線DS1及びソース線S4の外側三本からなるダミーソース線DS2)計六本の低抵抗領域は電位を固定(例えば0V)したままにしている。従って、ダミーワード線DW1,DW2又はダミーソース線に接続された薄膜領域(メモリセル)は記憶を行なうのに用いない。一般にパターンが密集している部分と粗い部分とでは同じ太さで設計された線を加工しても異なった仕上がりとなることが知られている。本実施例のように外側にダミーのパターンを設ける事によって記憶に使用するセルのパターン密度をそろえ、形状のばらつきを抑えて特性ばらつきを小さくすることができる。尚、このセルアレー外周部のダミーセルによる面積増加(記憶密度の低下)の影響は、並べるセル構造の数が大規模になる程相対的に小さくなる。従って実際の応用に際しては問題にならない。
【0045】
実施例8
図10は本発明の第8の実施例を示す。
【0046】
四つの薄膜領域1〜4(37)〜(40)、四つの低抵抗領域1〜4(41)〜(44)、二つの制御電極(45)(46)を持つ。四つの薄膜領域を設け4ビット以上の情報を記憶する点及び書き込み消去の方法は実施例7と同様である。実施例7では薄膜領域1(28)と薄膜領域2(29)の接続先の低抵抗領域は二つとも共通であるが、これを別に設け、コンタクト孔を通じて金属で配線を行っている。又、制御電極(45)(46)が薄膜領域(37)〜(40)よりも下に設けられている点でも実施例5と異なる。本実施例は金属配線を用いることで抵抗を小さくできるという特徴を持つ。さらに、低抵抗領域3(43)と低抵抗領域4(44)を金属配線でつながず、金属配線を制御電極と平行に伸ばす構造をとることも可能である。この構造においては薄膜領域の上部が金属配線により、下部が制御電極で覆われるために、薄膜部の電位が安定し、外部の雑音に対し強いという特徴を持つ。制御電極を薄膜領域よりも下に設けることで、制御電極と低抵抗領域のオーバーラップ部分とコンタクト孔が重なるレイアウトが可能となっている。
【0047】
実施例9
図11は本発明の第9の実施例を示す。
【0048】
四つの薄膜領域1〜4(47)〜(50)、五つの低抵抗領域1〜5(51)〜(55)、二つの制御電極(56)(57)を持つ。本実施例は実施例7のどの低抵抗領域を分割して金属配線でつなぐかという点及び薄膜領域と制御電極の上下関係において実施例8と異なる。低抵抗領域2〜5(52)〜(55)の電位を大きく変えて動作させる場合には、低抵抗領域2〜5(52)〜(55)の容量が小さくなっているため速度の点で本構造が有効である。さらに低抵抗領域1(51)についてもこれを分割し互いを別層の配線を用いて接続してもよい。
【0049】
実施例10
図12は本発明の第10の実施例を示す。
【0050】
第一の薄膜領域(58)が第一の低抵抗領域(62)と第三の低抵抗領域(64)を、第二の薄膜領域(59)が第一の低抵抗領域(62)と第四の低抵抗領域(65)を、第三の薄膜領域(60)が第二の低抵抗領域(63)と第三の低抵抗領域(64)を、第四の薄膜領域(61)が第二の低抵抗領域(63)と第四の低抵抗領域(65)を接続しており、第一の制御電極(66)は第一の薄膜領域(58)と第二の薄膜領域(59)を、第二の制御電極(67)は第三の薄膜領域(60)と第四の薄膜領域(61)を覆う形で設けられている。本構造においては実施例7のように第三の低抵抗領域(64)と第四の低抵抗領域(65)を一体化しては各薄膜領域(58)〜(61)に別々に情報を書き込み、消去することは不可能である。低抵抗領域3(64)はWによる別層の低抵抗領域5(156)と、低抵抗領域4(65)はWによる低抵抗領域5(156)と同層の低抵抗領域6(157)と各々接続されており、別々に制御する。低抵抗領域5(156)、低抵抗領域6(157)の材料は、低抵抗であればW以外でもよい。を本実施例では制御電極(66)(67)の長手方向と低抵抗領域5(156)及び低抵抗領域6(157)の長手方向がほぼ垂直である構造としたが、低抵抗領域5(156)と低抵抗領域6(157)は長手方向が互いに平行でさえあればよく、制御電極(66)(67)の長手方向と垂直でなくても構わない。本実施例は、制御電極(66)(67)が共通の低抵抗領域1(62)、低抵抗領域2(63)上を横断することがないため制御電極(66)(67)の電位変動の影響を受けにくいという特徴を持つ。
【0051】
実施例11
図13は本発明の第11の実施例を示す。
【0052】
四つの薄膜領域1〜4(68)〜(71)、五つの低抵抗領域1〜5(72)〜(76)、二つの制御電極(77)(78)を持つ。本実施例は実施例10で低抵抗領域3(64)と低抵抗領域4(65)を同じ材料で接続し、低抵抗領域1(62)、低抵抗領域2(63)を各々分割したものである。低抵抗領域2(73)と低抵抗領域4(75)はWによる別層の低抵抗領域6(154)、低抵抗領域3(74)と低抵抗領域5(76)はWによる低抵抗領域6(154)と同層の低抵抗領域7(155)によって各々接続されている。
【0053】
実施例12
図14は本発明の第12の実施例を示す。
【0054】
四つの薄膜領域1〜4(79)〜(82)、四つの低抵抗領域1〜4(83)〜(86)、二つの制御電極(87)(88)を持つ。薄膜領域1(79)、薄膜領域2(80)と薄膜領域3(81)、薄膜領域4(82)の低抵抗領域が共有化されていないという点において第7の実施例と異なる。本実施例では第7の実施例と比較して面積としては大きくなるものの、その他の特徴をすべて備える。第7の実施例と比べ、低抵抗領域が独立になっていることで電圧設定の自由度が増え、薄膜領域1(79)、薄膜領域2(80)の書き込み、消去動作時に薄膜領域3(81)、薄膜領域4(82)への影響を少なくすることが可能であり、安定動作に適しているという特徴を持つ。
【0055】
本実施形態においては、行列状に薄膜領域を配置し、少ない電流駆動経路(低抵抗領域)及び制御電極の本数で制御が可能であるという特徴を持つ。本構造を繰り返し用いることで、少ない端子数で大規模な集積化が可能となる。Nビット(例えば64Kビット)の記憶においては、単に単体を並べた場合には前述のように2N個(12万8千個)の端子が必要であったが、本構造を繰り返し用いた場合Nの平方根の個数(256個)の端子でよい。書き込み、消去、読みだしの方法を述べる。薄膜領域1(79)への書き込みにおいては低抵抗領域1(83)を低い電位(例えば0V)にし、低抵抗領域2(84)、低抵抗領域3(85)、低抵抗領域4(86)をより高い電位(例えばすべて5V)に設定し、制御電極1(87)を所定の高電位Vw(例えば10V)にする。ただし低抵抗領域2(84)についてはもっと低い電位にしてもよい。制御電極2(88)の電位は高電位に設定しない(例えば5Vに設定する)。このとき薄膜領域2(80)、薄膜領域3(81)、薄膜領域4(82)には書き込みは行われない。尚、このとき低抵抗領域3(85)の電位も低抵抗領域1(83)と同様の低い電位(0V)に設定することで薄膜領域1(79)と薄膜領域3(81)に同時に書き込むことも可能である。消去においては、低抵抗領域2(84)、低抵抗領域3(85)、低抵抗領域4(86)を所定の低電位に設定し(例えばともに0V)、低抵抗領域1(83)をより高い電位(例えば5V)に設定して制御電極1(87)を所定の低電位Ve(例えば−5V)に設定することで薄膜領域1(79)の記憶情報が消去される。ただし低抵抗領域2(84)についてはもっと高い電位にしてもよい。制御電極2(88)の電位は低く設定しない(例えば5Vに設定する)。ここで高電位Vw及び低電位Veの印加時間は一定時間内とする。このとき薄膜領域2(80)、薄膜領域3(81)、薄膜領域4(82)の情報は消去されない。消去においても書き込みと同様に低抵抗領域3(85)の電位を低抵抗領域1(83)と同じ電位に設定して薄膜領域1(79)と薄膜領域3(81)の一括消去が可能である。このような同一制御電極で制御される情報の一括書き込み、消去は本構造を繰り返し用いて多くの記憶を行った際には特に有効であり、書き込み、消去時間の大幅な短縮が可能である。これら電圧設定は以下の実施例でも本質的に同じである。本構造のように制御電極(87)(88)を薄膜領域(79)〜(82)の上側に設ける構造においては、基板の電位を上げ下げすることで薄膜領域1〜4(79)〜(82)の情報を一括して書き込み、消去する動作も可能である。これは制御電極(87)(88)を薄膜領域(79)〜(82)の上側に設ける構造を採る他の実施例でも同様である。薄膜領域1の情報の読み出しは低抵抗領域1(83)と低抵抗領域2(84)の間に電位差を与え、制御電極2(88)の電位を所定の低電位に設定し制御電極1(87)を制御電極2(88)の電位より高い読みだし電位Vrに設定し、低抵抗領域1(83)と低抵抗領域2(84)の間に流れる電流値を測定することで薄膜領域1(79)のコンダクタンスを読みだして行う。制御電極2(88)の電位を各薄膜領域の記憶している情報の如何にかかわらず各薄膜領域が低コンダクタンスである程度に低く設定することにより、薄膜領域1(79)のみの情報が読み出せる。
【0056】
薄膜領域を行列状に並べ、大規模な記憶を行う場合には本構造のような4ビットが行列状に並んだ構造が基本であり、大規模になっても書き込み、消去、読みだし等の制御方法についても4ビットの場合と同様に行うことができる。これは薄膜領域を4個持つ他の実施例についてもあてはまることである。
【0057】
本構造を繰り返し用いて16ビット以上の記憶を行う素子を図26に示す。
【0058】
実施例13
図19は本発明の第13の実施例を示す。
【0059】
四つの薄膜領域1〜4(122)〜(125)、六つの低抵抗領域1〜4(126)〜(131)、二つの制御電極(132)(133)を持つ。第5の実施例において低抵抗領域2(24)を二分割した構造を二つ並べ、制御電極を共有化したものと同等の構造である。本構造は第8、第9の実施例と同様に4ビット以上を記憶する素子であり、面積の面では第8、第9の実施例より大きくなっている。本構造においても実施例12と同様に、低抵抗領域が独立になっていることで電圧設定の自由度が増え、薄膜領域1(122)、薄膜領域2(123)の書き込み、消去動作時に薄膜領域3(124)、薄膜領域4(125)への影響を少なくすることが可能であり、安定動作に適しているという特徴を持つ。本構造は低抵抗領域2(127)、低抵抗領域3(128)と低抵抗領域4(129)が隣り合う構造であるが、低抵抗領域2(127)、低抵抗領域3(128)と低抵抗領域5(130)、低抵抗領域6(131)が隣り合う構造でもよい。この構造においても、動作時の各部分の電圧設定が容易となるという特徴がある。
【0060】
実施例14
図15は本発明の第14の実施例を示す。
【0061】
薄膜領域1(89)と薄膜領域3(91)、薄膜領域2(90)と薄膜領域4(92)の低抵抗領域が共有化されていないという点において第9の実施例と異なる。低抵抗領域2(94)、低抵抗領域3(95)、低抵抗領域5(97)、低抵抗領域6(98)を構成する層とは別層の低抵抗領域7(158)、を使って低抵抗領域2(94)と低抵抗領域5(97)を、低抵抗領域7(158)と同層の低抵抗領域8(159)を使って低抵抗領域3(95)と低抵抗領域6(98)を各々接続する。本実施例では第10の実施例と比較して面積としては大きくなるもののの薄膜領域1(89)、薄膜領域2(90)の書き込み、消去動作時に薄膜領域3(91)、薄膜領域4(92)への影響が少なく、安定動作が可能であるという特徴を持つ。
【0062】
実施例15
図16は本発明の第15の実施例を示す。
【0063】
本実施例では三本の細線が両端を各々同じ低抵抗領域(102)(103)に接続され、同一の制御電極(104)によって制御される構造であり、三本で一つの薄膜領域(101)を構成している。細線の本数は二本でもよいし、もっと多くても構わない。細線が一本の場合には、線幅を小さくすると電荷蓄積によるコンダクタンス変化が大きくなるが、同時に抵抗が高くなり電流が減少する。本実施例においては線幅を小さく保ちつつ、線が複数あるため両端の低抵抗領域間を流れる電流量が大きい。さらに複数の線を用いることでこれらの統計的な特性を利用することができるため、各々の線の特性ばらつきに強いという特徴を持つ。又、本構造では薄膜領域のうちに分離している部分があることが本質であり例えば図20のように薄膜が途中から別れる構造でも同じことである。
【0064】
実施例16
図23は本発明の第16の実施例を示す。
【0065】
本実施例では三本の細線が両端を各々同じ低抵抗領域(162)(163)に接続され、同一の制御電極(164)によって制御される構造であり、三本で一つの薄膜領域(161)を構成している点において実施例15と同様であるが、三本の細線が積層構造に設けられている点において異なる。細線の間は絶縁膜(165)よりなる。細線の本数は二本でもよいし、もっと多くても構わないことは実施例15と同様である。本実施例は実施例15と同様の特徴持つ他、積層構造をとることにって細線を複数設けても薄膜領域(161)の面積が大きくならないという特徴を持つ。本構造の製造工程は、実施例1と同様であるが、薄膜形成工程において薄膜の堆積と絶縁膜の形成を繰り返し、その後に三層の薄膜部を一括して加工するという点において異なる。又、本実施例の積層構造と実施例15の細線が同一平面上に並ぶ構造の両方を併用してもよい。
【0066】
実施例17
図17は本発明の第17の実施例を示す。
【0067】
本記憶素子は4ビット以上の情報を記憶する。四つの薄膜領域1〜4(105)〜(108)、六つの低抵抗領域1〜6(109)〜(114)、二つの制御電極(115)(116)を持つ。第一の薄
膜領域(105)が第一(109)と第三(111)の低抵抗領域を、第二の薄膜領域(106)が第二(110)と第四(112)の低抵抗領域を、第三の薄膜領域(107)が第三(111)と第五(113)の低抵抗領域を、第四の薄膜領域(108)が第四(112)と第六(114)の低抵抗領域を接続しており、第一の制御電極(115)は第一の薄膜領域(105)と第二の薄膜領域(106)を、第二の制御電極(116)は第三の薄膜領域(107)と第四の薄膜領域(108)を覆う形で設けられている。本構造は実施例10、実施例11と似ているが、書き込み消去、読みだし動作が異なるために低抵抗領域3(111)や低抵抗領域4(112)にコンタクトを設ける必要がなく、面積を小さくできる。本実施例においては低抵抗領域1(109)と低抵抗領域5(113)の間、低抵抗領域2(110)と低抵抗領域6(114)の間で電流を流し、経路において薄膜領域1(105)と薄膜領域3(107)、薄膜領域2(106)と薄膜領域4(108)が直列に入るという点において前述の4ビット以上を記憶する素子の実施例と異なる。薄膜領域1(105)への書き込みにおいては低抵抗領域1(109)又は低抵抗領域5(113)を低い電位(例えば0V)にし、低抵抗領域2(110)又は低抵抗領域6(114)をより高い電位(例えば5V)に設定する。制御電極1(115)を所定の高電位Vw(例えば12V)にし、制御電極2(116)は制御電極1(115)の電位より相対的に低電位V1(例えば5V)に設定する。ここで電位V1は薄膜領域2(106)の記憶している情報が何であっても薄膜領域2(106)を導通させる程度には高い値にする。このとき薄膜領域2(106)、薄膜領域3(107)、薄膜領域4(108)には書き込みは行われない。尚、このとき低抵抗領域2(110)又は低抵抗領域6(114)の電位も低抵抗領域1(109)又は低抵抗領域5(113)と同様の低い電位(0V)に設定することで薄膜領域1(105)と薄膜領域2(106)に同時に書き込むことも可能である。消去においては、低抵抗領域2(110)又は低抵抗領域6(114)を所定の低電位に設定し(例えばともに0V)、低抵抗領域1(109)又は低抵抗領域5(113)をより高い電位(例えば5V)に設定して制御電極1(115)を所定の低電位Ve(例えば−5V)に設定することで薄膜領域1(105)の記憶情報が消去される。制御電極2(116)の電位は低く設定しない(例えば5Vに設定する)。このとき薄膜領域2(106)、薄膜領域3(107)、薄膜領域4(108)の情報は消去されない。ただし高電位Vw及び低電位Veの印加時間は一定時間内とする。消去においても書き込みと同様に低抵抗領域2(110)又は低抵抗領域6(114)の電位を低抵抗領域1(109)又は低抵抗領域5(113)と同じ電位に設定して薄膜領域1(105)と薄膜領域2(106)の一括消去が可能である。このような同一制御電極で制御される情報の一括書き込み、消去は本構造を繰り返し用いて多くの記憶を行った際には特に有効であり、書き込み、消去時間の大幅な短縮が可能である。薄膜領域1(105)の情報の読み出しは低抵抗領域1(109)と低抵抗領域5(113)の間に電位差を与え(例えば各々0V、1V)制御電極2(116)の電位を所定の電位V2(例えば5V)に設定し制御電極1(115)を制御電極2(116)の電位より低い読みだし電位Vr(例えば3V)に設定し、低抵抗領域1(109)と低抵抗領域5(113)の間に流れる電流値を測定することで薄膜領域1(105)のコンダクタンスを読みだして行う。ここで電位V2は薄膜領域2(106)の記憶している情報が何であっても薄膜領域2(106)が導通する程度に高く、書き込みが行われない程度に低く設定する。
【0068】
実施例18
図18は、本発明の第18の実施例を示す。
【0069】
実施例1において、制御電極(120)を薄膜領域(117)の下部に設け、さらに薄膜領域(117)の上部にも第二の制御電極(121)を設けた構造である。第二の制御電極(121)と薄膜領域(117)の間の容量は第一の制御電極(120)と薄膜領域(117)の間の容量と比べて小さくする。これには制御電極2(121)と薄膜領域(117)の間の絶縁膜の厚さを制御電極1(120)と薄膜領域(117)の間絶縁膜の厚さより大きくすればよい。このとき薄膜領域(117)近くに制御電極1(120)が存在することも薄膜領域(117)と制御電極2(121)の間の容量を小さくしている。他に制御電極1(120)と薄膜領域(117)の間の絶縁膜の材料との制御電極2(121)と薄膜領域(117)の間絶縁膜の材料を変えることでも実現できる。制御電極1(120)を薄膜領域(117)の上部に、制御電極2(121)を薄膜領域(117)の下部に設けてもよい。本実施例の記憶素子の書き込み、消去動作ではの制御電極1(120)を用い、読みだし動作においては制御電極2(121)を用いる。これにより、書き込み、消去動作の高速性を確保しつつ、電荷蓄積による薄膜領域(117)のコンダクタンス変化を大きくすることが可能となる。
【0070】
実施例19
図22は本発明の第19の実施例を示す。
【0071】
本実施例は低抵抗領域1(2)から低抵抗領域2(3)に至る途中で薄膜領域(141)が突起を持つ構造を採っているという点で実施例1と異なる。本構造では突起部分に電荷が捕獲されやすいことを利用し捕獲領域を小さくとることで、蓄積電荷量の素子間ばらつき、同量の蓄積電荷があった場合のコンダクタンス変化の素子間ばらつき等を小さくし、メモリの特性の安定化をはかる。突起の無い長方形の薄膜形状の場合電荷の捕獲は薄膜の全面のどこでも起こりうる。突起部分には面積の点から電荷が捕獲されやすいことの他に、電界が突起の基部(142)に集中しやすいことから、突起部内に電荷が捕獲されやすいという特徴もある。
【0072】
実施例20
図27は本発明の第20の実施例を示す。
【0073】
本実施例は実施例12の構造を絶縁膜を間に挟んで縦方向に二層に積み、8ビット以上の記憶を行うものである。この二層構造では面積を増やさずに記憶量を二倍にすることが可能であるという特徴を持ち、より多くの層積み重ねればより記憶密度を増すことが可能である。これは実施例12(図14)のような、セル付近にコンタクトを設けないでよい構造で可能になることである。書き込みや読みだしは各層について実施例12と同様に行える。
【0074】
実施例21
図28は本発明の第21の実施例を示す。
【0075】
本実施例は実施例12の構造において制御電極1(177)、制御電極2(178)を薄膜領域1〜4(169)〜(172)の下に設け、さらに薄膜領域1〜4(169)〜(172)の上に薄膜領域1〜4(169)〜(172)に共通の制御電極3(179)を設けたものである。制御電極1(177)、制御電極2(178)を薄膜領域1〜4(169)〜(172)の上にに設け、薄膜領域1〜4(169)〜(172)の下に制御電極3(179)を設けてもよい。本構造では制御電極3(179)を用いて薄膜領域1〜4(169)〜(172)の情報を一括して消去又は書き込むことが可能であるという特徴がある。より多くのセルを並べた場合においても、1ビット毎に書き込み可能な制御電極の他に、所望の範囲のセルまたがる制御電極を設けることで、この範囲のセルの一括消去又は書き込みが可能となり、メモリチップとしての機能を増やすことができる。
【0076】
【発明の効果】
本発明によれば、複数の記憶素子間で容易に端子を共有でき、かつ大きな電流を流すことができ、また雑音に強い半導体記憶素子及び半導体記憶装置を提供することができる。
【0077】
また、素子の小型化が可能となり、情報の高密度の記憶が可能となる。従って、高集積、低消費電力、不揮発の記憶装置が実現でき、システムの低消費電力化、小型化が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例1の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図2】実施例1の二つの低抵抗領域間を流れる電流の制御電極・低抵抗領域1間の電圧依存性の実測値を示す図である。
【図3】集積化に際し、当初検討を行った素子構造の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図4】本発明の実施例5の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図5】本発明の製造工程を示す断面図である。
【図6】本発明の実施例3の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図7】本発明の実施例2の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図8】本発明の実施例4の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図9】本発明の実施例7の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図10】本発明の実施例8の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図11】本発明の実施例9の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図12】本発明の実施例10の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図13】本発明の実施例11の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図14】本発明の実施例12の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図15】本発明の実施例14の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図16】本発明の実施例15の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図17】本発明の実施例17の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図18】本発明の実施例18の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図19】本発明の実施例13の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図20】本発明の実施例15の半導体素子と実質的に等価な構造を示した図である。(a)は鳥瞰図、(b)は上面図である。
【図21】本発明の実施例6の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図22】本発明の実施例19の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図23】本発明の実施例16の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図24】本発明の実施例7の半導体素子の構造を繰り返し用いた、16ビットの記憶を行う素子の上面図である。
【図25】本発明の実施例7の半導体素子の構造を繰り返し用い、120ビット分のメモリセルを並べ64ビットの記憶を行なう試作素子の走査電子顕微鏡写真である。
【図26】本発明の実施例12の半導体素子の構造を繰り返し用いた、16ビットの記憶を行う素子の上面図である。
【図27】本発明の実施例20の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図28】本発明の実施例21の半導体素子の構造図である。(a)は鳥瞰図、(b)は上面図である。
【図29】本発明の実施例1の半導体素子の動作原理を説明するための薄膜領域の低ポテンシャル部分の概念図である。
【図30】本発明の実施例7の半導体素子の電圧設定例を示す図である。
【図31】本発明の実施例7の半導体素子の電圧設定例における消去後、“0”書き込み後、“1”書き込み後のデータ線電流を示す図である。
【図32】本発明の実施例7の半導体素子の電圧設定例を示す図である
【図33】本発明の実施例7の半導体素子の電圧設定例を示す図である
【符号の説明】
Vw…書き込み時に制御電極に印加する電圧、Ve…消去時に制御電極に印加する電圧、Vr…読みだし時に制御電極に印加する電圧、D1…データ線1、D2…データ線2、S…ソース線、W1…ワード線1、W1…ワード線2。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element suitable for high integration and a semiconductor memory device using the same.
[0002]
[Prior art]
As a conventional technique related to the present invention, K.K. The single-electron memory using the polycrystalline silicon described in Yano et al, IEEE International Electron Devices Meeting pp541-544, 1993 is mentioned. In this technique, a polycrystalline silicon thin film simultaneously forms a channel that is a current path and a storage region that captures electrons. Information is stored by utilizing the fact that the threshold voltage changes when electrons are captured in the storage area. It is characterized in that one bit is stored by accumulating one electron. The use of polycrystalline silicon crystal grains effectively realizes a small structure and enables operation even at room temperature.
[0003]
Conventionally, a nonvolatile memory device such as a flash EEPROM has been realized by using a MOSFET having a floating gate and a control gate. Information is stored and read by utilizing the fact that the threshold voltage of the MOSFET changes by accumulating carriers in the floating gate. Polycrystalline silicon is usually used for the floating gate. By using this MOSFET with a floating gate, 1-bit information can be stored for a long time with only one transistor. As a memory cell structure of a flash EEPROM, Nikkei Electronics no. 444 pp 151-157, 1988, the conventional structure and the contactless cell structure.
[0004]
In addition, as a conventional technique regarding the influence of a base insulating film when forming a polycrystalline silicon thin film on an insulating film, The polycrystalline silicon MOS described in Hashimoto et al, Conference on Solid State Devices and Materials, pp97-100, 1989 is mentioned. In this paper, it is stated that the Si3N4 film or the CVD-SiO2 film is superior to the thermal oxide film for obtaining a continuous film in forming a polycrystalline silicon film of about 8 nm.
[0005]
[Problems to be solved by the invention]
Single-electron memory that stores information with a small number of stored electrons can store information of 1 bit or more with one element, and the stored charge can be controlled in units of one unit, so it can operate even at the nanometer level There is. In addition, since the number of stored electrons is small, a dramatic improvement can be expected in the rewrite time and the number of rewrites. However, the conventional single electronic memory is a single element that stores 1 bit, and no means for storing information of 2 bits or more is known. If it is intended to store information of N bits (for example, 65536 in the case of 64K bit memory) using this single element, N control electrodes and N current drive paths are required, and this is controlled from the outside of the chip. It will be necessary. This requires 2N terminals (131072), which is not realistic. Inventors considered that it is important to share a terminal among a plurality of storage elements in order to avoid this, and as a result of independent studies, the inventors initially came up with the idea of storing 2 bits with the structure shown in FIG. It was. That is, the thin film region (150) on the insulator connects the first (151) and second (152) low resistance regions, and the thin film region (180) on the insulator connects the third (181) and fourth ( 182), and the control electrode (153) is orthogonal to the first thin film region (150) and the second thin film region (180). It is a structure that covers a part of the thin film region (180). In this structure, the number of terminals to be driven from the outside can be reduced by sharing the control electrode with two memory elements. However, in this structure, since there is a portion that is not covered by the control electrode (153) of the thin film region 1 (150) and the thin film region 2 (180), there is a problem that the resistance of this portion is high and a large current cannot flow. The remaining. In addition, the portions of the thin film region 1 (150) and the thin film region 2 (180) that are not covered with the control electrode (153) fluctuate in potential due to capacitive coupling with other electrodes or electromagnetic waves, so that stored information is stably maintained. There is a fear that it cannot be done. Further, in addition to the area occupied by the control electrode extending in the horizontal direction in the figure, the area occupied by thin-film polycrystalline silicon and contacts is necessary, so that the area required for storing 1-bit information is large. Further, since the control electrode (153) is correctly provided on the thin film region 1 (150) or the thin film region 2 (180), it is necessary to see a margin for alignment, and the low resistance region 1 (151) and the low resistance region 2 (152). There is also a problem that the distance between the low resistance region 3 (181) and the distance between the low resistance region 4 (182) cannot be reduced to a certain extent.
[0006]
The present invention is based on this inventor's prior study, and an object thereof is to provide a semiconductor memory element that can easily share terminals among a plurality of memory elements, can pass a large current, and is resistant to noise. There is to do.
[0007]
[Means for Solving the Problems]
The present invention is characterized in that the control electrode has a structure that covers the entire thin film portion, so that it has low resistance, is resistant to external disturbance, and can be manufactured in a small area.
[0008]
More specifically, a semiconductor device according to a representative embodiment of the present invention is:
A thin film region (1) made of a semiconductor formed on an insulator;
The first (2) and the second (3) low resistance region,
One end of the thin film region is connected to the first low resistance region (2),
The other end of the thin film region is connected to the second low resistance region (3),
Having a first control electrode (4) for controlling the thin film region;
The control electrode (4) covers the entire thin film region (see FIG. 1).
[0009]
In the memory element of this embodiment (FIG. 1), since the control electrode (4) covers the entire thin film portion (1), the control electrode (4) can control the entire thin film (1), and the high resistance portion of the thin film Reading time is shortened because no current is lost and a large current can flow. Further, since the entire thin film region (1) is covered with the control electrode (4), the capacitive coupling between the outside and the thin film region (1) is small, and it is difficult to receive disturbance from the outside. Further, the distance between the low resistance region 1 (2) and the low resistance region 2 (3) can be set small as much as the alignment with the control electrode (4) is facilitated. In addition, the control electrode (153) in FIG. Differently, since it can take a rectangular shape, the area of the control electrode (4) may be small.
[0010]
Whether the memory effect reported by Yano et al. Appears in the structure in which the control electrode (4) covers the entire surface in this way was not clear at first. Thus, as a result of the inventors actually making a prototype of such an element, the operation could be confirmed. That is, in the memory element (FIG. 1) of the present embodiment, the voltage between the low resistance region 1 (2) and the low resistance region 2 (3) is constant, and the control electrode (4) and the low resistance region 1 (2) It was confirmed that the conductance of the thin film region (1) shows hysteresis even at room temperature when the potential difference between the thin film region (1) is repeatedly increased or decreased within a predetermined range (see FIG. 2).
[0011]
FIG. 2 shows the experimental results for the memory element (FIG. 1) of this embodiment. The current-voltage characteristics (167) on the left side are the characteristics after the low resistance region 1 (2) is set to 0V, the low resistance region 2 (3) is set to 1V, and the potential of the control electrode (4) is set to -6V. The voltage characteristic (168) is a characteristic after the low resistance region 1 (2) is set to 0V, the low resistance region 2 (3) is set to 1V, and the potential of the control electrode (4) is set to 12V. A shift of about 1V is seen as a threshold voltage in 12V writing and -6V erasing. It was confirmed that a detectable current of about 1 nA flows. It should be noted that operation is possible even when the potential difference applied to the low resistance region 1 (2) and the low resistance region 2 (3) is set to a large value up to 1V. With regard to quantum effect elements, it is common knowledge that the effect disappears when a large potential difference is applied, and the inventors experimentally discovered that memory operation is possible at a value of 1 V as shown in this result. It is what. Note that it is possible to store one bit or more in one thin film region by utilizing the change in conductance of the thin film region depending on the writing and erasing conditions, and it is possible to improve the information recording density. .
[0012]
Compared to a simple arrangement of single memory elements, the number of terminals of the current drive path can be reduced, and as an embodiment suitable for integration,
It has first (21) and second (22) thin film regions made of a semiconductor formed on an insulator, is thicker than the thin film region, and has a substantially rectangular first shape whose long side is at least twice the short side. One (23), second (24) low resistance region,
One end of the first thin film region (21) is connected to the first low resistance region (23),
The other end of the first thin film region (21) is connected to the second low resistance region (24),
One end of the second thin film region (22) is connected to the first low resistance region (23),
The other end of the second thin film region (22) is connected to the second low resistance region (24),
A first control electrode (26) for controlling the first thin film region (21);
2 bits or more characterized by having a second control electrode (27) for controlling the second thin film region (22) (see FIG. 4).
[0013]
In the present embodiment, two memory elements share the same low resistance region (23) (24), and the area can be reduced.
[0014]
Compared with a simple arrangement of a single memory element, the number of terminals of the control electrode can be reduced, and as an embodiment suitable for integration,
A first (143) and second (144) thin film region made of a semiconductor formed on an insulator;
Having a first (145), second (146), third (147), and fourth (148) low resistance regions that are thicker than the thin film region;
One end of the first thin film region is connected to the first low resistance region (145),
The other end of the first thin film region is connected to a second low resistance region (146),
One end of the second thin film region is connected to a third low resistance region (147),
The other end of the second thin film region is connected to a fourth low resistance region (148),
It has a common control electrode (149) for controlling the first (143) and second (144) thin film regions, and stores at least two bits (see FIG. 6). .
[0015]
In this embodiment, two memory elements share the same control electrode (149), and the area can be reduced.
[0016]
According to an embodiment suitable for integration that combines the above advantages, arranges elements in a matrix, and can be controlled with a small number of terminals,
A first (79), second (80), third (81), fourth (82) thin film region made of a semiconductor formed on an insulator;
It has first (83), second (84), third (85), and fourth (86) low resistance regions that are thicker than the thin film region and have a substantially rectangular shape whose long side is more than twice the short side. And
One end of the first thin film region (79) is connected to the first low resistance region (83),
The other end of the first thin film region (79) is connected to a second low resistance region (84),
One end of the second thin film region (80) is connected to the first low resistance region (83),
The other end of the second thin film region (80) is connected to the second low resistance region (84),
One end of the third thin film region (81) is connected to the third low resistance region (85),
The other end of the third thin film region (81) is connected to a fourth low resistance region (86),
One end of the fourth thin film region (82) is connected to the third low resistance region (85),
The other end of the fourth thin film region (82) is connected to a fourth low resistance region (86),
A first control electrode (87) for controlling the first (79) and third (81) thin film regions having a substantially rectangular shape whose long side is twice or more the short side;
4 having a second control electrode (88) for controlling the second (80) and fourth (82) thin film regions having a substantially rectangular shape whose long side is twice or more of the short side. It is characterized by storing more than a bit. (Refer to Fig. 14)
Even when four memory elements are arranged in a matrix as in this embodiment, the control electrodes (87) and (88) and the low resistance regions (83) to (86) are shared, and the fabrication with a small area is possible. It is. Even if the control electrode and the low-resistance region are shared as shown in FIGS. 4, 6, and 14, information can be written to and read from each element independently. The method for writing and reading information in FIGS. 4, 6, and 14 will be described in the section of the embodiment.
[0017]
Other objects and features of the present invention will become apparent from the following examples.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a memory device according to a specific embodiment of the present invention will be described.
[0019]
Example 1
FIG. 1 is a structural diagram of a memory element according to this embodiment. The thin film region (1) is made of non-doped polycrystalline silicon, and the low resistance region 1 (2) and the low resistance region 2 (3) are thicker and made of high impurity concentration n-type polycrystalline silicon. In an example actually produced by the inventors, the thickness of the thin film region (1) is 3 nm on average, the width is 0.1 microns, and the length is 0.2 microns. The low resistance region 1 (2) and the low resistance region The thickness of the region 2 (3) is 40 nm. The base of the thin film region (1), the low resistance region 1 (2), and the low resistance region 2 (3) is Si3N4 (7), and the lower layer is made of SiO2 (6). The control electrode (4) made of high impurity concentration n-type polycrystalline silicon is formed by depositing SiO2 (8) on the thin film region (1), the low resistance region 1 (2), and the low resistance region 2 (3). Formed.
[0020]
Further, in this example, the thin film portion (1) was formed by depositing a (amorphous) -Si with Si3N4 (7) as a base, followed by crystallization by heat treatment at 750 ° C. When the base is Si3N4, compared with the case where the base is SiO2, the gas source is actually started after flowing.
Since the time until Si begins to come into contact with the wafer surface is short, the controllability of a-Si thin film deposition is improved. Note that this method may be used because nitriding the surface instead of forming the Si3N4 film has the same effect. This method uses Si3N4 in order to improve the film thickness controllability of a-Si thin film deposition, and the purpose is different from the case of improving the film continuity as in the prior art. In the prior art, CVD-Si3N4 and CVD-SiO2 are said to have the same effect, but Si3N4 is superior to CVD-SiO2 for the purpose of the present invention.
[0021]
In order to read a change in conductance due to a small number of accumulated charges, it is effective to set the capacitance between the thin film region (1) and the control electrode (4) small. By providing the thin film region (1) on the insulating film (6), the capacitance between the thin film region (1) and the control electrode (4) can be set small (FIG. 5). Further, the low resistance region 1 (2) and the low resistance region 2 (3) are also provided on the insulator (6) so that the entire element is formed on the insulator (6), thereby stacking the memory element. It is possible to increase the memory density by making many steps in the structure, or to make an element such as a peripheral circuit by using the substrate surface to reduce the area, and the low resistance region (2) There is a feature that the potential of (3) can be set to either positive or negative. For this reason, there is an advantage that the degree of freedom of the relative potential difference between the control electrode (4) and the low resistance regions (2) and (3) increases. In a structure in which a low resistance region is provided in the bulk as in a normal MOSFET, this is impossible because current flows between the substrate and the substrate unless the bias direction is kept constant. This also applies to the following embodiments.
[0022]
In this embodiment, electrons are used as carriers, but holes may be used. In this case, the relative value of the set voltage of each structure in writing, erasing, and reading is opposite to that in the case where electrons are used as carriers. Further, although silicon is used for the low resistance region 1 (2), the low resistance region 2 (3), and the control electrode (4), other semiconductors or metals may be used. Non-doped polycrystalline silicon is used for the thin film region (1), but other semiconductor materials may be used or impurities may be contained. The control electrode (4) is provided on the thin film portion (1), but this may be provided below. Further, in this embodiment, the thin film portion (1) is a current path between the low resistance regions and at the same time has a charge storage function for storing data, but the thin film portion has only a current path function between the low resistance regions. In addition, a charge storage portion for storing data may be provided. At this time, the material of the charge storage portion may be a semiconductor or a metal. In the case of this structure, since the current path and the charge storage portion can be designed separately, there is a feature that the degree of freedom of size, material, etc. increases. Alternatively, the low resistance region 1 (2), the low resistance region 2 (3), or the thin film region (1) may be formed using an SOI (Silicon on Insulator) substrate. This structure has an advantage that the resistance is small because single crystal silicon is used for the low resistance region 1 (2), the low resistance region 2 (3), or the thin film region (1). As another means for reducing the resistance of the low resistance region, there is a method of lining the low resistance region with a metal material (for example, W, TiN, WSi2, MoSi, TiSi, etc.), and this method may be adopted. . The control electrode may also be lined with a metal material to reduce resistance. The same applies to the following embodiments.
[0023]
More storage can be performed by repeatedly arranging the storage elements of this embodiment. The same applies to the memory elements of the following embodiments.
[0024]
The operating principle of this embodiment will be described with reference to FIG. The thin film region (1) is made of polycrystalline silicon that is very thin with an average of 3 nm. Since it is very thin as 3 nm, the potential varies greatly depending on the location mainly due to the change in thickness. Therefore, under low current conditions, the current path (190) is limited to the portion formed by the connection of low potential crystals in the thin film. In addition, there is an isolated region (191) made of a crystal having a low potential but separated from the current path by a high potential portion. Electrons are accumulated and stored in such an isolated area (191). That is, in this embodiment, the thin film region (1) serves as both a current path and a charge storage portion. Thus, in an element that effectively realizes a fine structure by utilizing the fact that the potential in the thin film varies depending on the location, it is essential that the film is thin, and the effect decreases as the film thickness increases. In the case of this example, it was observed that the threshold shift due to information storage becomes smaller as the film thickness becomes larger. As a result of trial manufacture by changing the film thickness, it was found that the film thickness should be about 6 nm or less in order to operate the device at room temperature. When a voltage is applied to the control electrode (4), the potential difference between the current path (190) and the isolated region (191) increases, and eventually the electrons pass over the high potential portion by thermal excitation or tunneling, and the isolated region ( Jump into 191). Since each of the isolated regions (191) is very small, the potential change is large even when one electron is injected, greatly affecting the probability that the next electron will be injected. Therefore, the variation in the number of accumulated electrons under the write conditions is extremely small. Further, in the retention of memory, a large energy change when one electron enters and exits means that the number of accumulated electrons is difficult to change due to factors such as thermal excitation and external potential fluctuation. Since the current path (190) is narrow and greatly influenced by accumulated electrons, the presence or absence of electron accumulation can be distinguished by the magnitude of the current value at the potential of the predetermined control electrode (4), and information can be read out. is there. In order to discharge the stored electrons (erase operation), the potential of the control electrode (4) may be set to a predetermined low potential. Here, electron injection corresponds to writing and emission corresponds to erasing, and will be used in this sense in the following. Depending on the literature, it may be called with the opposite correspondence.
[0025]
Next, the manufacturing process of a present Example is demonstrated using FIG. First, the surface of the n-type Si substrate (5) is oxidized, and a Si3N4 film (7) is deposited thereon. High impurity concentration n-type polycrystalline silicon is deposited thereon and processed to form a low resistance region 1 (2) and a low resistance region 2 (3) (FIG. 5A). Further, a-Si is deposited and processed to form a thin film region (1) (FIG. 5B). Thereafter, SiO 2 is deposited at a temperature of 750 ° C. At this time, a-Si is crystallized to become polycrystalline silicon. High impurity concentration n-type polycrystalline silicon is deposited thereon and processed to form a control electrode (4) (FIG. 5C). Thereafter, an interlayer insulating film (18) is deposited, and planarization is performed to reduce the surface unevenness, and metal wiring is performed. As can be seen from this manufacturing process, unlike a MOS device using a normal bulk, since the LOCOS process is not required, it can be manufactured with a small number of processes.
[0026]
Example 2
FIG. 7 shows a second embodiment of the present invention.
[0027]
The material of each structure is the same as in Example 1, but the low resistance region 1 (11) connected to the thin film region 1 (9) and the low resistance region 1 (11) connected to the thin film region 2 (10). It is characterized in that it is common. The thin film region 1 (9) and the thin film region 2 are set by setting the voltages of the low resistance region 1 (11), the low resistance region 2 (12), the low resistance region 3 (14), and the control electrode (14) to predetermined values. It is possible to write, erase, and read information on only one of (10). In writing to the thin film region 1 (9), the low resistance region 1 (23) is set to a low potential (eg, 0 V), and the low resistance region 2 (12) and the low resistance region 3 (13) are set to a higher potential (eg, both 5V), and the control electrode (14) is set to a predetermined high potential Vw (for example, 10V). If the application time of the high potential Vw is set within a certain time, writing is not performed in the thin film region 2 (10). At this time, the potential of the low resistance region 3 (4) is also set to the same low potential (0 V) as that of the low resistance region 1 (11), so that the thin film region 1 (9) and the thin film region 2 (10) are simultaneously written. It is also possible. In erasing stored information in the thin film region 1 (9), the low resistance region 2 (12) and the low resistance region 3 (13) are set to a low potential (for example, both are 0 V), and the low resistance region 1 (23) is set. A higher potential (for example, 5V) may be set, and the control electrode (14) may be set to a predetermined low potential Ve (for example, -5V). If the application time of the low potential Ve is set within a certain time, the information in the thin film region 2 (10) is not erased. In erasing, as in writing, the potential of the low resistance region 2 (12) is set to the same potential as that of the low resistance region 1 (23), and the thin film region 1 (9) and the thin film region 2 (10) can be erased at once. is there.
[0028]
This embodiment can store twice as much information as the memory element of the first embodiment, but has a feature that it can be manufactured with a smaller area than the case where the two memory elements of the first embodiment are arranged apart from each other. .
[0029]
Example 3
FIG. 6 shows a third embodiment of the present invention.
[0030]
It consists of two thin film regions (143) and (144) and four low resistance regions (145) to (148) and one control electrode (149). The common low resistance region (11) of the second embodiment is not shared but separated. Since the low resistance region is independent, the degree of freedom of voltage setting is increased, and it is possible to reduce the influence on the thin film region 2 (144) during the writing and erasing operations of the thin film region 1 (143). It is suitable for operation.
[0031]
By appropriately setting the voltages of the low resistance region 1 (145), the low resistance region 2 (146), the low resistance region 3 (147), the low resistance region 4 (148) and the control electrode (149), the thin film region 1 ( 143) and thin film region 2 (144), information can be written only to one and not the other. Similarly, it is possible to perform an operation in which only one of the thin film region 1 (143) and the thin film region 2 (144) is erased and the other is not erased. In writing to the thin film region 1 (143), the low resistance region 1 (145) is set to a low potential (for example, 0 V), and the low resistance region 2 (146), the low resistance region 3 (147), and the low resistance region 4 (148). Are set to a higher potential (for example, all 5 V), and the control electrode (149) is set to a predetermined high potential Vw (for example, 10 V). However, the lower resistance region 2 (146) may have a lower potential. If the application time of the high potential Vw is set within a certain time, writing is not performed in the thin film region 2 (144). At this time, the potential of the low resistance region 3 (147) is also set to the same low potential (0 V) as that of the low resistance region 1 (145), so that the thin film region 1 (143) and the thin film region 2 (144) are simultaneously written. It is also possible. In erasing stored information in the thin film region 1 (143), the low resistance region 2 (144), the low resistance region 3 (147), and the low resistance region 4 (148) are set to a low potential (for example, all 0 V), and the low The resistance region 1 (145) may be set to a higher potential (for example, 5V), and the control electrode (149) may be set to a predetermined low potential Ve (for example, -5V). Again, the lower resistance region 2 (146) may be at a higher potential. If the application time of the low potential Ve is set within a certain time, the information in the thin film region 2 (144) is not erased. In the erasing, as in the writing, the potential of the low resistance region 3 (147) is set to the same potential as that of the low resistance region 1 (145), and the thin film region 1 (143) and the thin film region 2 (144) can be collectively erased. is there.
[0032]
Example 4
FIG. 8 shows a fourth embodiment of the present invention.
[0033]
Although it is the same as that of Example 2 in the point which consists of the material of each part, two thin film area | regions (15) and (16), and three low resistance area | regions (17)-(19) one control electrode (20), The two thin film regions (15) and (16) are on the same side of the common low resistance region 1 (17), and the longitudinal direction of the control electrode (20) and the longitudinal direction of the common low resistance region 1 (17) are parallel. It is different in that there is. Information writing and erasing are performed in the same manner as in the second embodiment. The common low resistance region 1 (17) can be used to produce a small area, and the control electrode and the common low resistance region 1 (17) are parallel to each other. (17) Since it does not cross the top, it is difficult to be affected by potential fluctuations of the control electrode.
[0034]
Example 5
FIG. 4 shows a fifth embodiment of the present invention.
[0035]
In this embodiment, the number of thin film regions is the same as in Embodiments 2 and 4, but there are two control electrodes (26), (27) only two low resistance regions (23), (24 ) Is different from the above-described second and fourth embodiments. Accordingly, the number of contacts may be small and the area occupied by the low resistance region is small. The low resistance region 1 (23), the low resistance region 2 (24), and the control electrodes (26) and (27) are made of doped polycrystalline silicon, and the thin film region 1 (21) and the thin film region 2 (22) are non-doped many. The same thing is made of crystalline silicon.
[0036]
In the present embodiment, since the thin film region 1 (21) and the thin film region 2 (22) share the low resistance region 1 (23) and the low resistance region 2 (24), the current drive path (low resistance region) There is a feature that the number of can be reduced. Even if the low resistance region is shared in this way, the voltages of the low resistance region 1 (23), the low resistance region 2 (24), the control electrode 1 (26), and the control electrode 2 (27) are set appropriately. An operation can be performed in which information is written only to one of the thin film region 1 (21) and the thin film region 2 (22) and not written to the other. Similarly, it is possible to perform an operation in which only one of the thin film region 1 (9) and the thin film region 2 (10) is erased and the other is not erased. A method of writing and erasing information in this embodiment will be described. The potentials of the low resistance region 1 (23) and the low resistance region 2 (24) are fixed (for example, 0 V and 5 V, respectively), and the control electrode 1 (26) is set to a predetermined high potential Vw (for example, 10 V) to form a thin film. Write to area 1 (21). The potential of control electrode 2 (27) must be set high
If so, writing is not performed in the thin film region 2 (22) (for example, set to 5V). In erasing, the low resistance regions (23) and (24) are set to a predetermined potential (for example, 0 V and 5 V, respectively), and the control electrode 1 (26) is set to a predetermined low potential Ve (for example, -5 V) to form a thin film. The stored information in area 1 (21) is deleted. At this time, unless the potential of the control electrode 2 (27) is set low (for example, set to 5 V), the information in the thin film region 2 (22) is not erased.
[0037]
Example 6
FIG. 21 shows a sixth embodiment of the present invention.
[0038]
It has two thin film regions 1 (134), 2 (135), three low resistance regions 1-3 (136)-(138), and two control electrodes (139) (140). Here, the descriptions of the low resistance regions 1 to 3 (136) to (138) correspond to those having a smaller number, that is, the low resistance region 1 is (136), the low resistance region 2 is (137), and the low resistance region. 3 means that it corresponds to (138), and is used in this sense in the following. In this embodiment, the low resistance region 2 (24) is divided into the low resistance region 2 (137) and the low resistance region 3 (138) in the fifth embodiment. The low resistance region 2 (137) and the low resistance region 3 (138) are connected to wirings in different layers through contact holes. It is possible to realize a low-resistance element by selecting a material for another layer of wiring. Further, the low resistance region 1 (135) may be divided and connected to another layer of wiring.
[0039]
Example 7
FIG. 9 shows a seventh embodiment of the present invention.
[0040]
This storage element stores information of 4 bits or more. It has four thin film regions 1 to 4 (28) to (31), three low resistance regions 1 to 3 (32) to (34), and two control electrodes (35) and (36). Both the first thin film region and the second thin film region are the first (32) and second (33) low resistance regions, and the third thin film region and the fourth thin film region are both the first (32) and the second thin film region. Three (34) low resistance regions are connected, and the first control electrode (35) connects the first thin film region (28) and the third thin film region (30) to the second control electrode (36). Is provided so as to cover the second thin film region (29) and the fourth thin film region (31). By using the common low-resistance region 1 (32), the distance between the low-resistance region 2 (33) and the low-resistance region 3 (34) can be reduced, so that it can be manufactured with a small area. Furthermore, since there is no need to provide a contact for each thin film region in this structure, the area can be reduced, and at the same time, it is easy to make a laminated structure in which the structure is repeatedly stacked in the vertical direction. In writing to the thin film region 1 (28), the low resistance region 2 (33) is set to a low potential (eg, 0 V), and the low resistance region 1 (32) and the low resistance region 3 (34) are set to a higher potential (eg, both 5V), and the control electrode 1 (35) is set to a predetermined high potential Vw (for example, 10V). The potential of the control electrode 2 (36) is not set to a high potential (for example, set to 5V). At this time, writing is not performed in the thin film region 2 (29), the thin film region 3 (30), and the thin film region 4 (31). At this time, the potential of the low resistance region 3 (34) is also set to the same low potential (0 V) as that of the low resistance region 2 (33), so that the thin film region 1 (28) and the thin film region 3 (30) are simultaneously written. It is also possible. In erasing, the low resistance region 1 (32) and the low resistance region 3 (34) are set to a predetermined low potential (for example, both 0V), and the low resistance region 2 (33) is set to a higher potential (for example, 5V). Then, the stored information in the thin film region 1 (28) is erased by setting the control electrode 1 (35) to a predetermined low potential Ve (for example, -5 V). The potential of the control electrode 2 (36) is not set low (for example, set to 5V). However, the application time of the high potential Vw and the low potential Ve is within a certain time. At this time, information of the thin film region 2 (29), the thin film region 3 (30), and the thin film region 4 (31) is not erased. In the erasing, as in the writing, the thin film region 1 (28) and the thin film region 3 (30) can be collectively erased by setting the potential of the low resistance region 3 (34) to the same potential as the low resistance region 2 (33). is there. Such batch writing and erasing of information controlled by the same control electrode is particularly effective when many structures are stored by repeatedly using this structure, and writing and erasing time can be greatly shortened. These voltage settings are essentially the same in the following embodiments. In the structure in which the control electrodes (35) and (36) are provided on the upper side of the thin film regions (28) to (31) as in this structure, the thin film regions 1 to 4 (28) to (31) are increased by raising and lowering the substrate potential. ) Information can be written and erased at once. This is the same in other embodiments adopting a structure in which the control electrodes (35) and (36) are provided above the thin film regions (28) to (31). Reading information from the thin film region 1 gives a potential difference between the low resistance region 1 (32) and the low resistance region 2 (33) (for example, 0 V and 1 V), and the potential of the control electrode 2 (36) is set to a predetermined low potential ( For example, the control electrode 1 (35) is set to a reading potential Vr (for example, 1 V) higher than the potential of the control electrode 2 (36), and the low resistance region 1 (32) and the low resistance region 2 (33) are set. The conductance of the thin film region 1 (28) is read by measuring the value of the current flowing during Regardless of the information stored in each thin film region, the potential of the control electrode 2 (36) is set to a low value with a low conductance in each thin film region, so that only the information of the thin film region 1 (28) can be read. .
[0041]
An example of another set voltage in this embodiment is shown in FIG. In order to simplify the description in the following description, as shown in FIG. 30, the low resistance region is defined as data line 1 (33) (abbreviated as D1), source line (32) (abbreviated as S), and data line 2 (34). The control electrodes are called word line 1 (36) (abbreviated as W1) and word line 2 (35) (abbreviated as W2). Further, the memory cell including the thin film region 2 (29) controlled by the word line 1 (36) and the data line 1 (33) is controlled by the cell 1 (301), the word line 1 (36) and the data line 2 (34). A memory cell including the thin film region 4 (31) to be formed is referred to as a cell 2 (302). The write conditions in FIG. 30 indicate conditions corresponding to information to be written in the cell 1 and the cell 2. Here, writing information “1” in the cell 1 and writing information “0” in the cell 2 is represented as {1, 0}. The other cells controlled by the word line 2 (35) are conditions for not performing writing. The erasing condition is a condition in which the cells 1 and 2 are erased and the other two cells are not erased. The reading condition is a condition in which the cells 1 and 2 are read and the other two cells are not read. . In this setting, erasing is performed for all cells controlled by the same word line. In the description so far, erasure and information “0” writing are regarded as the same, but in the present operation, the two are different. Information is stored by performing either “0” writing or “1” writing after erasure. FIG. 31 shows current values under read conditions after erasure (303), after writing "0" (304), and after writing "1" (305). In this way, by defining the “0” state by performing weak writing after strong erasure once, variation in the current value and time change of the “0” state after information rewriting are reduced. Strong erasure is considered to play a role in sweeping out traps and the like that accidentally enter during operation although the probability of occurrence is low. Weak writing can be interpreted as reducing the current change due to the electron trap during filling or holding the trap with a high probability of being trapped. In the case of a normal memory that accumulates many electrons, the influence of such an electron trap is not so great, but in a memory that stores data with a small number of accumulated carriers as in the present invention, the influence is very great. The same effect can be obtained by reversing the correspondence relationship between electron accumulation, emission, writing, and erasing. In this setting voltage, the read word line voltage is set to 0.1 V and −5 V, but this can clearly distinguish the “0” and “1” states from the current-voltage characteristics of the element. The optimum value varies when cells having different current rises with respect to the threshold voltage or the word line voltage are used.
[0042]
Examples of different set voltages in this embodiment are shown in FIGS. The voltage setting in FIG. 32 has a feature that a negative voltage is not used, and there is an advantage that a power supply circuit can be simplified because it is not necessary to generate a negative voltage. FIG. 33 shows an example of voltage setting when a cell having a higher threshold voltage than that of FIG. 30 is used.
[0043]
FIG. 24 shows a structure in which four of this structure are repeatedly arranged and 16 thin film regions are provided. W1 to W4 are word lines, D1 to D4 are data lines, and S1 to S2 are source lines. Further, FIG. 25 shows an electron micrograph of a prototype device manufactured by repeatedly arranging this structure and arranging 120-bit memory cells in a matrix. Ten control electrodes (word lines W1 to W8, dummy word lines DW1 and DW2) run sideways in the photograph. A low resistance region runs vertically, and a total of 18 data lines, source lines, and dummy source lines are provided. A set of three low resistance regions (for example, D3, S2, and D4) (corresponding to the low resistance regions 1 to 3. Two thin film regions corresponding to the thin film regions 1 and 2 are provided for one control electrode. As shown in FIG. 24, two memory cells are formed for each word line, and a memory array is formed in the same configuration as that in FIG. In FIG. 25, 10 sets of 10 control electrodes and 3 sets of memory cells in the low resistance region are formed, so that 120 memory cells are arranged in 10 × 6 sets × 2. Yes. In large-scale storage, the writing, erasing and reading methods can be basically the same.
[0044]
In FIG. 25, an array is formed by 120 memory cells, but the structure of the outer peripheral portion is provided as a buffer, and the memory array for actually writing and erasing is for 64 bits. A total of two control electrodes (dummy word lines DW1, DW2) at both ends and a triplet pair (dummy source line DS1 consisting of three outside source lines S1 and dummy source line DS2 consisting of three outside source lines S4) ) A total of six low resistance regions are kept at a fixed potential (for example, 0 V). Therefore, the thin film regions (memory cells) connected to the dummy word lines DW1 and DW2 or the dummy source line are not used for storage. In general, it is known that even if a line designed with the same thickness is processed in a portion where the pattern is dense and a portion where the pattern is rough, different results are obtained. By providing a dummy pattern on the outside as in this embodiment, the pattern density of cells used for storage can be made uniform, variation in shape can be suppressed, and characteristic variation can be reduced. The influence of the area increase (reduction in storage density) due to the dummy cells on the outer periphery of the cell array becomes relatively smaller as the number of cell structures arranged becomes larger. Therefore, there is no problem in actual application.
[0045]
Example 8
FIG. 10 shows an eighth embodiment of the present invention.
[0046]
It has four thin film regions 1 to 4 (37) to (40), four low resistance regions 1 to 4 (41) to (44), and two control electrodes (45) and (46). The point of providing four thin film regions and storing information of 4 bits or more and the method of writing and erasing are the same as in the seventh embodiment. In Example 7, the two low-resistance regions to which the thin film region 1 (28) and the thin film region 2 (29) are connected are common, but these are provided separately and wiring is performed with metal through the contact holes. Further, the fifth embodiment is different from the fifth embodiment in that the control electrodes (45) and (46) are provided below the thin film regions (37) to (40). This embodiment has a feature that resistance can be reduced by using metal wiring. Further, it is also possible to adopt a structure in which the low resistance region 3 (43) and the low resistance region 4 (44) are not connected by the metal wiring, and the metal wiring is extended in parallel with the control electrode. In this structure, since the upper part of the thin film region is covered with the metal wiring and the lower part is covered with the control electrode, the potential of the thin film part is stable and strong against external noise. By providing the control electrode below the thin film region, a layout is possible in which the overlap portion of the control electrode and the low resistance region overlaps with the contact hole.
[0047]
Example 9
FIG. 11 shows a ninth embodiment of the present invention.
[0048]
It has four thin film regions 1 to 4 (47) to (50), five low resistance regions 1 to 5 (51) to (55), and two control electrodes (56) and (57). The present embodiment is different from the eighth embodiment in which low resistance region of the seventh embodiment is divided and connected by metal wiring and in the vertical relationship between the thin film region and the control electrode. In the case of operating by changing the potential of the low resistance regions 2 to 5 (52) to (55) greatly, the capacity of the low resistance regions 2 to 5 (52) to (55) is small, so that the speed is reduced. This structure is effective. Further, the low resistance region 1 (51) may be divided and connected to each other by using another layer of wiring.
[0049]
Example 10
FIG. 12 shows a tenth embodiment of the present invention.
[0050]
The first thin film region (58) is the first low resistance region (62) and the third low resistance region (64), and the second thin film region (59) is the first low resistance region (62) and the first low resistance region (62). The fourth low resistance region (65), the third thin film region (60) the second low resistance region (63) and the third low resistance region (64), and the fourth thin film region (61) The second low resistance region (63) and the fourth low resistance region (65) are connected, and the first control electrode (66) is connected to the first thin film region (58) and the second thin film region (59). The second control electrode (67) is provided so as to cover the third thin film region (60) and the fourth thin film region (61). In this structure, the third low resistance region (64) and the fourth low resistance region (65) are integrated as in the seventh embodiment, and information is written to each thin film region (58) to (61) separately. It is impossible to erase. The low resistance region 3 (64) is a low resistance region 5 (156) in another layer made of W, and the low resistance region 4 (65) is a low resistance region 6 (157) in the same layer as the low resistance region 5 (156) made of W. Are connected to each other and controlled separately. The material of the low resistance region 5 (156) and the low resistance region 6 (157) may be other than W as long as it has a low resistance. In this embodiment, the longitudinal direction of the control electrodes (66) and (67) and the longitudinal direction of the low resistance region 5 (156) and the low resistance region 6 (157) are substantially perpendicular to each other. 156) and the low resistance region 6 (157) need only be parallel to each other in the longitudinal direction, and may not be perpendicular to the longitudinal direction of the control electrodes (66) and (67). In this embodiment, since the control electrodes (66) and (67) do not cross over the common low resistance region 1 (62) and the low resistance region 2 (63), the potential fluctuation of the control electrodes (66) and (67). It is difficult to be affected by
[0051]
Example 11
FIG. 13 shows an eleventh embodiment of the present invention.
[0052]
It has four thin film regions 1 to 4 (68) to (71), five low resistance regions 1 to 5 (72) to (76), and two control electrodes (77) and (78). In this embodiment, the low resistance region 3 (64) and the low resistance region 4 (65) are connected by the same material as in the tenth embodiment, and the low resistance region 1 (62) and the low resistance region 2 (63) are respectively divided. It is. The low-resistance region 2 (73) and the low-resistance region 4 (75) are the low-resistance region 6 (154) in another layer made of W, and the low-resistance region 3 (74) and the low-resistance region 5 (76) are the low-resistance region due to W. 6 (154) and the low resistance region 7 (155) in the same layer as each other.
[0053]
Example 12
FIG. 14 shows a twelfth embodiment of the present invention.
[0054]
It has four thin film regions 1 to 4 (79) to (82), four low resistance regions 1 to 4 (83) to (86), and two control electrodes (87) and (88). The thin film region 1 (79), the thin film region 2 (80), the thin film region 3 (81), and the thin film region 4 (82) are different from the seventh embodiment in that the low resistance regions are not shared. In this embodiment, the area is larger than that of the seventh embodiment, but all other features are provided. Compared to the seventh embodiment, since the low resistance region is independent, the degree of freedom of voltage setting is increased, and the thin film region 3 ( 81), the influence on the thin film region 4 (82) can be reduced, and it is suitable for stable operation.
[0055]
The present embodiment is characterized in that thin film regions are arranged in a matrix and control is possible with a small number of current drive paths (low resistance regions) and control electrodes. By repeatedly using this structure, large-scale integration is possible with a small number of terminals. In the storage of N bits (for example, 64K bits), if the single elements are simply arranged, 2N (128,000) terminals are necessary as described above. However, when this structure is used repeatedly, N The number of terminals of the square root of (256) may be sufficient. Describes how to write, erase and read. In writing to the thin film region 1 (79), the low resistance region 1 (83) is set to a low potential (for example, 0 V), and the low resistance region 2 (84), the low resistance region 3 (85), and the low resistance region 4 (86). Are set to a higher potential (for example, all 5 V), and the control electrode 1 (87) is set to a predetermined high potential Vw (for example, 10 V). However, the low resistance region 2 (84) may have a lower potential. The potential of the control electrode 2 (88) is not set to a high potential (for example, set to 5V). At this time, writing is not performed in the thin film region 2 (80), the thin film region 3 (81), and the thin film region 4 (82). At this time, the potential of the low resistance region 3 (85) is set to the same low potential (0 V) as that of the low resistance region 1 (83), so that the thin film region 1 (79) and the thin film region 3 (81) are simultaneously written. It is also possible. In erasing, the low resistance region 2 (84), the low resistance region 3 (85), and the low resistance region 4 (86) are set to a predetermined low potential (for example, both are 0 V), and the low resistance region 1 (83) is further set. By setting the control electrode 1 (87) to a predetermined low potential Ve (for example, −5 V) by setting it to a high potential (for example, 5 V), the stored information in the thin film region 1 (79) is erased. However, the low resistance region 2 (84) may have a higher potential. The potential of the control electrode 2 (88) is not set low (for example, set to 5V). Here, the application time of the high potential Vw and the low potential Ve is within a predetermined time. At this time, information of the thin film region 2 (80), the thin film region 3 (81), and the thin film region 4 (82) is not erased. In erasing, as in the writing, the potential of the low resistance region 3 (85) is set to the same potential as that of the low resistance region 1 (83), so that the thin film region 1 (79) and the thin film region 3 (81) can be collectively erased. is there. Such batch writing and erasing of information controlled by the same control electrode is particularly effective when many structures are stored by repeatedly using this structure, and writing and erasing time can be greatly shortened. These voltage settings are essentially the same in the following embodiments. In the structure in which the control electrodes (87) and (88) are provided on the upper side of the thin film regions (79) to (82) as in this structure, the thin film regions 1 to 4 (79) to (82) are increased or decreased by raising or lowering the substrate potential. ) Information can be written and erased at once. This is the same in other embodiments adopting a structure in which the control electrodes (87) and (88) are provided above the thin film regions (79) to (82). In reading information from the thin film region 1, a potential difference is applied between the low resistance region 1 (83) and the low resistance region 2 (84), the potential of the control electrode 2 (88) is set to a predetermined low potential, and the control electrode 1 ( 87) is set to a reading potential Vr higher than the potential of the control electrode 2 (88), and the value of the current flowing between the low resistance region 1 (83) and the low resistance region 2 (84) is measured to thereby determine the thin film region 1 The conductance of (79) is read out. Regardless of the information stored in each thin film region, the potential of the control electrode 2 (88) is set to a low value with a low conductance in each thin film region, so that only the information of the thin film region 1 (79) can be read. .
[0056]
When thin-film areas are arranged in a matrix and large-scale storage is performed, a structure in which 4 bits are arranged in a matrix like this structure is fundamental, and writing, erasing, reading, etc. are possible even when the scale is large The control method can be performed similarly to the case of 4 bits. This is also true for other embodiments having four thin film regions.
[0057]
An element for repeatedly storing this structure and storing 16 bits or more is shown in FIG.
[0058]
Example 13
FIG. 19 shows a thirteenth embodiment of the present invention.
[0059]
It has four thin film regions 1 to 4 (122) to (125), six low resistance regions 1 to 4 (126) to (131), and two control electrodes (132) and (133). In the fifth embodiment, the structure is equivalent to a structure in which two low-resistance regions 2 (24) are divided into two and the control electrode is shared. This structure is an element that stores 4 bits or more as in the eighth and ninth embodiments, and is larger than the eighth and ninth embodiments in terms of area. Also in this structure, as in the twelfth embodiment, since the low resistance region is independent, the degree of freedom in voltage setting is increased, and the thin film region 1 (122) and the thin film region 2 (123) are written and erased during the erase operation. It is possible to reduce the influence on the region 3 (124) and the thin film region 4 (125), which is suitable for stable operation. In this structure, the low resistance region 2 (127), the low resistance region 3 (128), and the low resistance region 4 (129) are adjacent to each other, but the low resistance region 2 (127), the low resistance region 3 (128), and The low resistance region 5 (130) and the low resistance region 6 (131) may be adjacent to each other. This structure is also characterized in that the voltage setting of each part during operation is easy.
[0060]
Example 14
FIG. 15 shows a fourteenth embodiment of the present invention.
[0061]
It differs from the ninth embodiment in that the low resistance regions of the thin film region 1 (89) and the thin film region 3 (91) and the thin film region 2 (90) and the thin film region 4 (92) are not shared. The low-resistance region 2 (94), the low-resistance region 3 (95), the low-resistance region 5 (97), and the low-resistance region 7 (158) that is a different layer from the layers constituting the low-resistance region 6 (98) are used. The low resistance region 2 (94) and the low resistance region 5 (97) are used, and the low resistance region 8 (159) in the same layer as the low resistance region 7 (158) is used to form the low resistance region 3 (95) and the low resistance region. 6 (98) are connected to each other. In this embodiment, although the area is larger than that of the tenth embodiment, the thin film region 3 (91) and the thin film region 4 (in the writing / erasing operations of the thin film region 1 (89) and the thin film region 2 (90) are performed. 92) and has a feature that stable operation is possible.
[0062]
Example 15
FIG. 16 shows a fifteenth embodiment of the present invention.
[0063]
In this embodiment, three thin wires are connected to the same low resistance region (102) (103) at both ends and controlled by the same control electrode (104). ). The number of fine wires may be two or more. In the case of a single thin line, if the line width is reduced, the change in conductance due to charge accumulation increases, but at the same time, the resistance increases and the current decreases. In the present embodiment, since there are a plurality of lines while keeping the line width small, the amount of current flowing between the low resistance regions at both ends is large. Furthermore, since these statistical characteristics can be used by using a plurality of lines, they have a characteristic that they are resistant to variations in the characteristics of each line. Further, in this structure, it is essential that there is a separated part in the thin film region, and for example, the structure is the same even if the thin film is separated from the middle as shown in FIG.
[0064]
Example 16
FIG. 23 shows a sixteenth embodiment of the present invention.
[0065]
In this embodiment, three thin wires are connected to the same low resistance region (162) (163) at both ends and controlled by the same control electrode (164), and one thin film region (161) ) Is the same as the embodiment 15 except that three thin wires are provided in the laminated structure. An insulating film (165) is formed between the thin wires. The number of fine wires may be two or more, as in the fifteenth embodiment. This embodiment has the same characteristics as those of the fifteenth embodiment, and also has a characteristic that the area of the thin film region (161) does not increase even if a plurality of fine lines are provided by taking a laminated structure. The manufacturing process of this structure is the same as that of the first embodiment, but differs in that the deposition of the thin film and the formation of the insulating film are repeated in the thin film forming process, and then the three layers of thin film portions are processed collectively. Moreover, you may use together both the laminated structure of a present Example, and the structure where the fine wire of Example 15 is located in the same plane.
[0066]
Example 17
FIG. 17 shows a seventeenth embodiment of the present invention.
[0067]
This storage element stores information of 4 bits or more. It has four thin film regions 1 to 4 (105) to (108), six low resistance regions 1 to 6 (109) to (114), and two control electrodes (115) and (116). First thin
The film region (105) is the first (109) and third (111) low resistance regions, the second thin film region (106) is the second (110) and fourth (112) low resistance regions, The third thin film region (107) has the third (111) and fifth (113) low resistance regions, and the fourth thin film region (108) has the fourth (112) and sixth (114) low resistance regions. The first control electrode (115) is connected to the first thin film region (105) and the second thin film region (106), and the second control electrode (116) is connected to the third thin film region (107). And the fourth thin film region (108). Although this structure is similar to the tenth and eleventh embodiments, it is not necessary to provide a contact in the low-resistance region 3 (111) or the low-resistance region 4 (112) because the write / erase and read operations are different. Can be reduced. In the present embodiment, current flows between the low resistance region 1 (109) and the low resistance region 5 (113), between the low resistance region 2 (110) and the low resistance region 6 (114), and the thin film region 1 in the path. (105) and the thin film region 3 (107) and the thin film region 2 (106) and the thin film region 4 (108) are different from the above-described embodiment of the element storing 4 bits or more in that they are in series. In writing to the thin film region 1 (105), the low resistance region 1 (109) or the low resistance region 5 (113) is set to a low potential (for example, 0 V), and the low resistance region 2 (110) or the low resistance region 6 (114). Is set to a higher potential (for example, 5 V). The control electrode 1 (115) is set to a predetermined high potential Vw (for example, 12V), and the control electrode 2 (116) is set to a lower potential V1 (for example, 5V) relative to the potential of the control electrode 1 (115). Here, the potential V1 is set to a value high enough to cause the thin film region 2 (106) to conduct regardless of the information stored in the thin film region 2 (106). At this time, writing is not performed in the thin film region 2 (106), the thin film region 3 (107), and the thin film region 4 (108). At this time, the potential of the low resistance region 2 (110) or the low resistance region 6 (114) is set to the same low potential (0 V) as that of the low resistance region 1 (109) or the low resistance region 5 (113). It is also possible to write to the thin film region 1 (105) and the thin film region 2 (106) simultaneously. In erasing, the low resistance region 2 (110) or the low resistance region 6 (114) is set to a predetermined low potential (for example, both 0 V), and the low resistance region 1 (109) or the low resistance region 5 (113) is further set. By setting the control electrode 1 (115) to a predetermined low potential Ve (for example, −5 V) by setting it to a high potential (for example, 5 V), the stored information in the thin film region 1 (105) is erased. The potential of the control electrode 2 (116) is not set low (for example, set to 5V). At this time, information of the thin film region 2 (106), the thin film region 3 (107), and the thin film region 4 (108) is not erased. However, the application time of the high potential Vw and the low potential Ve is within a certain time. In erasing, the thin film region 1 is set by setting the potential of the low resistance region 2 (110) or the low resistance region 6 (114) to the same potential as that of the low resistance region 1 (109) or the low resistance region 5 (113). (105) and thin film region 2 (106) can be erased at once. Such batch writing and erasing of information controlled by the same control electrode is particularly effective when many structures are stored by repeatedly using this structure, and writing and erasing time can be greatly shortened. Reading information from the thin film region 1 (105) gives a potential difference between the low resistance region 1 (109) and the low resistance region 5 (113) (for example, 0V and 1V, respectively), and the potential of the control electrode 2 (116) is set to a predetermined value. The potential V2 (for example, 5V) is set, and the control electrode 1 (115) is set to a reading potential Vr (for example, 3V) lower than the potential of the control electrode 2 (116), and the low resistance region 1 (109) and the low resistance region 5 are set. The conductance of the thin film region 1 (105) is read by measuring the value of the current flowing during (113). Here, the potential V2 is set high enough to make the thin film region 2 (106) conductive regardless of the information stored in the thin film region 2 (106), and low enough not to perform writing.
[0068]
Example 18
FIG. 18 shows an eighteenth embodiment of the present invention.
[0069]
In Example 1, the control electrode (120) is provided below the thin film region (117), and the second control electrode (121) is also provided above the thin film region (117). The capacitance between the second control electrode (121) and the thin film region (117) is made smaller than the capacitance between the first control electrode (120) and the thin film region (117). For this purpose, the thickness of the insulating film between the control electrode 2 (121) and the thin film region (117) may be made larger than the thickness of the insulating film between the control electrode 1 (120) and the thin film region (117). At this time, the presence of the control electrode 1 (120) near the thin film region (117) also reduces the capacitance between the thin film region (117) and the control electrode 2 (121). Alternatively, it can be realized by changing the material of the insulating film between the control electrode 2 (121) and the thin film region (117), which is the material of the insulating film between the control electrode 1 (120) and the thin film region (117). The control electrode 1 (120) may be provided above the thin film region (117), and the control electrode 2 (121) may be provided below the thin film region (117). The control electrode 1 (120) is used in the writing and erasing operations of the memory element of this embodiment, and the control electrode 2 (121) is used in the reading operation. As a result, it is possible to increase the conductance change of the thin film region (117) due to charge accumulation while ensuring high-speed writing and erasing operations.
[0070]
Example 19
FIG. 22 shows a nineteenth embodiment of the present invention.
[0071]
The present embodiment is different from the first embodiment in that the thin film region (141) has a structure with protrusions on the way from the low resistance region 1 (2) to the low resistance region 2 (3). In this structure, by utilizing the fact that charges are easily trapped in the protrusions, the trap area is made small, so that variation in accumulated charge amount between elements, variation in conductance change between elements when the same amount of accumulated charge is reduced, etc. In addition, the memory characteristics are stabilized. In the case of a rectangular thin film without protrusions, charge trapping can occur anywhere on the entire surface of the thin film. In addition to being easy to capture charges in terms of area, the protrusions are also characterized in that the electric field tends to concentrate on the base (142) of the protrusions, so that charges are easily trapped in the protrusions.
[0072]
Example 20
FIG. 27 shows a twentieth embodiment of the present invention.
[0073]
In the present embodiment, the structure of the twelfth embodiment is stacked in two layers in the vertical direction with an insulating film interposed therebetween to store 8 bits or more. This two-layer structure has a feature that the storage amount can be doubled without increasing the area, and the storage density can be increased by stacking more layers. This is possible with a structure that does not require a contact in the vicinity of the cell as in the twelfth embodiment (FIG. 14). Writing and reading can be performed for each layer in the same manner as in Example 12.
[0074]
Example 21
FIG. 28 shows a twenty-first embodiment of the present invention.
[0075]
In this embodiment, the control electrode 1 (177) and the control electrode 2 (178) are provided under the thin film regions 1 to 4 (169) to (172) in the structure of the twelfth embodiment, and the thin film regions 1 to 4 (169). The control electrode 3 (179) common to the thin film regions 1 to 4 (169) to (172) is provided on (172). The control electrode 1 (177) and the control electrode 2 (178) are provided on the thin film regions 1 to 4 (169) to (172), and the control electrode 3 is provided below the thin film regions 1 to 4 (169) to (172). (179) may be provided. This structure is characterized in that the information of the thin film regions 1 to 4 (169) to (172) can be erased or written at once using the control electrode 3 (179). Even when a larger number of cells are arranged, by providing a control electrode that spans a desired range of cells in addition to a control electrode that can be written for each bit, batch erasure or writing of cells in this range becomes possible. The function as a memory chip can be increased.
[0076]
【The invention's effect】
According to the present invention, it is possible to provide a semiconductor memory element and a semiconductor memory device that can easily share terminals among a plurality of memory elements, can flow a large current, and are resistant to noise.
[0077]
Further, the element can be miniaturized and information can be stored at high density. Therefore, a highly integrated, low power consumption, non-volatile storage device can be realized, and the power consumption and size of the system can be reduced.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a semiconductor element according to Example 1 of the present invention. (A) is a bird's-eye view, (b) is a top view.
2 is a graph showing measured values of the voltage dependence between a control electrode and a low resistance region 1 of a current flowing between two low resistance regions in Example 1. FIG.
FIG. 3 is a structural diagram of an element structure that was initially examined for integration. (A) is a bird's-eye view, (b) is a top view.
FIG. 4 is a structural diagram of a semiconductor element according to Example 5 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 5 is a cross-sectional view showing the manufacturing process of the present invention.
FIG. 6 is a structural diagram of a semiconductor element according to Example 3 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 7 is a structural diagram of a semiconductor element according to Example 2 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 8 is a structural diagram of a semiconductor element according to Example 4 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 9 is a structural diagram of a semiconductor element according to Example 7 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 10 is a structural diagram of a semiconductor element according to Example 8 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 11 is a structural diagram of a semiconductor element according to Example 9 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 12 is a structural diagram of a semiconductor element according to Example 10 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 13 is a structural diagram of a semiconductor element according to Example 11 of the present invention. (A) is a bird's-eye view, (b) is a top view.
14 is a structural diagram of a semiconductor element according to Example 12 of the present invention. FIG. (A) is a bird's-eye view, (b) is a top view.
15 is a structural diagram of a semiconductor element according to Example 14 of the present invention. FIG. (A) is a bird's-eye view, (b) is a top view.
FIG. 16 is a structural diagram of a semiconductor element according to Example 15 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 17 is a structural diagram of a semiconductor element according to Example 17 of the present invention. (A) is a bird's-eye view, (b) is a top view.
18 is a structural diagram of a semiconductor element according to Example 18 of the present invention. FIG. (A) is a bird's-eye view, (b) is a top view.
19 is a structural diagram of a semiconductor element according to Example 13 of the present invention. FIG. (A) is a bird's-eye view, (b) is a top view.
FIG. 20 is a view showing a structure substantially equivalent to the semiconductor element of Example 15 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 21 is a structural diagram of a semiconductor element according to Example 6 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 22 is a structural diagram of a semiconductor element according to Example 19 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 23 is a structural diagram of a semiconductor element according to Example 16 of the present invention; (A) is a bird's-eye view, (b) is a top view.
FIG. 24 is a top view of an element for 16-bit storage using the structure of a semiconductor element of Example 7 of the present invention repeatedly.
FIG. 25 is a scanning electron micrograph of a prototype device in which the structure of the semiconductor device of Example 7 of the present invention is repeatedly used to arrange memory cells for 120 bits and store 64 bits.
FIG. 26 is a top view of a 16-bit memory element that repeatedly uses the structure of a semiconductor element according to Example 12 of the present invention.
FIG. 27 is a structural diagram of a semiconductor element according to Example 20 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 28 is a structural diagram of a semiconductor element according to Example 21 of the present invention. (A) is a bird's-eye view, (b) is a top view.
FIG. 29 is a conceptual diagram of a low potential portion of a thin film region for explaining the operating principle of the semiconductor element of Example 1 of the present invention.
FIG. 30 is a diagram illustrating a voltage setting example of a semiconductor element according to Example 7 of the present invention.
FIG. 31 is a diagram showing data line currents after erasing, “0” writing, and “1” writing in a voltage setting example of a semiconductor device according to Example 7 of the present invention;
FIG. 32 is a diagram showing a voltage setting example of a semiconductor element according to Example 7 of the present invention.
FIG. 33 is a diagram showing a voltage setting example of a semiconductor element according to Example 7 of the present invention.
[Explanation of symbols]
Vw: voltage applied to the control electrode during writing, Ve: voltage applied to the control electrode during erasing, Vr: voltage applied to the control electrode during reading, D1: data line 1, D2: data line 2, S: source line , W1... Word line 1, W1.

Claims (34)

絶縁体上に形成された半導体よりなる薄膜領域を有し、第一、第二の低抵抗領域を有し、前記薄膜領域の一方の端部は第一の低抵抗領域と接続され、前記薄膜領域の他方の端部は第二の低抵抗領域と接続され、前記薄膜領域は内部にチャネルを有し、電荷蓄積部を前記薄膜領域内部あるいは近傍に有し、前記薄膜領域を制御する制御電極を有し、上記制御電極が上記薄膜領域の全体を覆い、前記電荷蓄積部を2つ以上有することを特徴とする半導体記憶素子。A thin film region made of a semiconductor formed on an insulator; first and second low resistance regions; and one end of the thin film region is connected to the first low resistance region; The other end of the region is connected to a second low resistance region, the thin film region has a channel therein, and a charge storage portion is located in or near the thin film region, and a control electrode for controlling the thin film region the a, the control electrode is not covered the whole of the thin film region, a semiconductor memory device characterized by having two or more the charge storage part. 請求項1に記載の半導体記憶素子において前記第一、第二の低抵抗領域が絶縁体上に形成されていることを特徴とする半導体記憶素子。2. The semiconductor memory element according to claim 1, wherein the first and second low resistance regions are formed on an insulator. 絶縁体上に形成された半導体よりなる第一、第二の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第二の低抵抗領域と接続され、同上記第一の薄膜領域を制御する第一の制御電極を有し、同上記第二の薄膜領域を制御する第二の制御電極を有することを特徴とする2ビット以上を記憶する半導体記憶素子。It has first and second thin film regions made of a semiconductor formed on an insulator and is thicker than the thin film region. Having a resistance region, one end of the first thin film region is connected to a first low resistance region, the other end of the first thin film region is connected to a second low resistance region, One end of the second thin film region is connected to the first low resistance region, the other end of the second thin film region is connected to the second low resistance region, and the first thin film A semiconductor memory element storing two or more bits, comprising a first control electrode for controlling a region and a second control electrode for controlling the second thin film region. 絶縁体上に形成された半導体よりなる第一、第二の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一の低抵抗領域を有し、薄膜領域よりも厚い、第二、第三の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第三の低抵抗領域と接続され、同上記第一の薄膜領域を制御する第一の制御電極を有し、同上記第二の薄膜領域を制御する第二の制御電極を有することを特徴とする2ビット以上を記憶する半導体記憶素子。A first low-resistance region having a first and second thin film region made of a semiconductor formed on an insulator, and having a substantially rectangular shape having a long side that is thicker than the thin film region and having a long side more than twice the short side; And having a second and third low resistance region thicker than the thin film region, wherein one end of the first thin film region is connected to the first low resistance region, and the first thin film region The other end of the second thin film region is connected to the second low resistance region, one end of the second thin film region is connected to the first low resistance region, and the other end of the second thin film region is A first control electrode connected to a third low resistance region, controlling the first thin film region, and having a second control electrode controlling the second thin film region. A semiconductor memory element that stores two or more bits. 絶縁体上に形成された半導体よりなる第一、第二の薄膜領域を有し、薄膜領域よりも厚い、第一、第二、第三、第四の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、同上記第一、第二の薄膜領域を制御する共通の制御電極を有することを特徴とする2ビット以上を記憶する半導体記憶素子。Having first and second thin film regions made of a semiconductor formed on an insulator, having first, second, third and fourth low resistance regions thicker than the thin film region; One end of the thin film region is connected to the first low resistance region, the other end of the first thin film region is connected to the second low resistance region, and one end of the second thin film region The end is connected to the third low resistance region, the other end of the second thin film region is connected to the fourth low resistance region, and the common is used to control the first and second thin film regions. A semiconductor memory element storing two or more bits, comprising a control electrode. 絶縁体上に形成された半導体よりなる第一、第二の薄膜領域を有し、薄膜領域よりも厚い、第一、第二、第三の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第三の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する共通の制御電極を有することを特徴とする2ビット以上を記憶する半導体記憶素子。The first thin film region has first and second thin film regions made of a semiconductor formed on an insulator, and has first, second, and third low resistance regions that are thicker than the thin film region. One end of the first thin film region is connected to the first low resistance region, the other end of the first thin film region is connected to the second low resistance region, and one end of the second thin film region is Connected to the first low resistance region, the other end of the second thin film region is connected to the third low resistance region, and the long side is substantially rectangular with a length equal to or more than twice the short side. A semiconductor memory element storing two or more bits, characterized by having a common control electrode for controlling the first and second thin film regions. 絶縁体上に形成された半導体よりなる第一、第二の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一の低抵抗領域を有し、薄膜領域よりも厚い、第二、第三の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第三の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する共通の制御電極を有し、上記第一の低抵抗領域の長手方向と上記制御電極の長手方向がほぼ平行であることを特徴とする2ビット以上を記憶する半導体記憶素子。A first low-resistance region having a first and second thin film region made of a semiconductor formed on an insulator, and having a substantially rectangular shape having a long side that is thicker than the thin film region and having a long side more than twice the short side; And having a second and third low resistance region thicker than the thin film region, wherein one end of the first thin film region is connected to the first low resistance region, and the first thin film region The other end of the second thin film region is connected to the second low resistance region, one end of the second thin film region is connected to the first low resistance region, and the other end of the second thin film region is A common control electrode for controlling the first and second thin film regions, which is connected to the third low-resistance region and has a substantially rectangular shape whose long side is more than twice the short side, A semiconductor memory element storing two or more bits, wherein the longitudinal direction of the low resistance region and the longitudinal direction of the control electrode are substantially parallel. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二、第三、第四の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第三の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第三の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第四の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第三の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第二、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator have a substantially rectangular shape that is thicker than the thin film region and has a long side that is at least twice the short side. 1st, 2nd, 3rd, and 4th low resistance area | regions, one edge part of said 1st thin film area | region is connected with a 1st low resistance area | region, and the other end of said 1st thin film area | region Is connected to the second low resistance region, one end of the second thin film region is connected to the first low resistance region, and the other end of the second thin film region is connected to the second low resistance region. Connected to the resistance region, one end of the third thin film region is connected to the third low resistance region, the other end of the third thin film region is connected to the fourth low resistance region, One end of the fourth thin film region is connected to a third low resistance region, the other end of the fourth thin film region is connected to a fourth low resistance region, and a long side is a short side. Having a first control electrode for controlling the first and third thin film regions which are substantially rectangular more than twice, the second, A semiconductor memory element for storing 4 bits or more, comprising a second control electrode for controlling a fourth thin film region. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二の低抵抗領域を有し、薄膜領域よりも厚い、第三、第四の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第四の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第三の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第二、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator have a substantially rectangular shape that is thicker than the thin film region and has a long side that is at least twice the short side. The first and second low resistance regions are thicker than the thin film region and have third and fourth low resistance regions, and one end of the first thin film region is a first low resistance region. Connected, the other end of the first thin film region is connected to a third low resistance region, one end of the second thin film region is connected to the first low resistance region, and the second The other end of the thin film region is connected to the fourth low resistance region, and one end of the third thin film region is connected to the second low resistance region, and the other end of the third thin film region One end of the fourth thin film region is connected to the second low resistance region, and the other end of the fourth thin film region is connected to the third low resistance region. A first control electrode for controlling the first and third thin film regions, the long side of which is substantially rectangular, the long side of which is more than twice the short side, the long side of which is the short side And a second control electrode for controlling the second and fourth thin film regions that are substantially rectangular twice or more of the semiconductor memory element. 請求項記載の半導体記憶素子において、第三、第四の低抵抗領域が第三、第四の低抵抗領域と同一の材料により接続されていることを特徴とする半導体記憶素子。9. The semiconductor memory element according to claim 8 , wherein the third and fourth low resistance regions are connected by the same material as the third and fourth low resistance regions. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一の低抵抗領域を有し、薄膜領域よりも厚い、第二、第三、第四、第五の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第五の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第三の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第二、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator have a substantially rectangular shape that is thicker than the thin film region and has a long side that is at least twice the short side. Having one low resistance region, thicker than the thin film region, having second, third, fourth, and fifth low resistance regions, and one end of the first thin film region has a first low resistance region. Connected to the resistance region, the other end of the first thin film region is connected to a second low resistance region, one end of the second thin film region is connected to the first low resistance region, The other end of the second thin film region is connected to the third low resistance region, and one end of the third thin film region is connected to the first low resistance region, and the third thin film region And the other end of the fourth thin film region is connected to the first low resistance region and the other end of the fourth thin film region is connected to the fourth low resistance region. Is connected to the fifth low resistance region, has a first control electrode for controlling the first and third thin film regions, the long side having a substantially rectangular shape whose long side is twice or more of the short side, and the long side And a second control electrode for controlling the second and fourth thin film regions, each of which is substantially rectangular having a length equal to or more than twice the short side. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二の低抵抗領域を有し、薄膜領域よりも厚い、第三、第四の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第四の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第三、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator have a substantially rectangular shape that is thicker than the thin film region and has a long side that is at least twice the short side. The first and second low resistance regions are thicker than the thin film region and have third and fourth low resistance regions, and one end of the first thin film region is a first low resistance region. Connected, the other end of the first thin film region is connected to a third low resistance region, one end of the second thin film region is connected to the first low resistance region, and the second The other end of the thin film region is connected to the fourth low resistance region, and one end of the third thin film region is connected to the second low resistance region, and the other end of the third thin film region One end of the fourth thin film region is connected to the second low resistance region, and the other end of the fourth thin film region is connected to the third low resistance region. A first control electrode for controlling the first and second thin film regions, the long side of which is substantially rectangular, the long side of which is at least twice the short side, the long side of which is the short side And a second control electrode for controlling the third and fourth thin film regions that are substantially rectangular twice or more of the semiconductor memory element. 請求項10記載の半導体記憶素子において、第三、第四の低抵抗領域と異なる層で形成された第五、第六の低抵抗領域を有し、上記第五の低抵抗領域が第三の低抵抗領域と接続され、上記第六の低抵抗領域が第四の低抵抗領域と接続され、上記第五の低抵抗領域と上記第六の低抵抗領域が平行に延びることを特徴とする半導体記憶素子。11. The semiconductor memory element according to claim 10, further comprising fifth and sixth low resistance regions formed of layers different from the third and fourth low resistance regions, wherein the fifth low resistance region is the third. A semiconductor connected to a low resistance region, wherein the sixth low resistance region is connected to a fourth low resistance region, and the fifth low resistance region and the sixth low resistance region extend in parallel. Memory element. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一の低抵抗領域を有し、薄膜領域よりも厚い、第二、第三、第四、第五の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第五の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第三、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。It has first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator, is thicker than the thin film region, and has a substantially rectangular shape whose long side is more than twice the short side. Having one low resistance region, thicker than the thin film region, having second, third, fourth, and fifth low resistance regions, and one end of the first thin film region has a first low resistance region. Connected to the resistance region, the other end of the first thin film region is connected to a second low resistance region, one end of the second thin film region is connected to the first low resistance region, The other end of the second thin film region is connected to the third low resistance region, and one end of the third thin film region is connected to the first low resistance region, and the third thin film region And the other end of the fourth thin film region is connected to the first low resistance region and the other end of the fourth thin film region is connected to the fourth low resistance region. Is connected to the fifth low resistance region, has a first control electrode for controlling the first and second thin film regions, the long side having a substantially rectangular shape whose long side is more than twice the short side, and the long side And a second control electrode for controlling the third and fourth thin film regions, each having a substantially rectangular shape that is at least twice as long as the short side. 請求項13記載の半導体記憶素子において、第二、第三の低抵抗領域と異なる層で形成された第六、第七の低抵抗領域を有し、上記第六の低抵抗領域が第二の低抵抗領域と接続され、上記第七の低抵抗領域が第三の低抵抗領域と接続され、上記第六の低抵抗領域と上記第七の低抵抗領域が平行に延びることを特徴とする半導体記憶素子。14. The semiconductor memory element according to claim 13, further comprising sixth and seventh low resistance regions formed of different layers from the second and third low resistance regions, wherein the sixth low resistance region is the second low resistance region. A semiconductor connected to a low resistance region, wherein the seventh low resistance region is connected to a third low resistance region, and the sixth low resistance region and the seventh low resistance region extend in parallel. Memory element. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、第一、第二、第三、第四、第五、第六の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第三の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第五の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第四の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第六の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第三、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, fourth, fifth, and fifth thin film regions having the first, second, third, and fourth thin film regions made of a semiconductor formed on the insulator are thicker than the thin film region. Six low resistance regions, one end of the first thin film region is connected to the first low resistance region, and the other end of the first thin film region is a third low resistance region. One end of the second thin film region is connected to a second low resistance region, the other end of the second thin film region is connected to a fourth low resistance region, and the third thin film region is connected to the third low resistance region. One end of the thin film region is connected to the third low resistance region, the other end of the third thin film region is connected to the fifth low resistance region, and one end of the fourth thin film region The end is connected to a fourth low resistance region, the other end of the fourth thin film region is connected to a sixth low resistance region, and the long side is substantially rectangular with a length of at least twice the short side. A first control electrode for controlling the first and second thin film regions; a third side for controlling the third and fourth thin film regions having a substantially rectangular shape whose long side is at least twice the short side; A semiconductor memory element storing 4 bits or more, comprising two control electrodes. 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二の低抵抗領域を有し、薄膜領域よりも厚い、第三、第四、第五、第六の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第五の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第六の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第三の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第二、第四の薄膜領域を制御する第二の制御電極を有することを特徴とする4ビット以上を記憶する半導体記憶素子。The first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator have a substantially rectangular shape that is thicker than the thin film region and has a long side that is at least twice the short side. Having first, second, low resistance regions, thicker than the thin film region, third, fourth, fifth, sixth low resistance regions, one end of the first thin film region being the first Connected to one low resistance region, the other end of the first thin film region is connected to a third low resistance region, and one end of the second thin film region is connected to the first low resistance region. Connected, the other end of the second thin film region is connected to a fourth low resistance region, one end of the third thin film region is connected to a second low resistance region, and The other end of the thin film region is connected to the fifth low resistance region, and one end of the fourth thin film region is connected to the second low resistance region. And a first control electrode for controlling the first and third thin film regions, the end of which is connected to the sixth low-resistance region, and whose long side is substantially rectangular whose double side is more than twice the short side. A semiconductor memory element for storing 4 bits or more, characterized by having a second control electrode for controlling the second and fourth thin film regions having a substantially rectangular shape whose long side is twice or more of the short side. . 絶縁体上に形成された半導体よりなる第一、第二、第三、第四の薄膜領域を有し、薄膜領域よりも厚い、長辺が短辺の二倍以上の実質的に長方形の第一、第二の低抵抗領域を有し、薄膜領域よりも厚い、第三、第四、第五、第六の低抵抗領域を有し、第三、第四、第五、第六の低抵抗領域とは別層の第七、第八の低抵抗領域を有し、上記第一の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第一の薄膜領域の他方の端部は第三の低抵抗領域と接続され、上記第二の薄膜領域の一方の端部は第一の低抵抗領域と接続され、上記第二の薄膜領域の他方の端部は第四の低抵抗領域と接続され、上記第三の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第三の薄膜領域の他方の端部は第五の低抵抗領域と接続され、上記第四の薄膜領域の一方の端部は第二の低抵抗領域と接続され、上記第四の薄膜領域の他方の端部は第六の低抵抗領域と接続され、長辺が短辺の二倍以上の実質的に長方形の、上記第一、第二の薄膜領域を制御する第一の制御電極を有し、長辺が短辺の二倍以上の実質的に長方形の、上記第三、第四の薄膜領域を制御する第二の制御電極を有し、上記第三の低抵抗領域は第七の低抵抗領域と接続され、上記第四の低抵抗領域は第八の低抵抗領域と接続され、上記第五の低抵抗領域は第七の低抵抗領域と接続され、上記第六の低抵抗領域は第八の低抵抗領域と接続されることを特徴とする4ビット以上を記憶する半導体記憶素子。It has first, second, third, and fourth thin film regions made of a semiconductor formed on an insulator, is thicker than the thin film region, and has a substantially rectangular shape whose long side is more than twice the short side. 1st, 2nd low resistance area, 3rd, 4th, 5th, 6th low resistance area, 3rd, 4th, 5th, 6th low There are seventh and eighth low resistance regions, which are separate layers from the resistance region, and one end of the first thin film region is connected to the first low resistance region, and the other of the first thin film region Is connected to the third low resistance region, one end of the second thin film region is connected to the first low resistance region, and the other end of the second thin film region is connected to the fourth low resistance region. Connected to the low resistance region, one end of the third thin film region is connected to the second low resistance region, and the other end of the third thin film region is connected to the fifth low resistance region. And the fourth One end of the thin film region is connected to the second low resistance region, the other end of the fourth thin film region is connected to the sixth low resistance region, and the long side is more than twice the short side. The first and second control electrodes for controlling the first and second thin film regions, which are substantially rectangular, have a substantially rectangular shape whose long side is more than twice the short side, and the third and fourth Having a second control electrode for controlling the thin film region, the third low resistance region is connected to a seventh low resistance region, the fourth low resistance region is connected to an eighth low resistance region, The fifth low-resistance region is connected to a seventh low-resistance region, and the sixth low-resistance region is connected to an eighth low-resistance region, and a semiconductor memory element storing 4 bits or more . 請求項から18のいずれかに記載の半導体記憶素子において、上記低抵抗領域が絶縁体上に形成されていることを特徴とする半導体記憶素子。The semiconductor memory device according to claim 3 18, a semiconductor storage device in which the low-resistance region is characterized in that it is formed on an insulator. 請求項から18のいずれかに記載の半導体記憶素子において、情報の書き込み又は消去において、上記低抵抗領域のいずれかが負の電位をとることを特徴とする半導体記憶素子。The semiconductor memory device according to claim 3 18, in the writing or erasing of information, the semiconductor memory device characterized by any one of the low-resistance region takes a negative potential. 請求項から18のいずれかに記載の半導体記憶素子において、基板表面のSi3N4薄膜上に前記記憶素子が形成されていることを特徴とする半導体記憶素子。The semiconductor memory device according to claim 3 18, a semiconductor storage device, wherein the memory element is formed on the Si3N4 film on the substrate surface. 請求項1から182021のいずれかに記載の半導体記憶素子において、上記低抵抗領域が別層の配線に接続されていることを特徴とする半導体記憶素子。The semiconductor memory device according to any of claims 1 18, 20, 21, a semiconductor storage device, characterized in that the low-resistance region is connected to the wiring of the separate layers. 請求項1から18202122のいずれかに記載の半導体記憶素子において、薄膜領域が膜厚と水平な方向に突起を持つ形状を持つことを特徴とする半導体記憶素子。Claims 1 18, 20, 21, in the semiconductor memory device according to any one of 22, the semiconductor memory device in which a thin film region is characterized as having a shape with a projection on the film thickness and the horizontal direction. 請求項1から1820から23のいずれかに記載の半導体記憶素子において、少なくとも一つの薄膜領域が、両端の各々が互いに同じ低抵抗領域に接続され、同一の制御電極によって制御される複数の線を有することを特徴とする半導体記憶素子。The semiconductor memory device according to any of claims 1 18, 20 and 23 of at least one thin region, each of both ends are connected to each other to the same low-resistance region, a plurality controlled by the same control electrodes A semiconductor memory element having a line. 請求項1から1820から24のいずれかに記載の半導体記憶素子において、薄膜領域が厚さ5nm以下の多結晶シリコンよりなることを特徴とする半導体記憶素子。The semiconductor memory device according to any one of claims 1 18, 20 to 24, a semiconductor storage device, wherein a thin film region consisting of the following polycrystalline silicon thickness 5 nm. 請求項から1820から25のいずれかに記載の半導体記憶素子において、半導体基板の電位を変化させることで複数ビットの情報を一括して消去又は書き込むことを特徴とする半導体記憶素子。The semiconductor memory device according to claim 3 18, 20 to 25, a semiconductor storage device characterized erase or write it collectively a plurality of bit information by changing the potential of the semiconductor substrate. 請求項1から1820から26のいずれかに記載の半導体記憶素子において、上記制御電極の他に上記薄膜領域を制御する制御電極を有することを特徴とする半導体記憶素子。The semiconductor memory device according to any of claims 1 18, 20 to 26, a semiconductor storage device characterized by having a control electrode for controlling the thin film region in addition to the control electrode. 請求項1から1820から25のいずれかに記載の半導体記憶素子において半導体記憶素子の積層構造を有する半導体記憶素子。The semiconductor memory device having a laminated structure of a semiconductor memory element in the semiconductor memory device according to any of claims 1 18, 20 to 25 of. 請求項1から182022から28のいずれかに記載の半導体記憶素子において基板表面上の窒化膜上薄膜領域を形成することを特徴とする半導体記憶素子。Claims 1 to 18, 20, the semiconductor memory device characterized by forming a nitride film on the thin film region on the substrate surface in a semiconductor memory device according to any one 22 to 28 of. 請求項1から29のいずれかに記載の半導体記憶素子において、少なくとも一つの低抵抗領域が多結晶シリコンからなることを特徴とする半導体記憶素子。The semiconductor memory device according to any of claims 1 29, a semiconductor storage device, wherein at least one of the low-resistance region is made of polycrystalline silicon. 請求項1から30のいずれかに記載の半導体記憶素子を行列状に複数個並べた半導体記憶装置において、上記行列の端に位置する少なくとも一本の上記低抵抗領域(データ線又はソース線)を情報記憶に用いないことを特徴とする半導体記憶装置。In the semiconductor memory device formed by arranging a plurality in a matrix of semiconductor memory device according to any of claims 1 to 30, at least one on the edge of the matrix above the low-resistance region (data line or source line) A semiconductor memory device which is not used for information storage. 請求項1から30のいずれかに記載の半導体記憶素子を行列状に複数個並べた半導体記憶装置において、上記行列の端に位置する少なくとも一本の上記制御電極(ワード線)を情報記憶に用いないことを特徴とする半導体記憶装置。Use a semiconductor memory device according to any of claims 1 30 of the semiconductor memory device formed by arranging a plurality in a matrix, at least one of said control electrode (word line) information storage located on the edge of the matrix There is no semiconductor memory device. 請求項31に記載の半導体記憶装置において、上記行列の端に位置する少なくとも一本の上記制御電極(ワード線)を情報記憶に用いないことを特徴とする半導体記憶装置。32. The semiconductor memory device according to claim 31 , wherein at least one control electrode (word line) located at an end of the matrix is not used for information storage. 請求項1から29のいずれかに記載の半導体記憶素子を行列状に複数個並べた半導体記憶装置又は請求項31から33のいずれかに記載の半導体記憶装置において、上記半導体記憶装置は、第1及び第2のメモリセルを有し、該第1及び第2のメモリセルの夫々は、上記半導体記憶素子を含み、上記制御電極は上記第1および第2のメモリセルとに共通に接続され、A semiconductor memory device in which a plurality of semiconductor memory elements according to any one of claims 1 to 29 are arranged in a matrix or a semiconductor memory device according to any of claims 31 to 33, wherein the semiconductor memory device is a first memory device. And each of the first and second memory cells includes the semiconductor memory element, and the control electrode is connected in common to the first and second memory cells,
上記第1のメモリセルと上記第2のメモリセルで異なる情報を記憶させる場合において、上記第1のメモリセルの一つの低抵抗領域と他の一つの低抵抗領域との間には、電位差が生じるように電圧を印加し、上記第2のメモリセルの一つの低抵抗領域と他の一つの低抵抗領域とが、同電位になるように電圧を印加し、上記制御電極には、上記第1のメモリセルの夫々の低抵抗領域に印加する電圧及び上記第2のメモリセルの夫々の低抵抗領域に印加する電圧より高い電圧を印加することを特徴とする半導体記憶装置。In the case where different information is stored in the first memory cell and the second memory cell, there is a potential difference between one low resistance region and one other low resistance region of the first memory cell. A voltage is applied so that one low resistance region of the second memory cell and another low resistance region of the second memory cell have the same potential, and the control electrode has the first voltage applied to the control electrode. A semiconductor memory device, wherein a voltage applied to each low resistance region of one memory cell and a voltage higher than a voltage applied to each low resistance region of the second memory cell are applied.
JP04032696A 1995-02-17 1996-02-05 Semiconductor memory element and semiconductor memory device Expired - Fee Related JP3614231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04032696A JP3614231B2 (en) 1995-02-17 1996-02-05 Semiconductor memory element and semiconductor memory device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-52012 1995-02-17
JP5201295 1995-02-17
JP04032696A JP3614231B2 (en) 1995-02-17 1996-02-05 Semiconductor memory element and semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH08288469A JPH08288469A (en) 1996-11-01
JP3614231B2 true JP3614231B2 (en) 2005-01-26

Family

ID=26379776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04032696A Expired - Fee Related JP3614231B2 (en) 1995-02-17 1996-02-05 Semiconductor memory element and semiconductor memory device

Country Status (1)

Country Link
JP (1) JP3614231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805395B1 (en) * 2000-02-23 2002-05-10 Centre Nat Rech Scient MOS TRANSISTOR FOR HIGH INTEGRATION DENSITY CIRCUITS
JP2004343128A (en) * 2004-06-01 2004-12-02 Hitachi Ltd Semiconductor memory element, semiconductor memory device, and control method thereof

Also Published As

Publication number Publication date
JPH08288469A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
US6818914B2 (en) Semiconductor element and process for manufacturing the same
US6194759B1 (en) Semiconductor memory device
JP3613594B2 (en) Semiconductor element and semiconductor memory device using the same
JP5149539B2 (en) Semiconductor device
TWI529859B (en) Semiconductor memory device and driving method thereof
USRE41868E1 (en) Semiconductor memory device
US5424979A (en) Non-volatile memory cell
JP5045105B2 (en) Nonvolatile semiconductor memory device, driving method thereof, and manufacturing method thereof
JP2009501449A (en) High density NAND nonvolatile memory device
WO2000070675A1 (en) Semiconductor memory device
JP2017168661A (en) Semiconductor storage
JP2004335056A (en) Method of programming and erasing semiconductor memory having a plurality of memory cells
JP2009530843A (en) Semiconductor field effect transistor, memory cell, and memory element
JP3429941B2 (en) Semiconductor memory device and manufacturing method thereof
JP3614231B2 (en) Semiconductor memory element and semiconductor memory device
JP2588311B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR100364828B1 (en) Nonvolatile Semiconductor Memory and Manufacturing Method
JP2004158614A (en) Nonvolatile semiconductor memory device and data writing method thereof
JP4481004B2 (en) Memory cell and method of writing to memory cell
JPH05129564A (en) Semiconductor memory device and fabrication thereof
JP3546896B2 (en) Nonvolatile semiconductor memory device
JP2004343015A (en) Semiconductor memory and its operating method, and portable electronic equipment
JP3603221B2 (en) Semiconductor memory cell array device
JPH0555600A (en) Semiconductor nonvolatile memory device
KR100359641B1 (en) Semiconductor Memory Device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees