JP3613328B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3613328B2
JP3613328B2 JP2000191368A JP2000191368A JP3613328B2 JP 3613328 B2 JP3613328 B2 JP 3613328B2 JP 2000191368 A JP2000191368 A JP 2000191368A JP 2000191368 A JP2000191368 A JP 2000191368A JP 3613328 B2 JP3613328 B2 JP 3613328B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
transistor
semiconductor light
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000191368A
Other languages
Japanese (ja)
Other versions
JP2002009343A (en
Inventor
信夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2000191368A priority Critical patent/JP3613328B2/en
Publication of JP2002009343A publication Critical patent/JP2002009343A/en
Application granted granted Critical
Publication of JP3613328B2 publication Critical patent/JP3613328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

【0001】
【発明の属する技術分野】
本発明は、保護素子を内蔵した半導体発光装置に関する。
【0002】
【従来の技術】
近年、窒化ガリウム(GaN)系半導体を用いた青色半導体発光素子即ち発光ダイオードが注目されている。この発光ダイオードは数十ボルト程度のサージ電圧で破壊するため、例えば、特開平11−12036号公報に開示されているように発光ダイオードに並列に過電圧防止用のツェナダイオード(定電圧ダイオード)が接続される。これにより、静電気等による過電圧が発光ダイオードに印加された時にツェナダイオードが導通して発光ダイオードが過電圧から保護される。
【0003】
【発明が解決しようとする課題】
ところで、ツェナダイオード等の保護素子と発光ダイオードとの組立体を構成する時には、保護素子の上にマイクロバンプ電極等によって発光ダイオードを結合させる。このため、発光ダイオードの放熱経路に保護素子が介在し、保護素子が発光ダイオードの放熱性を低下させる。もし、保護素子を設けないで発光ダイオードに流す電流と同一の値の電流を保護素子を設けた発光ダイオードに流すと、発光ダイオードの温度がその許容範囲よりも高くなり、発光ダイオードの劣化又は破損が生じるおそれがある。今、発光ダイオードと保護素子を一体的に組み立てる場合について述べたが、保護素子が発光ダイオードの放熱を妨害しない場合であっても、発光ダイオード等の半導体発光素子の熱破壊は問題になる。
また、発光ダイオード以外の回路素子においても過電圧破壊と熱破壊との両方を防止しなければならない時がある。
【0004】
そこで、本発明の第1の目的は、半導体発光素子の熱破壊を防ぐことができる半導体発光装置を提供することにある。
本発明の第2の目的は、半導体発光素子の熱破壊と過電圧破壊との両方を防ぐことができる半導体発光装置を提供することにある
【0005】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、半導体発光素子と、前記半導体発光素子に並列に接続され且つ前記半導体発光素子の温度が所定温度よりも高くなった時にオン状態になるか又は抵抗値が低下する特性を有している保護素子と、前記半導体発光素子に並列に接続された過電圧防止用定電圧ダイオードとを有し、前記保護素子は導通開始に要求されるベース・エミッタ間電圧が負の温度係数を有するトランジスタであり、前記トランジスタと前記定電圧ダイオードは同一の半導体基体に形成されており、前記半導体発光素子は前記半導体基体の上に配置されていることを特徴とする半導体発光装置に係わるものである。
【0006】
なお、請求項2に示すように発光素子を保護素子の上に配置することが望ましい。
【0007】
【発明の効果】
本発明によれば、半導体発光素子の温度が所定温度よりも高くなると、保護素子がオン又は低抵抗値になり、半導体発光素子のバイパスとして働き、半導体発光素子の電流が遮断又は抑制され、半導体発光素子の温度上昇が抑えられ、この劣化又は破壊が防止される。
また、熱破壊防止と過電圧防止との両方を達成することができる。
また、熱破壊及び過電圧破壊の両方を防ぐことができる発光装置の小型化且つ低コスト化を図ることができる
請求項2の発明によれば、保護素子を有するにも拘らず比較的小さい発光装置を提供することができる。
【0008】
【実施形態】
次に、図1〜図8を参照して本発明の実施形態を説明する。
【0009】
【第1の実施形態】
図1〜図5に示す第1の実施形態の半導体発光装置1は、発光素子としての窒化ガリウム(GaN)系発光ダイオード2と、トランジスタ4と定電圧ダイオード5とから成る複合保護素子3と、第1及び第2の主端子6,7と、制御端子8とを有している。
【0010】
発光ダイオード2のアノードは第1の主端子6に接続され、カソードは第2の主端子7に接続されている。
複合保護素子3に含まれているシリコンから成るNPN型トランジスタ4は発光ダイオード2に対して並列に接続されている。即ちトランジスタ4のコレクタは第1の主端子6に接続され、このエミッタは第2の主端子7に接続され、ベースは制御端子8に接続されている。また、トランジスタ4は発光ダイオード2に熱結合されている。このトランジスタ4が導通を開始するためのベース・エミッタ間電圧VBE即ち、ベース電流が流れ始めるために要求されるベース・エミッタ間電圧VBEは25℃(室温)で約0.7Vである。また、オン開始時のベース・エミッタ間電圧VBEは約‐2mV/℃の負の温度係数を有している。本実施形態では負の温度係数を有するトランジスタ4が感熱素子として利用され、発光ダイオード2の過熱を防いでいる。
【0011】
電子回路素子としての発光ダイオード2を駆動する時には第1の主端子6を電流制限用抵抗9を介して直流電源端子10に接続し、第2の主端子7をグランド端子11に接続する。また、トランジスタ4を発光ダイオード2の熱破壊防止用保護素子として使用する時には、トランジスタ4のベース即ち制御端子8にバイアス回路12を接続する。バイアス回路12は、直流電源端子10とグランド端子11との間に接続された第1及び第2の抵抗13,14から成り、第1及び第2の抵抗13,14の相互接続点が制御端子8に接続されている。本実施例においてはバイアス回路12によってトランジスタ4のベース・エミッタ間に与える固定バイアス電圧Vbは0.55Vに設定されているものとする。このバイアス電圧Vb=0.55Vを得るための抵抗13の値R1の決定は次式に従って行う。
Vb=Vcc R2/(R1+R2)
R1=R2{(Vcc/Vb)−1}
なお、抵抗14として既値の抵抗R2を使用する。
このバイアス電圧Vbは、発光ダイオード2の通常の温度範囲ではトランジスタ4がオンにならないが、発光ダイオード2の温度が通常温度範囲よりも高い異常温度(本実施例では100℃以上)になるとオンになるように決定される。この実施形態では、発光ダイオード2の保護開始温度が100℃である。もし、発光ダイオード2及びトランジスタ4の温度が100℃になると、トランジスタ4が導通を開始するために要求されるベース・エミッタ間電圧VBEが25℃の時の値(0.7V)よりも0.15V下がり、0.55Vとなる。100℃の時には、バイアス回路12からは0.55Vのバイアス電圧Vbがトランジスタ4に印加されているので、トランジスタ4がオンになり、発光ダイオード2のバイパス即ち短絡回路が形成され、発光ダイオード2の電流が遮断又は抑制され、発光ダイオード2の温度上昇が制限される。即ち、トランジスタ4がオンになると、抵抗9を通る電流がトランジスタ4に分流し、発光ダイオード2の電流が低下する。トランジスタ4はシリコンから成り、GaN系発光ダイオード2よりは熱破壊しにくい。また、トランジスタ4は発光ダイオード2の許容最大電流と同一の値の電流が流れても破壊しないように形成されている。なお、好ましくは、トランジスタ4の許容最大コレクタ電流の値を発光ダイオード2の許容最大電流の2倍以上に決定する。
【0012】
定電圧ダイオード5は、発光ダイオード2の定格電圧では導通しないが、定格電圧と破壊する可能性のある最低破壊電圧との間の所定電圧で導通し、発光ダイオード2に一定電圧以上の電圧が印加されることを防ぐように形成されている。これにより、静電気等の高いサージ電圧が第1及び第2の主端子6,7間に印加された時に定電圧ダイオード5が導通し、発光ダイオード2の両端子間電圧が制限される。
【0013】
図2〜図5は発光装置1の各部の構成を詳しく示すものである。図2に概略的に示すように発光ダイオ−ド2は複合保護素子3の上に配置されている。発光ダイオ−ド2は図2及び図3から明らかなように、GaN系半導体発光ダイオ−ドの本体部20とアノ−ド側のマイクロバンプ電極21とカソ−ド側マイクロバンプ電極22とから成るフリップチップであって、バンプ電極21、22によって複合保護素子3の上面に機械的及び電気的に結合されている。なお、発光ダイオ−ド2からは主として上方に光が放射される。
【0014】
複合保護素子3は、トランジスタ4と定電圧ダイオ−ド5とを図3〜図5に示すように同一のシリコン半導体基体23に形成したものである。図2〜図5に示すように複合保護素子3の一方の主面には第1の主電極24と第2主電極25の表面側部分25aと制御電極26が設けられ、他方の主面に第2の主電極25の裏面部分25bが設けられている。図2に概略的に示すように第1の主電極24はワイヤから成る第1の導体27によって柱状リ−ドから成る第1の主端子6に接続されている。第2の主電極25の裏面側部分25bは第2の主端子7に一体的に形成された光反射凹部を有するヘッダ部7aにAgペ−スト等の導電性接合材28によって電気的及び機械的に結合されている。制御電極26はワイヤから成る第2の導体29によって柱状リ−ドから成る制御端子8に接続されている。発光ダイオ−ド2、複合保護素子3、端子6、7、8の一部、導体27、29は光透過性樹脂30によって被覆されている。
【0015】
発光ダイオ−ド2は複合保護素子3の上にバンプ電極21、22を介して結合されているので、発光ダイオ−ド2の熱は複合保護素子3の中のトランジスタ4に伝達される。従って、トランジスタ4は発光ダイオ−ド2の熱結合された状態にあり、発光ダイオ−ド2の温度変化に追従してトランジスタ4の温度も変化する。トランジスタ4を含む複合保護素子3は第2の主端子7のヘッダ部7aに直接的に結合されているので比較的放熱性が良いが、発光ダイオ−ド2は複合保護素子3を介してヘッダ部7aに結合されているので、ヘッダ部7aに直接に結合する場合に比べて放熱性が悪い。しかし、この放熱性の悪さに起因する弊害がトランジスタ4によって電気回路的に除去されている。
【0016】
複合保護素子3を構成するシリコン半導体基体23には、図3〜図5に示すようにP型基板領域31、N型埋め込み領域32、N型シリコンのエピタキシヤル成長領域から成り且つ領域32よりも低不純物濃度のN型領域33、P型ベ−ス領域34、N型エミッタ領域35、領域33よりも不純物濃度が高いN型コレクタ接続領域36、領域34よりも不純物濃度が高いP型表裏接続領域37が設けられている。
【0017】
半導体基体23のP型基板領域31は基体23の下面の全体に露出するように配置されている。N型埋め込み領域32は基板領域31とN型領域33との間に配置されている。P型ベ−ス領域34はN型領域33の中に島状に形成されている。N型エミッタ領域35はベ−ス領域34の中に島状に形成されている。N型のコレクタ接続領域36は埋め込み領域32に対向するようにN型領域33の中に島状に形成されている。低抵抗の表裏接続領域37は第2の主電極25の表面側部分25aと裏面側部分25bとを電気的に接続するように配置されている。
【0018】
半導体基体23の表面側の第1の主電極24は、N型のコレクタ接続領域36にオ−ミック接触している。第2の主電極25の表面側部分25aはP型表裏接続領域37、エミッタ領域35の上に設けられている。制御電極26はP型ベ−ス領域34の上に配置されている。図3では省略されているが、半導体基体23の表面には絶縁膜38から形成され、ここに形成された開口を介して第1の主電極25の表面側部分25a及び制御電極26が半導体基体23の所定領域に接続されている。また、第1の主電極24は図5に示すように絶縁膜28の上に延在し、発光ダイオ−ド2の接続に利用されている。図3で破線で示されている発光ダイオ−ド20は、第1の主電極24と第2の主電極25の表面側部分25aに対向配置され、図5に示すようにアノ−ド側のバンプ電極21が第1の主電極24に結合され、カソ−ド側のバンプ電極22が第2の主電極25の表面側部分25aに結合されている。尚、電極部分を斜線で示している。
【0019】
図4に示すように順次に重なるように配置されているN型エミッタ領域35とP型ベ−ス領域34とN型領域33とN型埋め込み領域32とによってNPN型トランジスタ4が構成され、コレクタとして機能するN型埋め込み領域32がN型領域33及びN型領域36を介して第1の主電極24に接続されている。第1の主電極24の一部はトランジスタ4のコレクタ電極として機能し、第2の主電極25の表面部分25aの一部はトランジスタ4のエミッタ電極として機能し、制御電極26はトランジスタ4のベ−ス電極として機能している。
【0020】
型領域36の一部は、P型表裏接続領域37の一部と重なっている。従って、N型領域36が定電圧ダイオ−ド5のカソ−ド領域として機能し、P型表裏接続領域37が定電圧ダイオ−ド5のアノ−ド領域として機能している。また、第1の主電極24の一部は定電圧ダイオ−ド5のカソ−ド電極として機能し、第2の主電極25の裏面側領域25bは定電圧ダイオ−ド5のアノ−ド電極として機能している。
【0021】
上述から明らかなように本実施形態は次の効果を有する。
(1) 発光ダイオ−ド2の温度が所定温度以上になると、トランジスタ4がオンになり、発光ダイオ−ド2の電流が低減又は遮断され、発光ダイオ−ド2の劣化又は熱破壊が防止される。
(2) 定電圧ダイオ−ド5を発光ダイオ−ド2に並列に接続したので、過電圧時に定電圧ダイオ−ド5が導通して発光ダイオ−ド2の電圧がクランプされ、過電圧による劣化又は破壊が防止される。
(3) 熱破壊防止用トランジスタ4と過電圧防止用定電圧ダイオ−ド5とを同一の半導体基体3に設けて複合保護素子としたので、この小型化及び低コスト化を達成することができる。
(4) トランジスタ4と定電圧ダイオ−ド5とから成る複合保護素子の上に発光ダイオ−ド2を配置したので、これ等の組立体を小型化することができる。
【0022】
【第2の実施形態】
次に、図6及び図7を参照して第2の実施形態の発光装置1aを説明する。但し、図6及び図7、更に後述する図8において図1〜図5と実質的に同一の部分には同一の符号を付し、その説明を省略する。
【0023】
図6及び図7に示す発光装置1aは、回路基板に対して表面実装方式で取り付けるための絶縁性支持基板40を設け、この他は図2の発光装置1と実質的に同一に形成したものである。基板40には、図2の端子6、7、8に対応する導体層から成る端子6a、7a、8aが設けられている。図6〜図7の発光ダイオ−ド2及び複合保護素子3は図2〜図5で同一符号で示すものと同様に形成されている。図6及び図7において第2の主電極の裏面側部分25bは導電性接合材28aによって基板40の第2の主端子7aに電気的及び機械的に結合されている。第1の主電極24は導体27によって第1の主端子6aに接続され、制御端子26は導体29によって制御端子8aに接続されている。基板40の上面には発光ダイオード2及び複合保護素子3を覆うように光透過性樹脂30が設けられている。
【0024】
第2の実施形態の発光装置は、第1の実施形態と同一の効果を有し、更に表面実装できるという効果も有する。
【0025】
【第3の実施形態】
図8に示す第3の実施形態の発光装置1bは、図1と同様に互いに並列に接続された発光ダイオ−ド2と定電圧ダイオ−ド5を有する他に、感熱素子4aを有する。感熱素子4aは発光ダイオ−ド2に熱結合されたサ−ミスタであって、例えば約100℃以上の異常温度で抵抗値が大幅に低下するように形成されている。従って、図8の実施形態によっても発光ダイオ−ドの熱破壊及び過電圧破壊を防止することができる。
【0026】
【変形例】
本発明は上述の実施形態に限定されるものでなく、例えば、次の変形が可能なものである。
(1) バイアス回路12を発光ダイオ−ド2と別の電源に接続することができる。
(2) シリコン基板の上にGaN系半導体層を成長させ、GaN系半導体層によって発光ダイオ−ド2を形成し、シリコン基板にトランジスタ4及び定電圧ダイオ−ド5を設けることができる。
(3) 複合保護素子3を発光ダイオ−ド2以外の電子回路素子に並列に接続し、電子回路素子の熱破壊及び過電圧破壊を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の発光装置をバイアス回路及び駆動回路を伴って示す回路図である。
【図2】図1の発光装置を概略的に示す一部切断正面図である。
【図3】図2の複合保護素子を、絶縁膜を省いて示す平面図である。
【図4】図3のA−A線を示す断面図である。
【図5】図3のB−B線を示す断面図である。
【図6】第2の実施形態の発光装置を示す正面図である。
【図7】図6の発光装置を被覆樹脂を省いて示す平面図である。
【図8】第3の実施形態の発光装置を示す回路図である。
【符号の説明】
1 発光装置
2 発光ダイオ−ド
3 複合保護素子
4 過熱防止用トランジスタ
5 過電圧防止用定電圧ダイオ−ド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device with a built-in protection device.
[0002]
[Prior art]
In recent years, blue semiconductor light-emitting elements, that is, light-emitting diodes using gallium nitride (GaN) -based semiconductors have attracted attention. Since this light emitting diode is destroyed by a surge voltage of about several tens of volts, for example, as disclosed in Japanese Patent Laid-Open No. 11-12036, a zener diode (constant voltage diode) for preventing overvoltage is connected in parallel to the light emitting diode. Is done. Accordingly, when an overvoltage due to static electricity or the like is applied to the light emitting diode, the Zener diode is turned on to protect the light emitting diode from the overvoltage.
[0003]
[Problems to be solved by the invention]
By the way, when forming an assembly of a protection element such as a Zener diode and a light emitting diode, the light emitting diode is coupled to the protection element by a microbump electrode or the like. For this reason, a protective element is interposed in the heat dissipation path of the light emitting diode, and the protective element reduces the heat dissipation of the light emitting diode. If a current of the same value as the current flowing through the light emitting diode without a protective element is passed through the light emitting diode with the protective element, the temperature of the light emitting diode becomes higher than the allowable range, and the light emitting diode is deteriorated or damaged. May occur. Although the case where the light emitting diode and the protective element are assembled integrally has been described, the thermal destruction of the semiconductor light emitting element such as the light emitting diode becomes a problem even when the protective element does not disturb the heat dissipation of the light emitting diode.
Also, there are times when it is necessary to prevent both overvoltage breakdown and thermal breakdown in circuit elements other than light emitting diodes.
[0004]
Accordingly, a first object of the present invention is to provide a semiconductor light emitting device capable of preventing thermal destruction of a semiconductor light emitting element.
A second object of the present invention is to provide a semiconductor light-emitting device which can prevent both thermal destruction and an overvoltage breakdown of the semiconductor light emitting element.
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve the above object, the present invention provides a semiconductor light emitting device and an ON state that is connected in parallel to the semiconductor light emitting device and the temperature of the semiconductor light emitting device is higher than a predetermined temperature. Or a protective element having a characteristic of decreasing resistance value, and an overvoltage preventing constant voltage diode connected in parallel to the semiconductor light emitting element, and the protective element is a base required to start conduction. The transistor has a negative temperature coefficient between the emitters, the transistor and the constant voltage diode are formed on the same semiconductor substrate, and the semiconductor light emitting element is disposed on the semiconductor substrate. The present invention relates to a featured semiconductor light emitting device.
[0006]
In addition, as shown in Claim 2, it is desirable to arrange | position a light emitting element on a protective element.
[0007]
【The invention's effect】
According to the onset bright, the temperature of the semiconductor light emitting element is higher than a predetermined temperature, the protective element is turned on or the low-resistance value, serves as a bypass of the semiconductor light emitting element, current of the semiconductor light-emitting element is blocked or suppressed, The temperature rise of the semiconductor light emitting element is suppressed, and this deterioration or destruction is prevented.
Moreover, both thermal destruction prevention and overvoltage prevention can be achieved.
Further , according to the invention of claim 2, the light emitting device capable of preventing both thermal breakdown and overvoltage breakdown can be reduced in size and cost. Can be provided.
[0008]
Embodiment
Next, an embodiment of the present invention will be described with reference to FIGS.
[0009]
[First Embodiment]
A semiconductor light emitting device 1 of the first embodiment shown in FIGS. 1 to 5 includes a gallium nitride (GaN) light emitting diode 2 as a light emitting element, a composite protective element 3 including a transistor 4 and a constant voltage diode 5, It has first and second main terminals 6 and 7 and a control terminal 8.
[0010]
The anode of the light emitting diode 2 is connected to the first main terminal 6, and the cathode is connected to the second main terminal 7.
The NPN transistor 4 made of silicon contained in the composite protection element 3 is connected in parallel to the light emitting diode 2. That is, the collector of the transistor 4 is connected to the first main terminal 6, the emitter is connected to the second main terminal 7, and the base is connected to the control terminal 8. Transistor 4 is thermally coupled to light emitting diode 2. The transistor 4 is the voltage V BE between the base and emitter for initiating conduction That is, the voltage V BE between the base and emitter, which is required for the base current starts to flow is about 0.7V at 25 ° C. (room temperature). Further, the base-emitter voltage V BE at the start of the on-state has a negative temperature coefficient of about −2 mV / ° C. In this embodiment, the transistor 4 having a negative temperature coefficient is used as a heat sensitive element, and the light emitting diode 2 is prevented from being overheated.
[0011]
When driving the light emitting diode 2 as an electronic circuit element, the first main terminal 6 is connected to the DC power supply terminal 10 via the current limiting resistor 9, and the second main terminal 7 is connected to the ground terminal 11. When the transistor 4 is used as a protection element for preventing thermal destruction of the light emitting diode 2, a bias circuit 12 is connected to the base of the transistor 4, that is, the control terminal 8. The bias circuit 12 includes first and second resistors 13 and 14 connected between the DC power supply terminal 10 and the ground terminal 11, and an interconnection point between the first and second resistors 13 and 14 is a control terminal. 8 is connected. In this embodiment, it is assumed that the fixed bias voltage Vb applied between the base and emitter of the transistor 4 by the bias circuit 12 is set to 0.55V. The value R1 of the resistor 13 for obtaining the bias voltage Vb = 0.55V is determined according to the following equation.
Vb = Vcc R2 / (R1 + R2)
R1 = R2 {(Vcc / Vb) -1}
As the resistor 14, an existing resistor R2 is used.
The bias voltage Vb does not turn on the transistor 4 in the normal temperature range of the light-emitting diode 2, but turns on when the temperature of the light-emitting diode 2 reaches an abnormal temperature higher than the normal temperature range (100 ° C. or higher in this embodiment). To be determined. In this embodiment, the protection start temperature of the light emitting diode 2 is 100 ° C. If the temperature of the light emitting diode 2 and the transistor 4 reaches 100 ° C., the base-emitter voltage V BE required for the transistor 4 to start conducting becomes 0 than the value (0.7 V) when the temperature is 25 ° C. .15V drop to 0.55V. At 100 ° C., a bias voltage Vb of 0.55 V is applied from the bias circuit 12 to the transistor 4, so that the transistor 4 is turned on, and a bypass or short circuit of the light emitting diode 2 is formed. The current is interrupted or suppressed, and the temperature rise of the light emitting diode 2 is limited. That is, when the transistor 4 is turned on, the current passing through the resistor 9 is shunted to the transistor 4 and the current of the light emitting diode 2 is decreased. The transistor 4 is made of silicon and is less likely to be thermally destroyed than the GaN-based light emitting diode 2. The transistor 4 is formed so as not to be destroyed even when a current having the same value as the maximum allowable current of the light emitting diode 2 flows. Preferably, the value of the maximum allowable collector current of the transistor 4 is determined to be at least twice the maximum allowable current of the light emitting diode 2.
[0012]
The constant voltage diode 5 does not conduct at the rated voltage of the light emitting diode 2, but conducts at a predetermined voltage between the rated voltage and the lowest breakdown voltage that may be destroyed, and a voltage higher than a certain voltage is applied to the light emitting diode 2. It is formed to prevent it. Thereby, when a high surge voltage such as static electricity is applied between the first and second main terminals 6 and 7, the constant voltage diode 5 becomes conductive, and the voltage between both terminals of the light emitting diode 2 is limited.
[0013]
2 to 5 show the configuration of each part of the light emitting device 1 in detail. As schematically shown in FIG. 2, the light emitting diode 2 is disposed on the composite protective element 3. As shown in FIGS. 2 and 3, the light-emitting diode 2 comprises a main body portion 20, an anode-side microbump electrode 21, and a cathode-side microbump electrode 22 of a GaN-based semiconductor light-emitting diode. The flip chip is mechanically and electrically coupled to the upper surface of the composite protective element 3 by bump electrodes 21 and 22. It should be noted that light is mainly emitted upward from the light emitting diode 2.
[0014]
The composite protective element 3 is formed by forming a transistor 4 and a constant voltage diode 5 on the same silicon semiconductor substrate 23 as shown in FIGS. As shown in FIGS. 2-5, the 1st main electrode 24, the surface side part 25a of the 2nd main electrode 25, and the control electrode 26 are provided in one main surface of the composite protective element 3, and the other main surface is provided with it. A back surface portion 25 b of the second main electrode 25 is provided. As schematically shown in FIG. 2, the first main electrode 24 is connected to the first main terminal 6 made of a columnar lead by a first conductor 27 made of a wire. The back surface portion 25b of the second main electrode 25 is electrically and mechanically connected to a header portion 7a having a light reflecting recess formed integrally with the second main terminal 7 by a conductive bonding material 28 such as Ag paste. Combined. The control electrode 26 is connected to the control terminal 8 made of a columnar lead by a second conductor 29 made of a wire. The light emitting diode 2, the composite protective element 3, a part of the terminals 6, 7, 8 and the conductors 27, 29 are covered with a light transmissive resin 30.
[0015]
Since the light emitting diode 2 is coupled to the composite protective element 3 via the bump electrodes 21 and 22, the heat of the light emitting diode 2 is transmitted to the transistor 4 in the composite protective element 3. Therefore, the transistor 4 is in a state where the light emitting diode 2 is thermally coupled, and the temperature of the transistor 4 changes following the temperature change of the light emitting diode 2. Since the composite protection element 3 including the transistor 4 is directly coupled to the header portion 7a of the second main terminal 7, the heat dissipation is relatively good. However, the light emitting diode 2 is connected to the header via the composite protection element 3. Since it is coupled to the portion 7a, heat dissipation is poor as compared with the case where it is directly coupled to the header portion 7a. However, the adverse effect due to the poor heat dissipation is eliminated by the transistor 4 in an electric circuit.
[0016]
As shown in FIGS. 3 to 5, the silicon semiconductor substrate 23 constituting the composite protective element 3 is composed of a P-type substrate region 31, an N + -type buried region 32, an N-type silicon epitaxial growth region, and from the region 32. even a low impurity concentration N - type region 33, P-type base - source region 34, N-type emitter region 35, a higher impurity concentration than region 33 N + -type collector connection region 36, impurity concentration than region 34 higher P A + -type front / back connection region 37 is provided.
[0017]
The P-type substrate region 31 of the semiconductor substrate 23 is disposed so as to be exposed on the entire lower surface of the substrate 23. The N + type buried region 32 is disposed between the substrate region 31 and the N type region 33. The P-type base region 34 is formed in an island shape in the N -type region 33. The N-type emitter region 35 is formed in an island shape in the base region 34. The N + -type collector connection region 36 is formed in an island shape in the N -type region 33 so as to face the buried region 32. The low resistance front / back connection region 37 is arranged so as to electrically connect the front surface side portion 25a and the back surface side portion 25b of the second main electrode 25.
[0018]
The first main electrode 24 on the surface side of the semiconductor substrate 23 is in ohmic contact with the N + -type collector connection region 36. The surface side portion 25 a of the second main electrode 25 is provided on the P + type front / back connection region 37 and the emitter region 35. The control electrode 26 is disposed on the P-type base region 34. Although omitted in FIG. 3, an insulating film 38 is formed on the surface of the semiconductor substrate 23, and the surface side portion 25 a of the first main electrode 25 and the control electrode 26 are connected to the semiconductor substrate through the openings formed therein. It is connected to 23 predetermined areas. Further, as shown in FIG. 5, the first main electrode 24 extends on the insulating film 28 and is used for connection of the light emitting diode 2. The light-emitting diode 20 indicated by a broken line in FIG. 3 is disposed opposite to the surface side portion 25a of the first main electrode 24 and the second main electrode 25, and as shown in FIG. The bump electrode 21 is coupled to the first main electrode 24, and the cathode-side bump electrode 22 is coupled to the surface side portion 25 a of the second main electrode 25. The electrode portion is indicated by hatching.
[0019]
As shown in FIG. 4, the NPN-type transistor 4 is constituted by the N-type emitter region 35, the P-type base region 34, the N - type region 33, and the N + type buried region 32 that are arranged so as to overlap one another. The N + type buried region 32 functioning as a collector is connected to the first main electrode 24 through the N type region 33 and the N + type region 36. A part of the first main electrode 24 functions as the collector electrode of the transistor 4, a part of the surface portion 25 a of the second main electrode 25 functions as the emitter electrode of the transistor 4, and the control electrode 26 is the base electrode of the transistor 4. -Functions as a contact electrode.
[0020]
A part of the N + type region 36 overlaps a part of the P + type front / back connection region 37. Therefore, the N + type region 36 functions as a cathode region of the constant voltage diode 5, and the P + type front / back connection region 37 functions as an anode region of the constant voltage diode 5. A part of the first main electrode 24 functions as a cathode electrode of the constant voltage diode 5, and a back surface side region 25 b of the second main electrode 25 is an anode electrode of the constant voltage diode 5. Is functioning as
[0021]
As apparent from the above, this embodiment has the following effects.
(1) When the temperature of the light emitting diode 2 exceeds a predetermined temperature, the transistor 4 is turned on, the current of the light emitting diode 2 is reduced or cut off, and the deterioration or thermal destruction of the light emitting diode 2 is prevented. The
(2) Since the constant voltage diode 5 is connected to the light emitting diode 2 in parallel, the constant voltage diode 5 becomes conductive when overvoltage occurs, and the voltage of the light emitting diode 2 is clamped, causing deterioration or destruction due to overvoltage. Is prevented.
(3) Since the thermal breakdown preventing transistor 4 and the overvoltage preventing constant voltage diode 5 are provided on the same semiconductor substrate 3 to form a composite protective element, this reduction in size and cost can be achieved.
(4) Since the light emitting diode 2 is disposed on the composite protective element composed of the transistor 4 and the constant voltage diode 5, these assemblies can be miniaturized.
[0022]
[Second Embodiment]
Next, the light emitting device 1a of the second embodiment will be described with reference to FIGS. However, in FIGS. 6 and 7, and in FIG. 8 described later, substantially the same parts as in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted.
[0023]
The light-emitting device 1a shown in FIGS. 6 and 7 is provided with an insulating support substrate 40 for mounting on a circuit board by a surface mounting method, and the others are formed substantially the same as the light-emitting device 1 of FIG. It is. The substrate 40 is provided with terminals 6a, 7a, 8a made of a conductor layer corresponding to the terminals 6, 7, 8 in FIG. The light-emitting diode 2 and the composite protective element 3 shown in FIGS. 6 to 7 are formed in the same manner as shown by the same reference numerals in FIGS. 6 and 7, the back side portion 25b of the second main electrode is electrically and mechanically coupled to the second main terminal 7a of the substrate 40 by a conductive bonding material 28a. The first main electrode 24 is connected to the first main terminal 6 a by a conductor 27, and the control terminal 26 is connected to the control terminal 8 a by a conductor 29. A light transmissive resin 30 is provided on the upper surface of the substrate 40 so as to cover the light emitting diode 2 and the composite protective element 3.
[0024]
The light emitting device of the second embodiment has the same effect as that of the first embodiment, and also has the effect that it can be surface-mounted.
[0025]
[Third Embodiment]
A light-emitting device 1b according to the third embodiment shown in FIG. 8 includes a light-sensitive diode 4a in addition to the light-emitting diode 2 and the constant-voltage diode 5 connected in parallel to each other as in FIG. The thermosensitive element 4a is a thermistor thermally coupled to the light emitting diode 2, and is formed so that the resistance value is significantly reduced at an abnormal temperature of, for example, about 100 ° C. or more. Therefore, the embodiment of FIG. 8 can also prevent the light-emitting diode from being destroyed by heat and overvoltage.
[0026]
[Modification]
The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible.
(1) The bias circuit 12 can be connected to a power source different from that of the light emitting diode 2.
(2) A GaN-based semiconductor layer is grown on a silicon substrate, the light-emitting diode 2 is formed by the GaN-based semiconductor layer, and the transistor 4 and the constant voltage diode 5 can be provided on the silicon substrate.
(3) The composite protective element 3 can be connected in parallel to an electronic circuit element other than the light emitting diode 2 to prevent thermal breakdown and overvoltage breakdown of the electronic circuit element.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a light emitting device according to a first embodiment of the present invention with a bias circuit and a drive circuit.
FIG. 2 is a partially cut front view schematically showing the light emitting device of FIG.
3 is a plan view showing the composite protective element of FIG. 2 without an insulating film.
4 is a cross-sectional view taken along line AA in FIG.
5 is a cross-sectional view taken along line BB of FIG.
FIG. 6 is a front view showing a light emitting device according to a second embodiment.
7 is a plan view showing the light emitting device of FIG. 6 with the coating resin omitted. FIG.
FIG. 8 is a circuit diagram illustrating a light emitting device according to a third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Light-emitting diode 3 Composite protective element 4 Overheat prevention transistor 5 Overvoltage prevention constant voltage diode

Claims (2)

半導体発光素子と、前記半導体発光素子に並列に接続され且つ前記半導体発光素子の温度が所定温度よりも高くなった時にオン状態になるか又は抵抗値が低下する特性を有している保護素子と、前記半導体発光素子に並列に接続された過電圧防止用定電圧ダイオードとを有し、前記保護素子は導通開始に要求されるベース・エミッタ間電圧が負の温度係数を有するトランジスタであり、前記トランジスタと前記定電圧ダイオードは同一の半導体基体に形成されており、前記半導体発光素子は前記半導体基体の上に配置されていることを特徴とする半導体発光装置。A semiconductor light emitting element, and a protective element connected in parallel to the semiconductor light emitting element and having a characteristic of being turned on or having a reduced resistance value when the temperature of the semiconductor light emitting element is higher than a predetermined temperature; An overvoltage-preventing constant-voltage diode connected in parallel to the semiconductor light-emitting element, and the protection element is a transistor having a negative temperature coefficient for a base-emitter voltage required to start conduction, And the constant voltage diode are formed on the same semiconductor substrate, and the semiconductor light emitting element is disposed on the semiconductor substrate . 前記半導体発光素子は前記保護素子の上に配置されていることを特徴とする請求項1記載の半導体発光装置。The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting element is disposed on the protection element.
JP2000191368A 2000-06-26 2000-06-26 Semiconductor light emitting device Expired - Fee Related JP3613328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191368A JP3613328B2 (en) 2000-06-26 2000-06-26 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191368A JP3613328B2 (en) 2000-06-26 2000-06-26 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2002009343A JP2002009343A (en) 2002-01-11
JP3613328B2 true JP3613328B2 (en) 2005-01-26

Family

ID=18690677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191368A Expired - Fee Related JP3613328B2 (en) 2000-06-26 2000-06-26 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3613328B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257901A1 (en) * 2004-04-19 2007-11-08 Matsushita Electric Industrial Co., Ltd. Semiconductor chip for driving light emitting element, light emitting device, and lighting device
JPWO2005104249A1 (en) * 2004-04-21 2007-08-30 松下電器産業株式会社 Semiconductor chip for driving light emitting element, light emitting device, and lighting device
JP2006331982A (en) * 2005-05-30 2006-12-07 Denso Corp Light-emitting diode driving device and display device for vehicle using the same
KR100683612B1 (en) 2005-07-07 2007-02-20 서울반도체 주식회사 Luminous Device
JP4995559B2 (en) * 2005-12-23 2012-08-08 晶元光電股▲ふん▼有限公司 Light emitting device
JP5040185B2 (en) * 2006-06-21 2012-10-03 ミツミ電機株式会社 Light emitting diode drive circuit
CN101681968A (en) * 2007-05-31 2010-03-24 株式会社村田制作所 Led driving circuit
US8743921B2 (en) * 2007-12-17 2014-06-03 Koninklijke Philips N.V. Light emitting module and thermal protection method
JP4978547B2 (en) * 2008-04-24 2012-07-18 豊田合成株式会社 LED driving circuit and LED lighting device
US9781803B2 (en) * 2008-11-30 2017-10-03 Cree, Inc. LED thermal management system and method
US8643283B2 (en) 2008-11-30 2014-02-04 Cree, Inc. Electronic device including circuitry comprising open failure-susceptible components, and open failure-actuated anti-fuse pathway
JP5467791B2 (en) * 2009-04-09 2014-04-09 日東光学株式会社 LED lighting device and LED light emitting device
EP2589265A1 (en) * 2010-06-30 2013-05-08 Koninklijke Philips Electronics N.V. Dimmable lighting device
JP5801048B2 (en) * 2010-12-20 2015-10-28 株式会社Lixil LED module and LED lamp
JP2012204783A (en) * 2011-03-28 2012-10-22 Stanley Electric Co Ltd Light-emitting diode device
JP2015103666A (en) * 2013-11-25 2015-06-04 セイコーエプソン株式会社 Light-emitting device and image display device
DE102014008614B4 (en) * 2014-06-07 2022-03-24 Diehl Aerospace Gmbh LED lighting device for an AC voltage supply in an aircraft and aircraft with the LED lighting device
CN106883853B (en) * 2017-02-20 2019-05-10 西北工业大学 It is a kind of using NTC semiconductor nano powder to the modulating method of phosphor emission spectrum

Also Published As

Publication number Publication date
JP2002009343A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
JP3613328B2 (en) Semiconductor light emitting device
US5763929A (en) Transistor package having a series connected thermistor for protection from thermal destruction
US7105860B2 (en) Flip chip light-emitting diode package
JP3559435B2 (en) Semiconductor light emitting device
US20080083929A1 (en) Ac/dc light emitting diodes with integrated protection mechanism
JP3074736B2 (en) Semiconductor device
US20060202225A1 (en) Submount for use in flipchip-structured light emitting device including transistor
TW201011871A (en) Optoelectronic device
US4543593A (en) Semiconductor protective device
KR100272052B1 (en) Power transistor
KR101115125B1 (en) Mounting Structure Providing Electrical Surge Protection
JP2014003108A (en) Semiconductor device
JP2003017574A (en) Semiconductor and protection circuit used therefor
JPH11220176A (en) Semiconductor light-emitting device
JP2000077722A (en) Semiconductor light-emitting device
JPH02278783A (en) Semiconductor laser
JPH1154839A (en) Semiconductor laser device
JPS6211787B2 (en)
KR101312267B1 (en) Thermistor with 3 terminals, thermistor-transistor, circuit for controlling heat of power transistor using the same thermistor-transistor, and power system comprising the same circuit
JPS6010653A (en) Semiconductor device
JP2003142594A (en) Semiconductor device
JPH1140744A (en) Power semiconductor device
JP2004221274A (en) Semiconductor device
JP2901275B2 (en) Semiconductor integrated circuit device
JP2599037B2 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees