JP3613069B2 - Frequency selective radio wave shield - Google Patents

Frequency selective radio wave shield Download PDF

Info

Publication number
JP3613069B2
JP3613069B2 JP13287399A JP13287399A JP3613069B2 JP 3613069 B2 JP3613069 B2 JP 3613069B2 JP 13287399 A JP13287399 A JP 13287399A JP 13287399 A JP13287399 A JP 13287399A JP 3613069 B2 JP3613069 B2 JP 3613069B2
Authority
JP
Japan
Prior art keywords
radio wave
wavelength
frequency
radio
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13287399A
Other languages
Japanese (ja)
Other versions
JP2000323920A (en
Inventor
隆司 宮本
和利 清川
晶彦 伊藤
滋 岡野
系治郎 難波
明 庭山
橋本  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP13287399A priority Critical patent/JP3613069B2/en
Publication of JP2000323920A publication Critical patent/JP2000323920A/en
Application granted granted Critical
Publication of JP3613069B2 publication Critical patent/JP3613069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電波遮蔽体に関するもので、特に特定波長の電波を選択的に遮蔽する電波遮蔽体に関するものである。
【0002】
【従来の技術】
近年、事業所内PHSや無線LANの利用が広がりを見せるなか、情報の漏洩防止や外部からの侵入電波による誤動作やノイズ防止といった点から、オフィス内での電波環境を整えることが不可欠になっており、そのような電波環境の整備用部材として、既に種々のタイプのものが提案されている。
【0003】
例えば、特公平6−99972号公報には、金属やフェライトなどの電磁シ−ルド部材をビルの躯体に付加することで、広い周波数帯域で任意の周波数の電波を使って情報通信が出来る電磁シ−ルド・インテルジェントビルを提供することが述べられている。
【0004】
しかし、このような鉄板、金属網、金属メッシュ、金属箔などの電波反射体やフェライトなどの電波吸収体を電磁シ−ルド部材として用いたものでは、それらの電磁シ−ルド性に周波数選択性が無いため、遮蔽しようとする周波数以外の電波まで遮蔽してしまう。
【0005】
また前記電波反射体はテレビ電波を反射し、受信障害(ゴ−ストの発生)の原因となるため用いることが出来る箇所が制限される。さらに、電磁シ−ルド部材間の隙間によってシ−ルド性能が大きく低下するため、個々の部材が持つシ−ルド性能を十分発揮させるには、部材間の接続や接地など施工面での厳密性が要求される。
【0006】
特開平10−169039号公報は、このような問題点を解消するもので、線状のアンテナ素子を定期的に配列させることで遮蔽しようとする特定周波数の電波のみを遮蔽し、部材間の接続や接地も必要ないという優れたものである。しかし、その遮蔽は反射損失によるものが大部分であるため、オフィス内部において反射電波による画面の揺らぎや誤動作などが起こる場合があるのが問題である。
【0007】
特開平9−162589号公報や特開平5−335832号公報の発明は、共にこのようなオフィス内部における電波反射に起因する問題を解消するもの、即ち特定周波数の電波を選択的に吸収するものであり、特開平9−162589号公報の発明は、導電体より大きく絶縁体より小さい電気抵抗値を持つエレメントを配列させて特定周波数(以上)の電波を吸収するもの、特開平5−335832号公報の発明は、抵抗皮膜と電波反射体とを誘電体(厚さがこの誘電体内における電波波長の4分の1)を挟んで配置し特定周波数の電波のみを選択的に吸収する、いわゆるλ/4型電波吸収体に関するものである。
【0008】
しかし、これらの電波吸収体にもそれぞれ以下に述べるような欠点がある。即ち前者は電波の照射によってエレメント内を流れる交流電流の抵抗損失によるものであるため、微小な体積のエレメントでは、遮蔽しようとする周波数の電波においても実際的には透過が多くなり吸収可能な電波量は僅少になる。
【0009】
また後者は吸収量が前者に比して大きく、周波数選択性にも優れるが、誘電体の裏側を金属箔や金属網などの電波反射体で裏打ちするため、遮蔽しようとする周波数以外の電波は反射してしまう。即ちその周波数選択性は抵抗皮膜側から到来する電波の反射成分に対してのみのものである。
【0010】
さらに反射体側から到来する電波に対しては周波数に関係なく反射してしまい、上述したテレビ電波受信障害の原因となる可能性がある。
【0011】
【発明が解決しようとする課題】
本発明は、上記ような従来の電波遮蔽体が持つ不都合を解消することを目的としたものである。
【0012】
即ち、電波遮蔽体間の接続や接地の必要がない施工性に優れた電波遮蔽体であり、この電波遮蔽体を用いて電波遮蔽室を形成した場合に、室内での専用通信(事業所PHSや無線LANなど)に使用する電波の室内での反射や室外からの侵入に起因する画面の揺らぎや誤動作などが起こらず、また上記以外の電波は双方向に透過して外部との通信や公共放送の受信が可能になったり、テレビ電波の受信障害の源となることもないような電波遮蔽体を提供することを目的としたものである。
【0013】
つまり、特定電波のうち、一方から入射するものを反射し、他方から入射するものを吸収するとともにそれ以外の電波はどちらから入射する場合も透過することを特徴とする電波遮蔽体が望まれていた。
【0014】
【課題を解決するための手段】
本発明は、前記の目的を達成するためのものであって、請求項1記載の発明は、抵抗体皮膜と、波長λの電波に対し、開放端を持ち、開放端間の長さが該波長λの約2分の1であるである金属線素子が配設された電波反射面とを、該電波波長λの約4分の1(但し、該電波波長は誘電体中での波長)の厚さを持つ誘電体を挟んで配置されてなることを特徴とする周波数選択性電波遮蔽体を提供するものである。
【0015】
請求項2記載の発明は、抵抗体皮膜と、波長λの電波に対し、環状でその周囲の長さが該波長と等しい金属線素子が配設された電波反射面とを、該電波波長λの約4分の1(但し、該電波波長は誘電体中での波長)の厚さを持つ誘電体を挟んで配置されてなることを特徴とする周波数選択性電波遮蔽体を提供するものである。
【0016】
請求項3記載の発明は、前記抵抗体皮膜が、その表面での電波の反射が10%以下であるようなインピ−ダンスを持つことを特徴とする請求項1または2に記載の周波数選択性電波遮蔽体を提供するものである。
【0019】
なお、本発明でいう電波は、3000GHz以下の電磁波を示す。
【0020】
【発明の実施の形態】
以下、本発明を図面を用いて詳細に説明する。
図1は、本発明の周波数選択性電波遮蔽体の断面図の一例を示したものであり、電波遮蔽体10は、抵抗体皮膜11、誘電体12、金属線素子13を配設した電波反射面14からなる。また図中の矢印A、Bはそれぞれ電波の到来方向を表したものである。
【0021】
ここで抵抗体皮膜11は、金属箔、金属網や金属、金属酸化物、金属窒化物あるいはその混合物の蒸着膜、スパッタリング膜、CVD膜(CVD:化学的蒸着)あるいはその積層体、炭素粒子などの抵抗体粒子をゴムや高分子樹脂中に分散させた複合型抵抗体など、その形態や製造方法、厚さなどに本質的な限定を受けるものではないが、A方向から到来する遮蔽しようとする電波を十分吸収するため、その表面での反射を約10%程度に抑えるようなインピ−ダンスを持つことが要求される。
【0022】
一般に、電波がある媒体A中から他の媒体Bへ入射する場合、A/B界面での電波の反射係数Sabは(式1)で表される。(図9参照)
【0023】
【式1】

Figure 0003613069
【0024】
ここで媒体BがZ≒0の導体であった場合、A/B界面での電波の反射係数Sabがほぼ−1となって電波はA/B界面で完全に反射され、媒体A中に大きな定在波が立つ。この時媒体A中での負荷インピ−ダンスZの値は、(式2)で表されるように界面(X=0)で0であり、X=λ/4(λは電波の波長)の所で無限大∞になる。
【0025】
【式2】
Figure 0003613069
【0026】
このX=λ/4の位置にインピ−ダンスRの抵抗体皮膜を置くと、この位置での負荷インピ−ダンスはRと∞との並列合成であるのでほぼRとなり、この位置での反射係数は(式3)で表される値になる。
【0027】
【式3】
Figure 0003613069
【0028】
即ち抵抗体皮膜のインピ−ダンスRが、媒体A中での電波特性インピ−ダンスZに完全に等しければ反射係数は0となるが、RもZも周波数によって変化し、完全に一致させることは困難である。そこで実際上問題がない電波遮蔽体を得るには、Rが反射係数を10%以下にするようなものである必要がある。
【0029】
ここで媒体Aが空気や真空であればZは自由空間の電波特性インピ−ダンス(≒377Ω)となり、図2に図示したように、ガラスや有機高分子などの支持体もしくは保護材15が電波の到来方向にある場合にはその内部での電波特性インピ−ダンスとなる。
【0030】
誘電体12は真空、空気、その他のガス、ガラス、セラミックス、有機高分子などその材質に本質的な制限を受けるものではないが、その厚さは上述した理由から、遮蔽したい周波数の電波の波長λに対して、ほぼλ/4であることが必要である。
【0031】
電波反射面14は、金属線素子13を誘電体12の表面に直接設けたものでも良いが、他の高分子フィルムやガラス、セラミックス、紙などの上に金属線素子を設けたものでも、その金属線素子側を誘電体12側に配置したものであれば良い。
【0032】
電波が到来している場所に、接地されていない金属棒や金属ワイヤ−などの導体を置いた場合、一部の電波は吸収され、他は導体中を流れる交番電流が作る電磁界との相互作用によって反射される。この時電波の吸収量と反射量との比(吸収量/反射量)は導体のインピ−ダンスによって変わり、インピ−ダンスがほぼ0であればその比もほぼ0となる。
【0033】
またこの吸収や反射は直接導体の表面に入射する電波に対してだけでなく、その導体周囲の電波に対しても起こる。但し、導体から離れれば離れる程、吸収や反射量は少なくなる。導体と電波の吸収、反射などの相互作用は導体と電波が共鳴する場合に大きくなる。
【0034】
即ち図3から図5のように開放端を持つ線状形状の導体を配列した面では、導体の開放端間の長さが電波波長の2分の1の場合に共鳴し、相互作用が大きくなってこの面で殆ど反射する。言い換えるとこの長さの導体と共鳴しない波長(周波数)の電波にとってはこの面は反射面とはならずにその大部分が透過する。
【0035】
図3のような直線形状の場合にはその長さが電波波長の2分の1になり、図4や図5のように枝分かれを持つ形状では中心点から開放端までの距離が電波波長の4分の1となる。
【0036】
また図6から図8のような環状の導体を配した場合には、環状導体の周囲長が電波波長とほぼ等しい場合に共鳴し、この配列面が特定周波数の電波に対する反射面となる。
【0037】
本発明は、以上に述べたような線状導体の持つ性質を利用したもので、遮蔽しようとする周波数の電波(但し、その波長は誘電体中での波長)と共鳴するような長さの金属線素子を配列することで電波反射面としたものである。
【0038】
このような電波反射面の反射性能は、実際にはあるインピ−ダンスを持つ個々の金属線素子中を流れる交番電流の大きさによって決まるため、その線幅や厚さは大きい程、個々の金属線素子間の間隔は小さい程良くなる。しかし同時に、遮蔽しようとする周波数の電波以外の(周波数が赤外光以上のものを含む)電波の金属線素子表面における反射も大きくなるため周波数選択性が悪くなる。
【0039】
そこで実用上は、遮蔽しようとする周波数の電波に対する反射性能と周波数選択性を考慮して、金属線素子の線幅、厚さ、個々の金属線素子間の間隔が決定される。
【0040】
ここでは図3から図8まで、6種類の金属線素子を図示したが、金属線素子の形状がこれらに限定されるものでないことは、前記の説明で明らかである。
【0041】
なお、本発明の電波遮蔽体を用いて電波遮蔽室などを作る場合、電波反射面として個々に独立した金属線素子の配列面を用いているため、電波遮蔽体同士の接続や接地は必要ない。このことは施工性を極めて簡便にするもので本発明の電波遮蔽体の大きな利点である。
【0042】
【発明の効果】
以上の説明から明らかなように、本発明によれば、電波遮蔽体間の接続や接地の必要がない施工性に優れた電波遮蔽体を供給できる。
【0043】
また、本発明の電波遮蔽体は、遮蔽しようとする周波数の電波のうち、抵抗体皮膜側から到来するものは吸収、電波反射面側から到来するものは反射し、さらにその他の周波数の電波(電波)は双方向に透過させるという性質を有しているため、本発明の電波遮蔽体を用いて電波遮蔽室を形成すると、室内での専用通信(事業所PHSや無線LANなど)に使用する電波の室内での反射や室外からの侵入に起因する画面の揺らぎや誤動作などの発生が防止できるとともに、外部との通信や公共放送の受信、外部でのテレビ電波受信障害の発生源となることの防止、などが可能である。
【図面の簡単な説明】
【図1】本発明に係わる周波数選択性を有する電波遮蔽体の実施の形態を示す断面図である。
【図2】本発明に係わる周波数選択性を有する電波遮蔽体の他の実施の形態を示す断面図である。
【図3】本発明に係わる周波数選択性を有する電波遮蔽体の電波反射面(金属素子配列面)を示す図である。
【図4】本発明に係わる周波数選択性を有する電波遮蔽体の他の電波反射面(金属素子配列面)を示す平面図である。
【図5】本発明に係わる周波数選択性を有する電波遮蔽体の他の電波反射面(金属素子配列面)を示す平面図である。
【図6】本発明に係わる周波数選択性を有する電波遮蔽体の他の電波反射面(金属素子配列面)を示す平面図である。
【図7】本発明に係わる周波数選択性を有する電波遮蔽体の他の電波反射面(金属素子配列面)を示す平面図である。
【図8】本発明に係わる周波数選択性を有する電波遮蔽体の他の電波反射面(金属素子配列面)を示す平面図である。
【符号の説明】
10…電波遮蔽体
11…抵抗体皮膜
12…誘電体
13…金属線素子
14…金属線素子を配設した電波反射面
15…抵抗体皮膜の支持体または保護材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave shield, and more particularly to a radio wave shield that selectively shields radio waves of a specific wavelength.
[0002]
[Prior art]
In recent years, it has become indispensable to prepare the radio environment in the office from the viewpoints of preventing information leakage and malfunction and noise due to invading radio waves from the outside as the use of PHS and wireless LAN in offices is spreading. Various types of members have already been proposed as members for maintaining such a radio wave environment.
[0003]
For example, in Japanese Patent Publication No. 6-99972, an electromagnetic shield member such as metal or ferrite is added to a building frame so that information communication can be performed using radio waves of an arbitrary frequency in a wide frequency band. -It is stated that Ludo Intelgent Building will be provided.
[0004]
However, in the case of using a radio wave reflector such as an iron plate, a metal net, a metal mesh, or a metal foil or a radio wave absorber such as ferrite as an electromagnetic shield member, the frequency selectivity of the electromagnetic shield is high. Therefore, even radio waves other than the frequency to be shielded are shielded.
[0005]
Further, the radio wave reflector reflects a TV radio wave and causes reception trouble (ghosting), so that the locations where it can be used are limited. Furthermore, since the shield performance is greatly reduced by the gaps between the electromagnetic shield members, the strictness in construction, such as connection between members and grounding, is necessary to fully demonstrate the shield performance of each member. Is required.
[0006]
Japanese Laid-Open Patent Publication No. 10-169039 eliminates such problems, and by periodically arranging linear antenna elements, only radio waves having a specific frequency to be shielded are shielded, and connections between members are made. It is an excellent one that does not require grounding. However, since the shielding is mostly due to reflection loss, there is a problem that screen fluctuations or malfunctions may occur due to reflected radio waves inside the office.
[0007]
The inventions of JP-A-9-162589 and JP-A-5-335832 both solve such problems caused by reflection of radio waves inside the office, that is, selectively absorb radio waves of a specific frequency. In the invention of Japanese Patent Laid-Open No. 9-162589, an element having an electric resistance value larger than a conductor and smaller than that of an insulator is arranged to absorb a radio wave of a specific frequency (or higher), Japanese Patent Laid-Open No. 5-335832 According to the invention, a resistive film and a radio wave reflector are arranged with a dielectric (thickness is ¼ of a radio wave wavelength in the dielectric) and a radio wave having a specific frequency is selectively absorbed, so-called λ / The present invention relates to a type 4 electromagnetic wave absorber.
[0008]
However, these wave absorbers also have the following drawbacks. In other words, the former is due to resistance loss of alternating current that flows in the element due to the irradiation of radio waves. Therefore, in a minute volume element, radio waves of frequencies that are to be shielded are actually transmitted and can be absorbed. The amount will be small.
[0009]
The latter absorbs more than the former and has excellent frequency selectivity. However, because the back side of the dielectric is backed by a wave reflector such as a metal foil or metal mesh, It will be reflected. That is, the frequency selectivity is only for the reflected component of radio waves coming from the resistance film side.
[0010]
Furthermore, radio waves arriving from the reflector side are reflected regardless of the frequency, which may cause the above-described television radio wave reception failure.
[0011]
[Problems to be solved by the invention]
The object of the present invention is to eliminate the disadvantages of the conventional radio wave shield.
[0012]
That is, it is a radio wave shield excellent in workability that does not require connection or grounding between the radio wave shields, and when the radio wave shield room is formed using this radio wave shield, dedicated indoor communication (business office PHS) The screen does not fluctuate or malfunction due to the reflection of the radio waves used for indoors or wireless LANs, or the intrusion from outside the room. An object of the present invention is to provide a radio wave shield that does not allow broadcast reception and does not become a source of trouble receiving television radio waves.
[0013]
In other words, there is a demand for a radio wave shield that reflects a specific radio wave incident from one side, absorbs a radio wave incident from the other side, and transmits other radio waves from either side. It was.
[0014]
[Means for Solving the Problems]
The present invention is for achieving the above object, and the invention according to claim 1 has an open end with respect to the resistor film and the radio wave of wavelength λ, and the length between the open ends is the length of the open end. A radio wave reflecting surface on which a metal wire element, which is about half of the wavelength λ, is disposed, and about a quarter of the radio wave wavelength λ (where the radio wave wavelength is a wavelength in a dielectric) A frequency-selective radio wave shielding body is provided, which is disposed with a dielectric having a thickness of 5 mm.
[0015]
The invention according to claim 2 comprises: a resistor film; and a radio wave reflecting surface on which a metal wire element having a ring shape and a circumference around the radio wave having a wavelength λ is equal to the wavelength. The frequency-selective radio wave shield is provided by sandwiching a dielectric having a thickness of about one-fourth of the above (where the radio wave wavelength is a wavelength in the dielectric). is there.
[0016]
The invention according to claim 3 is characterized in that the resistor film has an impedance such that reflection of radio waves on the surface thereof is 10% or less. A radio wave shield is provided.
[0019]
The radio wave referred to in the present invention indicates an electromagnetic wave of 3000 GHz or less.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a cross-sectional view of a frequency-selective radio wave shield according to the present invention. The radio wave shield 10 is a radio wave reflector in which a resistor film 11, a dielectric 12, and a metal wire element 13 are disposed. It consists of surface 14. In addition, arrows A and B in the figure represent the arrival directions of radio waves.
[0021]
Here, the resistor film 11 is a metal foil, a metal net, a metal, a metal oxide, a metal nitride, or a mixture thereof, a sputtering film, a CVD film (CVD: chemical vapor deposition) or a laminate thereof, a carbon particle, or the like. There is no essential limitation on the form, manufacturing method, thickness, etc. of the composite resistor in which the resistor particles are dispersed in rubber or polymer resin. In order to sufficiently absorb the radio wave, it is required to have an impedance that suppresses reflection on the surface to about 10%.
[0022]
In general, when a radio wave enters a medium B from another medium A, the reflection coefficient S ab of the radio wave at the A / B interface is expressed by (Equation 1). (See Figure 9)
[0023]
[Formula 1]
Figure 0003613069
[0024]
Here, when the medium B is a conductor with Z B ≈0, the reflection coefficient S ab of the radio wave at the A / B interface is almost −1, and the radio wave is completely reflected at the A / B interface. A big standing wave stands. At this time, the value of the load impedance Z in the medium A is 0 at the interface (X = 0) as represented by (Equation 2), and X = λ / 4 (λ is the wavelength of the radio wave). It becomes infinite ∞ at the place.
[0025]
[Formula 2]
Figure 0003613069
[0026]
If a resistor film of impedance R is placed at the position of X = λ / 4, the load impedance at this position is approximately R since it is a parallel combination of R and ∞, and the reflection coefficient at this position. Is a value represented by (Equation 3).
[0027]
[Formula 3]
Figure 0003613069
[0028]
That Inpi resistor film - dance R is, radio wave characteristics Inpi in the medium A - is completely equal, the reflection coefficient on the dance Z A 0 and becomes, R also Z A also varies with frequency, exactly match It is difficult. Therefore, in order to obtain a radio wave shield that has no problem in practice, it is necessary that R has a reflection coefficient of 10% or less.
[0029]
Wherein radio characteristics of Z A free space if medium A air or vacuum Inpi - Dance (≒ 377 ohms) next, as shown in FIG. 2, the support or protective material 15 such as glass or an organic polymer When it is in the direction of arrival of the radio wave, it becomes the radio wave characteristic impedance inside the radio wave.
[0030]
The dielectric 12 is not essentially limited by its material such as vacuum, air, other gas, glass, ceramics, organic polymer, etc., but its thickness is the wavelength of the radio wave of the frequency to be shielded for the reason described above. For λ, it needs to be approximately λ / 4.
[0031]
The radio wave reflecting surface 14 may be one in which the metal wire element 13 is provided directly on the surface of the dielectric 12, but the one in which the metal wire element is provided on another polymer film, glass, ceramics, paper, etc. What is necessary is just to arrange the metal wire element side on the dielectric 12 side.
[0032]
When a conductor such as a metal rod or metal wire that is not grounded is placed where radio waves arrive, some radio waves are absorbed and others interact with the electromagnetic field created by the alternating current flowing in the conductor. Reflected by action. At this time, the ratio (absorption amount / reflection amount) between the absorption amount and the reflection amount of the radio wave varies depending on the impedance of the conductor, and if the impedance is almost zero, the ratio becomes almost zero.
[0033]
Further, this absorption and reflection occurs not only for radio waves directly incident on the surface of the conductor, but also for radio waves around the conductor. However, the further away from the conductor, the smaller the amount of absorption and reflection. The interaction between the conductor and the radio wave, such as absorption and reflection, increases when the conductor and the radio wave resonate.
[0034]
That is, on the surface on which linear conductors having open ends are arranged as shown in FIGS. 3 to 5, resonance occurs when the length between the open ends of the conductor is half of the radio wave wavelength, and the interaction is large. It almost reflects on this surface. In other words, for a radio wave having a wavelength (frequency) that does not resonate with the conductor of this length, this surface does not become a reflecting surface but most of the surface is transmitted.
[0035]
In the case of a straight line shape as shown in FIG. 3, the length is one half of the radio wave wavelength, and in the shape having a branch as shown in FIGS. 4 and 5, the distance from the center point to the open end is the radio wave wavelength. A quarter.
[0036]
Further, when an annular conductor as shown in FIGS. 6 to 8 is arranged, resonance occurs when the circumference of the annular conductor is substantially equal to the radio wave wavelength, and this arrangement surface becomes a reflection surface for radio waves of a specific frequency.
[0037]
The present invention utilizes the properties of the linear conductor as described above, and has a length that resonates with a radio wave having a frequency to be shielded (however, the wavelength is a wavelength in a dielectric). A radio wave reflecting surface is formed by arranging metal wire elements.
[0038]
Since the reflection performance of such a radio wave reflecting surface is actually determined by the magnitude of the alternating current flowing in each metal wire element having a certain impedance, the larger the line width and thickness, the greater the individual metal wire element. The smaller the spacing between the line elements, the better. However, at the same time, since the reflection of radio waves other than radio waves having a frequency to be shielded (including those having a frequency higher than infrared light) on the surface of the metal wire element is increased, the frequency selectivity is deteriorated.
[0039]
Therefore, in practice, the line width and thickness of the metal wire elements and the interval between the individual metal wire elements are determined in consideration of the reflection performance and frequency selectivity for the radio wave of the frequency to be shielded.
[0040]
Here, six types of metal wire elements are shown in FIGS. 3 to 8, but it is apparent from the above description that the shape of the metal wire elements is not limited to these.
[0041]
In addition, when making a radio wave shielding room using the radio wave shield of the present invention, since the arrangement surface of individual metal wire elements is used as the radio wave reflecting surface, connection and grounding of the radio wave shields are not necessary. . This greatly simplifies the workability and is a great advantage of the radio wave shield of the present invention.
[0042]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to supply a radio wave shield excellent in workability that does not require connection between the radio wave shields or grounding.
[0043]
The radio wave shielding body of the present invention absorbs radio waves arriving from the resistor film side, reflects those arriving from the radio wave reflecting surface, and reflects radio waves of other frequencies ( (Radio waves) have the property of transmitting in both directions, so if a radio wave shielding room is formed using the radio wave shield of the present invention, it is used for indoor dedicated communications (such as office PHS and wireless LAN). It can prevent the occurrence of screen fluctuations and malfunctions caused by reflection of radio waves in the room or intrusion from outside the room, as well as being a source of external communication, reception of public broadcasts, and external reception of TV radio waves. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a radio wave shield having frequency selectivity according to the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of a radio wave shield having frequency selectivity according to the present invention.
FIG. 3 is a view showing a radio wave reflection surface (metal element arrangement surface) of a radio wave shield having frequency selectivity according to the present invention.
FIG. 4 is a plan view showing another radio wave reflection surface (metal element arrangement surface) of the radio wave shield having frequency selectivity according to the present invention.
FIG. 5 is a plan view showing another radio wave reflection surface (metal element arrangement surface) of the radio wave shield having frequency selectivity according to the present invention.
FIG. 6 is a plan view showing another radio wave reflection surface (metal element arrangement surface) of the radio wave shield having frequency selectivity according to the present invention.
FIG. 7 is a plan view showing another radio wave reflection surface (metal element arrangement surface) of a radio wave shield having frequency selectivity according to the present invention.
FIG. 8 is a plan view showing another radio wave reflection surface (metal element arrangement surface) of the radio wave shield having frequency selectivity according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Radio wave shield 11 ... Resistor film | membrane 12 ... Dielectric body 13 ... Metal wire element 14 ... Radio wave reflecting surface 15 which arrange | positioned the metal wire element ... Support body or protective material of a resistor film

Claims (3)

抵抗体皮膜と、波長λの電波に対し、開放端を持ち、開放端間の長さが該波長λの約2分の1であるである金属線素子が配設された電波反射面とを、該電波波長λの約4分の1(但し、該電波波長は誘電体中での波長)の厚さを持つ誘電体を挟んで配置されてなることを特徴とする周波数選択性電波遮蔽体。A resistor film and a radio wave reflecting surface on which a metal wire element having an open end with respect to a radio wave of wavelength λ and having a length between the open ends being about one half of the wavelength λ is disposed. A frequency-selective radio wave shield comprising a dielectric having a thickness of about one-fourth of the radio wave wavelength λ (where the radio wave wavelength is a wavelength in the dielectric). . 抵抗体皮膜と、波長λの電波に対し、環状でその周囲の長さが該波長と等しい金属線素子が配設された電波反射面とを、該電波波長λの約4分の1(但し、該電波波長は誘電体中での波長)の厚さを持つ誘電体を挟んで配置されてなることを特徴とする周波数選択性電波遮蔽体。A resistor film and a radio wave reflecting surface on which a metal wire element having a circumference equal to the wavelength is disposed for a radio wave having a wavelength λ is approximately a quarter of the radio wave wavelength λ (however, A frequency-selective radio wave shield, which is disposed with a dielectric having a thickness of the radio wave wavelength (wavelength in the dielectric) interposed therebetween. 前記抵抗体皮膜が、その表面での電波の反射が10%以下であるようなインピ−ダンスを持つことを特徴とする請求項1または2に記載の周波数選択性電波遮蔽体。The frequency-selective radio wave shield according to claim 1 or 2, wherein the resistor film has an impedance such that reflection of radio waves on the surface thereof is 10% or less.
JP13287399A 1999-05-13 1999-05-13 Frequency selective radio wave shield Expired - Fee Related JP3613069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287399A JP3613069B2 (en) 1999-05-13 1999-05-13 Frequency selective radio wave shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287399A JP3613069B2 (en) 1999-05-13 1999-05-13 Frequency selective radio wave shield

Publications (2)

Publication Number Publication Date
JP2000323920A JP2000323920A (en) 2000-11-24
JP3613069B2 true JP3613069B2 (en) 2005-01-26

Family

ID=15091560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287399A Expired - Fee Related JP3613069B2 (en) 1999-05-13 1999-05-13 Frequency selective radio wave shield

Country Status (1)

Country Link
JP (1) JP3613069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171095A (en) * 2013-03-04 2014-09-18 Denki Kogyo Co Ltd Antenna device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857501B2 (en) * 2001-08-30 2012-01-18 凸版印刷株式会社 Radio wave absorber
JP2008047594A (en) * 2006-08-11 2008-02-28 Mitsubishi Cable Ind Ltd Radio wave absorber and radio wave shielding
JP5476532B2 (en) * 2011-10-28 2014-04-23 電気興業株式会社 Propagation environment control type radio wave reflection box
JP2014241354A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Band selection polarization shield, manufacturing method of band selection polarization shield, display device and display apparatus
JP2014241353A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Band selection transparent shield, manufacturing method of band selection transparent shield, display device using the same and display apparatus
JP7175142B2 (en) * 2018-09-03 2022-11-18 リンテック株式会社 Reflective film for electromagnetic wave absorption sheet, electromagnetic wave absorption sheet
JP7264608B2 (en) * 2018-09-03 2023-04-25 リンテック株式会社 Electromagnetic wave absorbing film, electromagnetic wave absorbing sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171095A (en) * 2013-03-04 2014-09-18 Denki Kogyo Co Ltd Antenna device

Also Published As

Publication number Publication date
JP2000323920A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
US6538596B1 (en) Thin, broadband salisbury screen absorber
JPH09219619A (en) Surface mount antenna and communication equipment using the same
US10790564B2 (en) Tubular in-line filters that are suitable for cellular applications and related methods
WO2004036687A1 (en) Small multimode antenna and high frequency module using it
CN101010999A (en) Wave absorber
WO2001063695A1 (en) Compact, broadband inverted-f antennas with conductive elements and wireless communicators incorporating same
JP3613069B2 (en) Frequency selective radio wave shield
KR100315537B1 (en) Window glass with electronic shield performance
JP4474759B2 (en) Radio wave shield with multiple frequency selectivity
US20110175783A1 (en) Multilayer antenna
Payandehjoo et al. Isolation enhancement between tightly spaced compact unidirectional patch‐antennas on multilayer EBG surfaces
JP4154942B2 (en) Film type electromagnetic wave absorber
JP2022117929A (en) Vehicle window glass and vehicle window glass device
JP4857500B2 (en) Radio wave absorber
JP4857501B2 (en) Radio wave absorber
CN110137684B (en) Frequency selection surface structure applied to Ku wave band and unit structure thereof
JP2002368479A (en) Electromagnetic wave shielding material
KR200441931Y1 (en) Slot Type Multi-Band Omni-Antenna
JP4479059B2 (en) Radio wave absorber with frequency selectivity
JP4259078B2 (en) Building materials
JP2001053484A (en) Wave absorber having frequency selectivity
JP4314831B2 (en) Radio wave absorber
JPH10126091A (en) Window glass with electromagnetic shielding capability
JP2004363138A (en) Wave absorber/reflector
Habib et al. An efficient FSS absorber for WLAN security

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees