JP3612761B2 - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP3612761B2
JP3612761B2 JP32706594A JP32706594A JP3612761B2 JP 3612761 B2 JP3612761 B2 JP 3612761B2 JP 32706594 A JP32706594 A JP 32706594A JP 32706594 A JP32706594 A JP 32706594A JP 3612761 B2 JP3612761 B2 JP 3612761B2
Authority
JP
Japan
Prior art keywords
floor
underground
small
basement
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32706594A
Other languages
Japanese (ja)
Other versions
JPH08184067A (en
Inventor
克朗 小畠
和明 津田
浩一郎 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP32706594A priority Critical patent/JP3612761B2/en
Publication of JPH08184067A publication Critical patent/JPH08184067A/en
Application granted granted Critical
Publication of JP3612761B2 publication Critical patent/JP3612761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Foundations (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、地面に打込まれる構真柱を用いて構築される地下構造物の構築法に関する。
【0002】
【従来の技術】
多層階ビル等の地下架構部分を構築するにあたって、構真柱を用いた逆打工法が採用されている。この逆打工法を行う場合、施工性,省力化および省仮設化等を考慮してフラットスラブ工法(特開昭61−261556号公報,特開平3−72119号公報参照)が用いられることがある。即ち、フラットスラブ工法では梁を用いることなく、地面を地下階の階層毎に掘削しつつ、掘削した底面部分にコンクリートを打設して床面を構築するようになっている。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来のフラットスラブ工法を用いた逆打工法では、次に列挙するような課題があった。
【0004】
▲1▼下層階へと掘削を行う際に上層階のフラットスラブが存在するため、このフラットスラブが邪魔となって掘削効率が低下すると共に、換気設備や照明設備を各スラブ毎に設ける必要がある。
【0005】
▲2▼土水圧等の水平力をフラットスラブで受けているために、このフラットスラブに形成する下層階を掘削するための仮設開口部を任意の位置に設けることができず、この点からも掘削効率が低下する。
【0006】
▲3▼上層階のフラットスラブのコンクリートが硬化するのを待って下層階の掘削を行う必要があるため、工期が長期化する。
【0007】
そこで、本発明はかかる従来の課題に鑑みて、水平力を一階床面を構成する梁と連続地中壁とで受け持たせると共に、本設小梁を切梁として兼用することにより、地下部分の架構を施工していく段階でのフラットスラブを不要とし、工期の短縮化および経費削減を図ることができる地下構造物の構築法を提供することを目的とする。
【0008】
かかる目的を達成するために本発明は、連続地中壁内に杭と共に構真柱を打込む地下支柱打設工程と、打設された構真柱の上端部に一階部分の梁部材を取付ける一階梁構築工程と、構築された梁下で地下階の一階高さ分だけ掘削する掘削工程と、掘削により露出した構真柱に掘削した地下階部分の大梁を取付ける大梁構築工程と、構築された大梁の先端部間に本設小梁を切梁兼用として格子状をなすように接続する小梁構築工程とを備え、掘削工程,大梁構築工程および小梁構築工程を繰り返して、地下架構を構築する。
本発明において、梁接合部材を構真柱に載置した後、前記大梁を前記梁接合部材に固定することにより前記大梁を構真柱に対してピン結合状態とすることもできる。
【0009】
【作用】
以上の構成により本発明の地下構造物の構築法にあっては、地下支柱打設工程で打込んだ構真柱の上端部に、一階梁構築工程によって梁部材を取付け、その後、掘削工程,大梁構築工程および小梁構築工程を繰り返して目的の地下階部分まで地下架構を構築することができる。このとき、一階梁構築工程でまず一階の床面を構成する梁部材が構真柱の上端部に取り付けられるので、この梁部材と連続地中壁とで地震等の水平力を支持した状態で地下部分の構築を遂行することができる。そして、前記小梁構築工程で大梁に取付けられる小梁を切梁兼用として用いるようになっているため、各地下階の床部分に作用する土水圧等を前記小梁で支持することができる。従って、目的の地下階部分まで地下架構を構築する際に、各地下階の床面部分は大梁と小梁の組付け状態で工事を進行することができる。このため、各地下階の床面部分が大きく開口され、任意の開口部分から掘削機械とか資材等を下層階に簡単に搬入できると共に、地下階全体が連通状態となることにより、良好な換気および十分な照明を確保することができ、また掘削作業性も向上させることができる。また、下層階の掘削を行う際に、各床面部分へのコンクリートの打設がないことから、工期の大幅な短縮化が達成される。
【0010】
【実施例】
以下、本発明の実施例を添付図面を参照して詳細に説明する。図1から図3は本発明にかかる地下構造物の構築法の一実施例を示し、図1は地下構造物の構築途中を示す平面図、図2は地下構造物の構築途中を示す正面図、図3は構真柱と梁との接続部分を示す拡大正面図である。
【0011】
即ち、本実施例では地下構造物として多層階ビルの地下架構10を例にとって示し、この地下架構10は構真柱12を用いた逆打工法により構築されるようになっている。尚、本実施例では前記地下架構10は、地下一階B1,地下二階B2,地下三階B3を備えて構成される。前記構真柱12は図1に示すように、構築しようとする地下架構10の外周に形成した連続地中壁14の領域内に碁盤の目状に配置され、そして、これら構真柱12は図2に示すように地中にボーリングした削孔16に杭18と共に打設される(地下支柱打設工程)。
【0012】
前記構真柱12の上端部には一階床面20を構成する梁部材としての大梁22が縦横に格子状に接続される(一階梁構築工程)。前記大梁22はH形鋼で形成され、この大梁22が外周の前記連続地中壁14に結合され、この状態で、構築されようとする地下架構10に作用する地震や土水圧等の水平力を、前記大梁22と連続地中壁14とで受け持つようになっている。
【0013】
前記一階の床面20を構成する大梁22が接続された後、この大梁22の間の開口部から掘削機械を搬入し、地下一階B1部分を掘削する(掘削工程)。そして、この掘削により露出した構真柱12に、地下一階床面24を構成する大梁26をX字状に接続し(大梁構築工程)、このX字状の大梁26の先端部間に小梁28を、格子状をなすように接続する(小梁構築工程)。前記大梁26および前記小梁28はそれぞれ大きさの異なるH形鋼で形成され、大梁26の構真柱12への接合は、図3に示すように梁接合部材30を介して行われる。
【0014】
前記梁接合部材30は前記大梁26と同じH形鋼を短く切断して用いられ、それぞれの梁接合部材30は構真柱12を中心に十字状に配置される。前記梁接合部材30は構真柱12に接合されることなく、いわゆるピン構造として構成される。また、下方のフランジ30aと構真柱12との間には、三角状の補強板32が取付けられてこの上に梁接合部材30が載置され、これにより大梁26の荷重が支持される。そして、前記梁接合部材30を構真柱12に載置した後、前記大梁26のフランジ26aおよびウエブ26bは、梁接合部材30のフランジ30aおよびウエブ30bに添え板34を介してボルト,ナットで固定される。
【0015】
前記大梁26の端部は図3に示したように端板36が固設されて、この端板36の下端部に閉塞断面の取付台38がボルト,ナットで固定される。そして、この取付台38の上側に前記小梁28が載置された状態で、小梁28が取付台38にボルト,ナットで固定される。尚、前記大梁26と小梁28との接続部分の他の実施例として図4に示すように、前記端板36および取付台38を設けることなく、小梁28から側方にブラケット40を突設し、このブラケット40を大梁26のウエブ26bにボルト,ナットで固定してもよい。
【0016】
そして、格子状に配置された前記小梁28の各端部は、地中連続壁14の内側に近接させて、これら小梁28と地中連続壁14との間にグラウト材を注入することなどにより結合し、この小梁28を切梁兼用として用いるようになっている。
【0017】
このようにして、地下一階B1の床面24を構成する大梁26および小梁28の接続が完了すると、小梁28間に形成される開口部から掘削機械を搬入して地下二階B2部分を掘削し(掘削工程)、この地下二階B2部分の構真柱12を露出する。そして、露出した構真柱12には前記地下一階B1の場合と同様に、地下二階B2の床面42を構成する大梁26を接続する(大梁構築工程)と共に、それぞれの大梁26の先端部に小梁28を接続する(小梁構築工程)。尚、地下二階B2の床面42を構成する大梁26にあっても、梁接合部材30を介して構真柱12にX字状に接続されるのは勿論のこと、この梁接合部材30も上記と同様にして、補強板32を介して構真柱12に載置される。また、前記床面42を構成する小梁28は同様に切梁兼用として用いられる。
【0018】
一方、地下二階B2の床面42を構成する大梁26および小梁28の接続が完了すると、同様にして地下三階B3部分を掘削するのであるが、この地下三階B3の床面44の下方に基礎および地中梁48を構築する。その後、各地下階の構真柱12の外周に配筋および型枠を配してコンクリート打設することにより鉄骨鉄筋コンクリート柱50を構築すると共に、大梁26,小梁28の上側に床スラブを敷設してコンクリートを打設することにより床面24,42,44を構築し、また、連続地中壁14の内周に鉄筋コンクリートによって外周壁52を構築する。尚、この外周壁52には前記小梁28の端部が埋設される。
【0019】
以上の構築法により構築された地下架構10では、地中に打設された構真柱12の上端部に一階の床面20を構成する大梁22を接続した後、地下一階B1,地下二階B2,地下三階B3を地下階毎に掘削しつつ、露出した構真柱12に大梁26および小梁28を接続することにより、地下架構10を構築することができる。このとき、前記小梁28の端部は外周の連続地中壁14に接続されて、この小梁28を切梁兼用として用いるようになっているため、土水圧等は小梁28で支持することができる。
【0020】
従って、目的の地下階部分まで地下架構10を構築する際に、各地下階の床面24,42,44部分は大梁26と小梁28の組付け状態で工事を進行することができる。このため、各地下階の床面24,42,44部分が格子状に組み合わされた小梁28間で大きく開口され、任意の開口部分から掘削機械とか資材等を下層階に簡単に搬入できると共に、地下階全体が連通状態となることにより、良好な換気と十分な照明とを確保できる。また、本実施例では下層階の掘削を行う際に、フラットスラブ工法のように各床面部分へのコンクリートの打設を行う必要がなく、従って、打設したコンクリートの硬化を待つ必要がないことから工期が大幅に短縮化される。
【0021】
ところで、本実施例では格子状に組み合わされた前記小梁28は、X字状に配置された大梁26を介して構真柱12に支持され、この大梁26がフラットスラブのいわゆるキャピタルと同様に機能して十分な支持力を発揮するようになっている。また、前記大梁26は梁接合部材30を介して構真柱12に載置され、これにより大梁26は構真柱12に対してピン結合状態となり、小梁28に入力された水平力を当該接合部分で逃がすことができる。
【0022】
また、本実施例ではフラットスラブに代えて小梁28で土水圧等を受け持つことができるため、各床面24,42,44を構築する際にこれら大梁26および小梁28の上側に打設されるスラブコンクリートの肉厚を大幅に薄肉化することができる。
【0023】
図5には、図3に示した梁接合部材30を介しての、大梁26の構真柱12への取付部分の変形例が示されている。上記実施例では、構真柱12に接合した補強板32上に梁接合部材30を載置し、このようにして構真柱12に支持させた梁接合部材30のフランジ30a及びウエブ30bに大梁26のフランジ26a及びウエブ26bをボルト,ナットで接合して、当該大梁26を構真柱12に対してピン構造で載置するように構成したが、図5の実施例では、さらに梁接合部材30と大梁26との下フランジ26d,30d同士の接合をも省略して、接合作業の省力化を図っている。さらに梁接合部材30と大梁26とのウエブ26b,30b同士の結合強度を確保できる場合には、これらの上フランジ26c,30c同士の接合を省略しても良い。いずれの場合にあっても、梁接合部材30及び補強板32を介して大梁26を構真柱12にピン構造で載置できることはもちろんである。
【0024】
図6には、大梁26の配置の変形例が示されている。上記実施例にあっては、構真柱12と、小梁28相互の接合部とを連結するX字状に大梁26を配置した例を示したが、小梁28の強度が十分な場合には図示するように、小梁28の中途部と構真柱12とを連結するように十字状に大梁26を配置しても良い。またさらに、小梁28の強度が十分であれば、図に破線で示したように、十字のうちの2本を残し、他の一方向の大梁26を省略する構成としても良い。この場合における小梁28相互の連結構造としては、図5のA部を拡大して示した図7のような構造とすることができる。図7(a)に示したものは、小梁28が、中空角形材を2本併設して構成された場合であり、これら中空角形材の小梁28を互いに直交させて配置し、両者をボルト,ナットで接合するようにしている。また、図7(b)に示したものは、一方の小梁28aがH型鋼であり、これと直交配置される小梁28cが、中空角形材である場合であり、H型鋼の小梁28aのウエブ28bを貫通するボルトにナットを螺着させて、中空角形材の小梁28cをH型鋼の小梁28aに一括して接合するようにしている。
【0025】
これらの実施例にあっても、上記実施例と同様な作用・効果を奏することはもちろんである。
【0026】
【発明の効果】
以上説明したように本発明の地下構造物の構築法にあっては、一階梁構築工程でまず一階の床面を構成する梁部材が構真柱の上端部に取り付けられるので、この梁部材と連続地中壁とで地震等の水平力を支持した状態で、地下部分の構築を安全に遂行することができる。
【0027】
また、小梁構築工程で大梁に取付けられる小梁を切梁兼用として用いるようになっているため、各地下階の床部分に作用する土水圧等を前記小梁で支持させることができる。このため、目的の地下階部分まで地下架構を構築する際に、各地下階の床面部分は大梁と小梁の組付け状態で工事を進行することができるため、各地下階の床面部分を全体に亘って大きく開口できる。従って、任意の開口部分から掘削機械とか資材等を下層階に簡単に搬入できることから掘削効率を著しく向上すると共に、地下階全体が連通状態となって良好な換気および十分な照明を確保することができ、また掘削作業性も向上させることができる。
【0028】
更に、下層階の掘削を行う際に、各床面部分へのコンクリート打設の必要性がなくなることから、工期の大幅な短縮化を達成することができる。また、各地下階の床面荷重を前記大梁および小梁で支持することができるため、最終的に床面に打設されるスラブコンクリートの肉厚を薄肉化して、床面の軽量化および後打ちコンクリート量を削減することができるという各種優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかる地下構造物の一実施例の構築途中を示す平面図である。
【図2】本発明にかかる地下構造物の一実施例の構築途中を示す正面図である。
【図3】本発明の地下構造物の構築法を用いた構真柱と梁との接続部分の一実施例を示す拡大正面図である。
【図4】本発明の他の実施例を示す大梁と小梁との接続部分の要部構成図である。
【図5】図3で示した接続部分の変形例を示す拡大正面図である。
【図6】大梁の配置の変形例を示す平面図である。
【図7】図6のA部拡大正面図である。
【符号の説明】
10 地下架構(地下構造物) 12 構真柱
14 連続地中壁 18 杭
20 一階床面 22 大梁(梁部材)
24 地下一階床面 26 大梁
28 小梁 30 梁接合部材
42 地下二階床面 44 地下三階床面
[0001]
[Industrial application fields]
The present invention relates to a method for constructing an underground structure constructed using a structural pillar that is driven into the ground.
[0002]
[Prior art]
In constructing underground structures such as multi-story buildings, a reverse driving method using a structural pillar is adopted. When performing this reverse driving method, a flat slab method (see Japanese Patent Laid-Open Nos. 61-261556 and 3-72119) may be used in consideration of workability, labor saving, temporary saving, and the like. . That is, in the flat slab construction method, the floor is constructed by placing concrete on the bottom portion of the excavated ground while excavating the ground for each level of the underground floor without using beams.
[0003]
[Problems to be solved by the invention]
However, the reverse hammering method using the conventional flat slab method has the following problems.
[0004]
(1) Since there is a flat slab on the upper floor when excavating to the lower floor, this flat slab interferes with the excavation efficiency, and it is necessary to provide ventilation and lighting equipment for each slab. is there.
[0005]
(2) Since horizontal force such as earth and water pressure is received by the flat slab, a temporary opening for excavating the lower floor formed in the flat slab cannot be provided at an arbitrary position. Drilling efficiency is reduced.
[0006]
(3) Since it is necessary to excavate the lower floors after the concrete of the flat slabs on the upper floors has hardened, the construction period will be prolonged.
[0007]
Therefore, in view of such conventional problems, the present invention allows the horizontal force to be received by the beam constituting the first floor and the continuous underground wall, and by combining the main beam as a cut beam, An object of the present invention is to provide a construction method of an underground structure that eliminates the need for a flat slab at the stage of constructing a partial frame, shortens the construction period, and reduces costs.
[0008]
In order to achieve such an object, the present invention provides an underground strut placing step of driving a structural pillar with a pile into a continuous underground wall, and a beam member of the first floor portion at the upper end of the constructed structural pillar. The first floor beam installation process to be installed, the excavation process for excavating the underground floor by the height of the first floor under the constructed beam, and the large beam construction process for attaching the large beam of the underground floor part excavated to the structural pillar exposed by excavation , and a small beam constructing step to connect this設小beam between the tip portion of the girder which is constructed so as to form a grid pattern as Setsuhari combined, the excavation process, by repeating the girder construction process and the beams constructing step Build an underground frame.
In the present invention, after the beam connecting member is placed on the beam column, the beam is fixed to the beam bonding member so that the beam can be in a pin-coupled state to the beam column.
[0009]
[Action]
In the construction method of the underground structure of the present invention with the above configuration, the beam member is attached to the upper end portion of the structural pillar driven in the underground strut placing process by the first floor beam construction process, and then the excavation process , It is possible to build the underground frame to the target basement by repeating the large beam construction process and the small beam construction process. At this time, in the first floor beam construction process, first, the beam member that constitutes the floor surface of the first floor is attached to the upper end of the structural pillar, so that horizontal force such as earthquake was supported by this beam member and the continuous underground wall. Underground conditions can be completed. And since the small beam attached to a large beam in the said small beam construction process is used also as a cutting beam, the earth-and-water pressure etc. which act on the floor part of each underground floor can be supported by the said small beam. Therefore, when the underground structure is constructed up to the target basement part, the construction can be performed in the state where the floor surface part of each basement is assembled with a large beam and a small beam. For this reason, the floor portion of each basement floor is greatly opened, and excavating machines and materials can be easily carried into the lower floor from any opening portion. Sufficient lighting can be ensured and excavation workability can be improved. In addition, when excavating the lower floors, since there is no concrete placement on each floor surface part, the construction period can be greatly shortened.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 show an embodiment of an underground structure construction method according to the present invention, FIG. 1 is a plan view showing the construction of the underground structure, and FIG. 2 is a front view showing the construction of the underground structure. FIG. 3 is an enlarged front view showing a connecting portion between the structural pillar and the beam.
[0011]
That is, in this embodiment, an underground structure 10 of a multi-story building is shown as an example of an underground structure, and this underground structure 10 is constructed by a reverse driving method using a structural pillar 12. In this embodiment, the underground frame 10 includes a first basement B1, a second basement B2, and a third basement B3. As shown in FIG. 1, the structural pillars 12 are arranged in a grid pattern in the area of the continuous underground wall 14 formed on the outer periphery of the underground structure 10 to be constructed. As shown in FIG. 2, the piles 18 are driven together with the piles 18 in the ground (underground strut placing process).
[0012]
A large beam 22 as a beam member constituting the first floor 20 is connected to the upper end of the structural pillar 12 in a grid pattern in the vertical and horizontal directions (first floor beam construction process). The girder 22 is formed of H-shaped steel, and the girder 22 is coupled to the continuous underground wall 14 on the outer periphery, and in this state, horizontal forces such as earthquakes and soil pressure acting on the underground frame 10 to be constructed. Is supported by the girder 22 and the continuous underground wall 14.
[0013]
After the girder 22 constituting the floor surface 20 on the first floor is connected, the excavating machine is carried from the opening between the girder 22 to excavate the B1 portion of the underground first floor (excavation process). Then, a large beam 26 constituting the first-floor floor 24 is connected to the frame pillar 12 exposed by the excavation in an X shape (large beam construction process), and a small gap is formed between the ends of the X-shaped large beam 26. The beams 28 are connected so as to form a lattice (small beam construction process). The large beam 26 and the small beam 28 are formed of H-shaped steels having different sizes, and the large beam 26 is joined to the structural pillar 12 via a beam joining member 30 as shown in FIG.
[0014]
The beam joining member 30 is used by cutting the same H-shaped steel as the large beam 26 into a short shape, and each beam joining member 30 is arranged in a cross shape with the structural pillar 12 as a center. The beam joining member 30 is configured as a so-called pin structure without being joined to the structural pillar 12. Further, a triangular reinforcing plate 32 is attached between the lower flange 30a and the structural pillar 12, and the beam joining member 30 is placed thereon, whereby the load of the large beam 26 is supported. Then, after the beam connecting member 30 is placed on the column 12, the flange 26 a and the web 26 b of the large beam 26 are connected to the flange 30 a and the web 30 b of the beam connecting member 30 with bolts and nuts via an attachment plate 34. Fixed.
[0015]
As shown in FIG. 3, an end plate 36 is fixed to the end portion of the large beam 26, and a mounting base 38 having a closed cross section is fixed to the lower end portion of the end plate 36 with bolts and nuts. Then, in a state where the small beam 28 is placed on the upper side of the mounting base 38, the small beam 28 is fixed to the mounting base 38 with bolts and nuts. As another embodiment of the connecting portion between the large beam 26 and the small beam 28, as shown in FIG. 4, the bracket 40 protrudes laterally from the small beam 28 without providing the end plate 36 and the mounting base 38. The bracket 40 may be fixed to the web 26b of the large beam 26 with bolts and nuts.
[0016]
And each end part of the said small beam 28 arrange | positioned at a grid | lattice is brought close to the inner side of the underground continuous wall 14, and grout material is inject | poured between these small beams 28 and the underground continuous wall 14. The small beam 28 is also used as a cutting beam.
[0017]
In this way, when the connection of the large beam 26 and the small beam 28 constituting the floor surface 24 of the first basement floor B1 is completed, the excavating machine is carried in from the opening formed between the small beams 28, and the second floor B2 portion is Excavation (excavation process) exposes the structural pillar 12 in the B2 portion of the second basement. Then, similarly to the case of the first basement floor B1, the exposed beam is connected to the large beams 26 constituting the floor surface 42 of the second basement floor B2 (large beam construction process), and the front ends of the respective large beams 26 The small beam 28 is connected to (small beam construction process). In addition, even if it exists in the large beam 26 which comprises the floor 42 of the second basement B2, this beam joining member 30 is connected to the frame pillar 12 via the beam joining member 30 in an X shape. In the same manner as described above, it is placed on the frame pillar 12 via the reinforcing plate 32. Similarly, the small beam 28 constituting the floor surface 42 is also used as a cutting beam.
[0018]
On the other hand, when the connection of the large beam 26 and the small beam 28 constituting the floor surface 42 of the second basement floor B2 is completed, the third basement B3 portion is excavated in the same manner, but below the floor surface 44 of the third basement floor B3. The foundation and underground beam 48 are constructed. After that, a steel reinforced concrete column 50 is constructed by placing a reinforcement and a formwork on the outer periphery of the structural pillar 12 of each basement floor and placing the concrete, and laying a floor slab on the upper side of the large beam 26 and the small beam 28. Then, the floors 24, 42, 44 are constructed by placing concrete, and the outer peripheral wall 52 is constructed of reinforced concrete on the inner periphery of the continuous underground wall 14. Note that the end of the small beam 28 is embedded in the outer peripheral wall 52.
[0019]
In the underground structure 10 constructed by the above construction method, after connecting the girder 22 constituting the floor surface 20 of the first floor to the upper end portion of the structural pillar 12 placed in the ground, the first underground B1, the underground The underground frame 10 can be constructed by connecting the large beam 26 and the small beam 28 to the exposed structure pillar 12 while excavating the second floor B2 and the third underground floor B3 for each underground floor. At this time, since the end of the small beam 28 is connected to the outer peripheral underground wall 14 and the small beam 28 is used also as a cutting beam, the earth pressure is supported by the small beam 28. be able to.
[0020]
Therefore, when the underground structure 10 is constructed up to the target basement, the floors 24, 42, and 44 of each basement can be worked with the large beam 26 and the small beam 28 assembled. For this reason, the floors 24, 42, and 44 of each basement floor are greatly opened between the small beams 28 combined in a lattice pattern, and excavating machines and materials can be easily carried into the lower floor from any opening. Good ventilation and sufficient lighting can be secured by connecting the entire basement floor. Further, in the present embodiment, when excavating the lower floor, it is not necessary to place concrete on each floor surface as in the flat slab method, and therefore it is not necessary to wait for hardening of the placed concrete. Therefore, the construction period is greatly shortened.
[0021]
By the way, in the present embodiment, the small beams 28 combined in a lattice shape are supported by the frame pillar 12 via a large beam 26 arranged in an X shape, and the large beam 26 is similar to a so-called capital of a flat slab. It functions and exhibits sufficient support. Further, the large beam 26 is placed on the frame pillar 12 via the beam connecting member 30, whereby the large beam 26 is in a pin-coupled state with respect to the frame column 12, and the horizontal force input to the small beam 28 is applied to the beam. It can escape at the joint.
[0022]
Further, in this embodiment, since it is possible to handle the soil water pressure or the like with the small beams 28 instead of the flat slabs, when the floor surfaces 24, 42 and 44 are constructed, they are placed above the large beams 26 and the small beams 28. The thickness of the slab concrete can be significantly reduced.
[0023]
FIG. 5 shows a modification of the attachment portion of the large beam 26 to the construction pillar 12 via the beam joining member 30 shown in FIG. In the above embodiment, the beam joining member 30 is placed on the reinforcing plate 32 joined to the structural pillar 12, and the large beam is applied to the flange 30 a and the web 30 b of the beam joining member 30 supported by the structural pillar 12 in this way. 26, the flange 26a and the web 26b are joined with bolts and nuts, and the large beam 26 is mounted on the frame pillar 12 in a pin structure. In the embodiment of FIG. The joining of the lower flanges 26d and 30d of the 30 and the large beam 26 is also omitted to save labor in the joining work. Further, when the coupling strength between the webs 26b and 30b of the beam joining member 30 and the large beam 26 can be ensured, the joining of the upper flanges 26c and 30c may be omitted. In any case, it is a matter of course that the large beam 26 can be mounted on the frame pillar 12 with a pin structure via the beam joining member 30 and the reinforcing plate 32.
[0024]
FIG. 6 shows a modified example of the arrangement of the large beams 26. In the above embodiment, the example in which the large beam 26 is arranged in an X shape that connects the structural pillar 12 and the joint portion between the small beams 28 is shown. However, when the strength of the small beam 28 is sufficient As shown in the figure, the large beam 26 may be arranged in a cross shape so as to connect the midway part of the small beam 28 and the structural pillar 12. Furthermore, if the strength of the small beam 28 is sufficient, as shown by a broken line in the figure, two of the crosses may be left and the other one-way large beam 26 may be omitted. In this case, the connection structure between the small beams 28 can be a structure as shown in FIG. 7 in which the portion A in FIG. 5 is enlarged. FIG. 7 (a) shows a case where the small beam 28 is constituted by two hollow square members arranged side by side. These hollow square member small beams 28 are arranged so as to be orthogonal to each other. They are joined with bolts and nuts. FIG. 7B shows the case where one of the small beams 28a is H-shaped steel, and the small beams 28c arranged orthogonally to the small beams 28a are hollow rectangular materials. A nut is screwed onto a bolt that penetrates the web 28b, and the small rectangular beam 28c is joined to the small beam 28a of the H-shaped steel in a lump.
[0025]
Even in these embodiments, it is a matter of course that the same operations and effects as the above-described embodiments can be achieved.
[0026]
【The invention's effect】
As described above, in the construction method of an underground structure according to the present invention, the beam member constituting the floor surface of the first floor is first attached to the upper end portion of the construction column in the first floor beam construction process. Construction of the underground part can be performed safely with the member and the continuous underground wall supporting a horizontal force such as an earthquake.
[0027]
In addition, since the small beam attached to the large beam in the small beam construction process is also used as a cutting beam, the soil pressure acting on the floor portion of each underground floor can be supported by the small beam. For this reason, when constructing an underground structure up to the target basement, the floor of each basement can be constructed with large beams and small beams assembled. Can be greatly opened throughout. Therefore, excavation machines and materials can be easily carried into the lower floor from any opening, so that excavation efficiency can be remarkably improved, and the entire basement can be connected to ensure good ventilation and sufficient lighting. And excavation workability can be improved.
[0028]
Furthermore, when excavating the lower floors, the necessity of placing concrete on each floor surface portion is eliminated, so that the construction period can be greatly shortened. In addition, since the floor load of each basement can be supported by the large beams and small beams, the thickness of the slab concrete that is finally placed on the floor surface is reduced to reduce the weight of the floor surface. Various excellent effects that the amount of cast concrete can be reduced are exhibited.
[Brief description of the drawings]
FIG. 1 is a plan view showing the construction of an embodiment of an underground structure according to the present invention.
FIG. 2 is a front view showing the construction of an embodiment of an underground structure according to the present invention.
FIG. 3 is an enlarged front view showing an embodiment of a connecting portion between a structural pillar and a beam using the underground structure building method of the present invention.
FIG. 4 is a main part configuration diagram of a connecting portion between a large beam and a small beam according to another embodiment of the present invention.
FIG. 5 is an enlarged front view showing a modified example of the connection portion shown in FIG. 3;
FIG. 6 is a plan view showing a modified example of the arrangement of the large beams.
7 is an enlarged front view of a part A in FIG. 6;
[Explanation of symbols]
10 Underground structure (underground structure) 12 True column 14 Continuous underground wall 18 Pile 20 First floor floor 22 Large beam (beam member)
24 Basement 1st Floor 26 Large Beam 28 Small Beam 30 Beam Joint 42 Basement 2nd Floor 44 Basement 3rd Floor

Claims (2)

連続地中壁内に杭と共に構真柱を打込む地下支柱打設工程と、打設された構真柱の上端部に一階部分の梁部材を取付ける一階梁構築工程と、構築された梁下で地下階の一階高さ分だけ掘削する掘削工程と、掘削により露出した構真柱に掘削した地下階部分の大梁を取付ける大梁構築工程と、構築された大梁の先端部間に本設小梁を切梁兼用として格子状をなすように接続する小梁構築工程とを備え、掘削工程,大梁構築工程および小梁構築工程を繰り返して、地下架構を構築することを特徴とする地下構造物の構築法。An underground strut placing process for driving a structural pillar with a pile into a continuous underground wall, and a first floor beam construction process for attaching a beam member of the first floor to the upper end of the constructed structural pillar. a drilling step of drilling a one floor height of the basement floor under the beams, and girders constructing step of attaching the girders of excavated basement portion構真column exposed by excavation, this between the tip portion of the girder which is constructed and a small beam construction process to connect to form a grid pattern of設小beams as Setsuhari combined, the excavation process, by repeating the girder construction process and joists constructing step, characterized by constructing the underground Frame Construction method for underground structures. 梁接合部材を構真柱に載置した後、前記大梁を前記梁接合部材に固定することにより前記大梁を構真柱に対してピン結合状態とすることを特徴とする請求項1に記載の地下構造物の構築法。2. The beam connecting member according to claim 1, wherein after placing the beam joining member on the frame pillar, the large beam is fixed to the beam joining member to bring the large beam into a pinned state with respect to the beam pillar. Construction method for underground structures.
JP32706594A 1994-12-28 1994-12-28 Construction method of underground structure Expired - Fee Related JP3612761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32706594A JP3612761B2 (en) 1994-12-28 1994-12-28 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32706594A JP3612761B2 (en) 1994-12-28 1994-12-28 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JPH08184067A JPH08184067A (en) 1996-07-16
JP3612761B2 true JP3612761B2 (en) 2005-01-19

Family

ID=18194911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32706594A Expired - Fee Related JP3612761B2 (en) 1994-12-28 1994-12-28 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP3612761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226123B2 (en) * 2013-09-11 2017-11-08 株式会社竹中工務店 Building construction method

Also Published As

Publication number Publication date
JPH08184067A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
KR20090094971A (en) Under ground top-down method
KR100313720B1 (en) Composite Underground Structure Construction Method
KR20110122310A (en) Construction method for basement structure without temporary structure
KR20200104534A (en) Method for constructing underground structure busing PC integrating method without support
JP2004263467A (en) Reconstruction method using existing underground skeleton
JP3612761B2 (en) Construction method of underground structure
JPS6137692Y2 (en)
JP3644606B2 (en) Installation method of formwork support in reverse placement method
JP3586121B2 (en) Mixed structure of reinforced concrete column and steel beam and its construction method
JP2004339728A (en) Recyclable continuous footing and recycling method for continuous footing
JP2900840B2 (en) How to build underground structures
KR102523155B1 (en) Connecting structure of middle girder and construction method thereof
JP2959436B2 (en) How to build underground structures
KR101256311B1 (en) Structual deepening method
JP2894217B2 (en) Building structural frame
JP3341034B2 (en) How to build underground structures
JP2763488B2 (en) Prefabricated pillar and inverted ramen prefabricated construction method
JPH08177068A (en) Construction of underground structure
JPS63277342A (en) Reverse execution of underground story
KR20220094841A (en) Middle connecting structure of steel pilar and construction method thereof
JP2940451B2 (en) How to build underground structures
JP2605563B2 (en) Basement structure of building
JP3061934B2 (en) Retaining wall construction method
KR20230021231A (en) Retaining wall structure using rectangular wall-type piles
KR20240023364A (en) Floor support system for top-down mehtod without soil pressure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees