JP3609476B2 - Vehicle driving force transmission device - Google Patents

Vehicle driving force transmission device Download PDF

Info

Publication number
JP3609476B2
JP3609476B2 JP04068895A JP4068895A JP3609476B2 JP 3609476 B2 JP3609476 B2 JP 3609476B2 JP 04068895 A JP04068895 A JP 04068895A JP 4068895 A JP4068895 A JP 4068895A JP 3609476 B2 JP3609476 B2 JP 3609476B2
Authority
JP
Japan
Prior art keywords
drive
retainer
vehicle
driven member
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04068895A
Other languages
Japanese (ja)
Other versions
JPH08230506A (en
Inventor
健一郎 伊藤
勲 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP04068895A priority Critical patent/JP3609476B2/en
Priority to US08/592,880 priority patent/US5732807A/en
Priority to DE19602685A priority patent/DE19602685A1/en
Publication of JPH08230506A publication Critical patent/JPH08230506A/en
Application granted granted Critical
Publication of JP3609476B2 publication Critical patent/JP3609476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、4輪駆動車のディファレンシャルと車輪間の駆動経路上において、駆動力の伝達と遮断を切換える駆動力伝達装置に関する。
【0002】
【従来の技術】
パートタイム式の4輪駆動車には、後車輪を常時駆動すると共に、前車輪の車軸とホイールハブとの間にハブクラッチ装置を組込み、そのハブクラッチ装置によりホイールハブへの駆動力の伝達と遮断を行なって、4輪駆動と2輪駆動を切換えるようにしたものがある。
【0003】
従来のハブクラッチ装置には、駆動の切換え方法として手動式と自動式のものがあるが、いずれも車軸とホイールハブを単に結合するか、切り離す機能しかもたされていない。
【0004】
【発明が解決しようとする課題】
すなわち、従来のハブクラッチ装置は、車軸の動きに連動するカム機構等の作用によって車軸に嵌合したスライドギヤを移動させ、そのスライドギヤをホイールハブに噛み合せて、車軸とホイールハブを断接するようにしているが、ハブクラッチ装置が係合した時は、車軸とホイールハブが直結した4輪駆動状態になるため、その状態でタイコーナ等を旋回した際、前車輪と後車輪の間に生じる旋回距離の差によってタイトコーナブレーキ現象を起こし、前後輪間にスリップが生じ、未舗装道路や滑りやすい道路でしか走行できない。
【0005】
このため、舗装道路等を走行する場合は、運転物がその都度ハブクラッチ装置の係合を切換えて前後輪間の連結を切離す必要があり、その駆動の切換え操作に手間がかかる問題があった。
【0006】
また、車軸とホイールハブの間にハブクラッチ装置を組込んだ構造は、車両の組立て工程において、ディファレンシャルとハブクラッチ装置が別部品となり、車両の組立て作業に手間と時間がかかるという問題がある。
【0007】
そこで、この発明の課題は、2駆走行時は前輪駆動系を切離し、4駆走行時には4輪を直結状態にして走行することができ、タイトコーナブレーキ現象の発生がなく、しかもディファレンシャルとのユニット化によって車両組立ての能率向上を図ることができる車両の駆動力伝達装置を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、車両のディファレンシャルと車輪を連結する駆動軸を軸方向に分離し、この分離部に2駆走行と4駆走行の切換えを外部からの遠隔操作によって行なうクラッチ装置を設け、このクラッチ装置をデフカバー内に収納し、前記クラッチ装置が、ディファレンシャル側に固定した駆動部材と、車輪側の駆動軸に固定され前記駆動部材に回転可能に嵌合する従動部材と、駆動部材と従動部材の間に組込まれ、駆動部材と従動部材が正逆方向に相対回転したとき両部材に係合する複数の係合子と、駆動部材と従動部材の間に組込まれ、駆動部材と相対回転して各係合子を係合作動位置に移動させる保持器と、この保持器に連結され、各係合子が係合作動位置に移動するように保持器を一方向に相対回転させる回転力付与手段と、外部からの遠隔操作により保持器と従動部材を切離し自在に結合するロック手段とで形成されている車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部に対して接近離反する結合部材と、駆動軸に軸方向への移動が自在となるよう嵌挿したスライダーを軸方向に一体動するよう結合し、スライダーに連結した操作用フォークで該スライダーを軸方向に移動させるように形成した構成としたものである。
【0010】
請求項2は、請求項1と同じ車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部材に対して接近離反する結合部材と、駆動軸に軸方向への移動が自在となるよう嵌挿したスライダーを軸方向に一体動するよう結合し、スライダーに連結した圧力流体駆動源で該スライダーを軸方向に移動させるように形成したものである。
【0011】
請求項3は、請求項1と同じ車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部に対して接近離反する結合部材と、その結合部材とワイヤケーブルを連結してワイヤケーブルに加えた操作力を結合部材の接近離反の動きに変換する操作部材とから形成したものである。
【0012】
【作用】
上記の構造においては、従動部材と保持器を切離した状態で車両が走行すると、回転力付与手段の作用により係合子が駆動部材と従動部材間の係合作動位置に移動する。
【0013】
この場合、通常の走行状態では、車輪と一体で回転する従動部材が、駆動部材に対して同等以上の回転数で回転するため、係合子に対してフリーランニング状態となる。これにより、トルク伝達がなされず、トランスファーから車軸までの駆動系が停止する。
【0014】
一方、ロック手段により従動部材と保持器を結合すると、保持器の回転によって係合子が係合位置に強制的に移動するため、従動部材と駆動部材が一体に回転し、前後輪が直結した4輪駆動状態になる。
【0015】
また、クラッチ装置は、ディファレンシャルのカバー内に収納したので、ディファレンシャルとのユニット化が可能になり、車両組立作業の簡略化が図れる。
【0016】
【実施例】
以下、この発明の実施例を添付図面に基づいて説明する。
【0017】
図1は、後輪駆動を主とする4輪駆動車の車輪駆動系を示したものであり、同図において、1はフロンドディファレンシャル、2は前車輪、3は後車輪を示している。
【0018】
フロントディファレンシャル1は、デフカバー4の内部に、リングギヤ5とドライブピニオン6を介してエンジン7とトランスファー8を介して連結するデフケース9を回転自在に支持し、そのデフケース9と共回り可能に連結したピニオンギヤ10、10に一対のサイドギヤ11、11を噛み合せて構成され、この各サイドギヤ11、11に、駆動軸としての車軸12、13が連結されている。
【0019】
図1と図2の如く、上記車輪12、13のうち、短尺側の車輪13は、等速ジョイント14を介して前車輪2に連結されている。
【0020】
一方、長尺側の車輪12は、その車軸12が挿通するデフカバー4の内部において、途中で駆動軸12aと12bに軸方向に同軸心状の配置となるよう2つに分離され、この分離部分にクラッチ装置Aがデフカバー4内に納まる状態で組込まれ、外側の駆動軸12bは等速ジョイント14を介して前車輪2に連結されている。
【0021】
図3乃至図10は、クラッチ装置Aの第1の例を示し、分離された車輪側の駆動軸12bにスプライン15を介して従動部材となる外輪16を連結し、ディファレンシャル側の駆動軸12aにスプライン17を介して駆動部材となる内輪18を連結し、上記外輪16を軸受19とスリーブ20を用いてデフカバー4で回動自在に支持し、この外輪16の内部に内輪18が回転自在に嵌り合っている。
【0022】
上記外輪16の内径面と内輪18の外径面には、図7及び図9に示すように、同芯の円筒面21、22が形成され、その両円筒面21、22の間に大径保持器23と小径保持器24が組込まれている。
【0023】
上記大径保持器23は、図4に示すように、後端部に延長腕25が一体に形成され、その延長腕25が軸受26の案内により外輪16と内輪18に対して回転自在に支持されている。
【0024】
一方、小径保持器24は、前端部に、内径側に向かって屈曲する屈曲部27が形成され、その屈曲部27が内輪18の端面にすべり回転可能に接触しており、この屈曲部27と止め輪28との間に、皿バネから成る圧着バネ29が組込まれている。この圧着バネ29は、屈曲部27を内輪18の端面に向かって圧着しており、その押圧力によって生じる摩擦力により小径保持器24を内輪18に圧着している。
【0025】
また、上記大径保持器23と小径保持器24の周面には、図7及び図9に示すように、径方向に対向して複数のポケット30、31が形成され、その各ポケット30、31に、係合子としてのスプラグ32と、スプラグ32を保持するバネ33とが組込まれている。
【0026】
このスプラグ32は、外径側と内径側に、それぞれ異なった曲率中心をもつ左右対称形の円弧面34と34aが形成され、左右の両方向に所定角度傾くと両円筒面21、22と係合し、外輪16と内輪18を一体化する。また、バネ33は、大径保持器33に一端が支持されてスプラグ20を両側から押圧し、各スプラグ32を円筒面21、22と係合する位置に保持している。従って、大径保持器23と小径保持器24及びスプラグ32によって2方向クラッチを形成している。
【0027】
また、上記大径保持器23及び小径保持器24の端部には、それぞれ径方向に貫通するスリット35、36が形成され、そのスリット35、36に、C字形のリング形状をしたスイッチバネ37の両端部が係合している。このスイッチバネ37は、周方向に縮められた状態でセットされ、一端を大径保持器23に、他端を小径保持器24に押し付けて取付けられており、そのバネ力によって両保持器23、24に円周方向の力を与えている。この力により大径保持器23は回転力を受け、上記スイッチバネ37のバネ力により、両保持器23、24とスプラグ32は、回転の一方向の噛み合い位置でスタンバイの状態となっている。上記の構造では、スイッチバネ37が大径保持器23に一方向の回転力を付与する手段を構成する。
【0028】
一方、上記大径保持器23の延長腕25の後端部には、その大径保持器23と外輪16を切離し自在に結合するロック手段38が連結されている。
【0029】
このロック手段38は、図3乃至図6に示すように、外輪16の内径面に、スプライン状の歯形を内周に形成する環状の噛合い部材39を圧入固定し、大径保持器23の延長腕25の端部に、複数の切欠き40が設けられている。
【0030】
駆動軸12aに軸方向への移動と回転が自在となるよう外嵌挿した円筒状スライダー41の先端に環状の結合部材42が外嵌状に固定されている。
【0031】
この結合部材42は、外周に軸方向前方に屈曲するよう設けた複数の突起43が大径保持器23の延長部25に設けた溝40に嵌合しており、この突起43と溝40の案内により大径保持器23と共回り状態で軸方向にスライドする。
【0032】
上記結合部材42の外周に半径方向の外方へ突出する複数の突起44が設けられ、図5(b)の如く、スライダー41を内輪18に接近する前進位置にすると、該突起44は噛合い部材39の歯形凹部45と噛合い、これにより、大径保持器23と外輪16を回転方向に結合一体化する。
【0033】
また、図5(a)の如く、スライダー41を内輪18に対して離反する後退位置に移動させると、結合部材42の突起44は噛合い部材39から離反し、突起44は歯形凹部45から離脱し、大径保持器23と外輪16の回転方向の結合を解くことになる。
【0034】
前記スライダー41には操作用フォーク46が係合している。この操作用フォーク46は、図1のように車両のトランスファー8に接続するアクチェータ等と連結しており、トランスファー8からの遠隔操作によりスライダ41を軸方向に移動させ、結合部材42を噛合い部材39に対して接近離反させるようになっている。
【0035】
図11に示す例は、上記スライダー41の軸方向の移動を、デフカバー4に取付けたエアや油圧のシリンダ51に圧力流体を給排することによって行なうようにしたものであるが、これに代えてソレノイドを用い、スライダー41の移動を電気的な制御によって行なうようにしてもよい。
【0036】
図12(a)、(b)に示す例は、ロック手段38における結合部材42の移動をワイヤケーブル61で行なう構造を示している。
【0037】
この例では、駆動軸12aに軸方向へ移動自在となるよう外嵌挿した円板状スライダー41aに結合部材42を固定し、デフカバー4側に固定する固定ケース62とスライダー41aを軸方向に移動自在となるよう結合し、スライダー41aを回り止状とすると共に、両者の対向面間にスライダー41aを常時内輪18側に押圧するリターンバネ63を縮設し、上記スライダー41aにワイヤケーブル61の先端を結合したものであり、このワイヤケーブル61はトランスファに接続するアクチュエータ等と連結される。
【0038】
上記ワイヤケーブル61を引圧したときは、図12(a)に示すように、スライダー41aはリターンバネ63を圧縮して固定ケース62側に移動し、結合部材42の突起44は噛合い部材39から離反し、外輪16と大径保持器23の結合を解いている。また、ワイヤケーブル61の引圧を解くと、リターンバネ63の押圧力でスライダー41aと一体に結合部材42が内輪18側に接近移動し、外周の突起44が噛合い部材39に係合し、外輪16と大径保持器23を回転方向に結合一体化する。
【0039】
この発明の駆動力伝達装置は上記のような構成であり、次に、この装置を用いた車両の走行状態について説明する。
【0040】
2駆走行モードでは、図5(a)のように、スライダー41を退動させ、結合部材42と噛合い部材39を離反させ、外輪16と大径保持器23を離開した状態におく。
【0041】
この状態で車輌が前進走行すると、大径保持器23は、スイッチバネ37の弾性力によって内輪18に対し相対回転し、図9に示すようにスプラグ32を前進方向の係合作動位置へ移動させる。
【0042】
このようにスプラグ32が係合作動位置に移行した状態では、車軸の回転数より上回った回転が外輪16に与えられた場合、スプラグ32は係合状態を解除し、外輪16はフリーランニングすることができる。このため、トランスファより動力を切離された前輪車軸12は、タイヤからの駆動力によりそれぞれ回される。長尺側の前車輪の駆動側はディファレンシャルを介し、短尺側の駆動軸と反対方向の回転となる。その場合、リングギヤ5、ピニオンギヤ6、それに連結するトランスファーまでの駆動系は停止する。
【0043】
したがって、前進走行中の静粛性や燃費性能は、従来のマニュアル式や自動式のフリーホイールハブと同レベルに近く維持される。
【0044】
雪道等の摩擦係数の低い路面を4駆走行する場合は、図5(b)のように、スライダー41を前進動させ、結合部材42と噛合い部材39を噛み合せた状態にする。
【0045】
これにより、外輪16と大径保持器23が一体になり、大径保持器23は外輪16と同一方向に回転する。このため、スプラグ32が図9のようにフリーランニングの状態にある場合でも、大径保持器23の回転によってスプラグ32は図10のように傾きを変えて外輪16と内輪18の円筒面21、22に結合し、外輪16のフリーランニングが停止する。したがって、外輪16と駆動軸12aが直結した状態になり、前後輪が直結した4輪駆動状態になる。
【0046】
上記の状態では、4駆走行を2駆走行に切換えるのに車両を後退させる必要がないため、悪路において前後進を切換えて脱出するような場合でも4駆走行状態が維持されることになり、大きな走破力を発揮することができる。
【0047】
また、2駆走行状態で摩擦係数が低く長い登り坂等に停止し、その後4駆走行で発進する場合でも、瞬時に4駆状態に切換り、その切換りにタイムラグがないため、スムーズな発進を行なうことができる。
【0048】
一方、舗装道路等の摩擦係数の高い路面を4駆走行する場合は、図5(a)のようにスライダー41を後退動させ、外輪16と大径保持器23を切離した状態におく。
【0049】
これにより、前進方向において4輪駆動となり、駆動側と従動側の回転差に応じてフリーランニング機能が作動する。
【0050】
すなわち、車両が旋回して蛇角をもつと、前輪と外輪の旋回距離の差により、前輪に連結する外輪16が内輪18よりも速く回転し、外輪16がスプラグ32に対してフリーランニングする。このため、前輪と外輪は切離されて回転し、タイトコーナでのブレーキング現象が生じない。
【0051】
このように、実施例のクラッチ装置では、走行中の刻々と変わる路面の変化に幅広く対応することができ、フルタイムの4輪駆動車と同様に安定した走行を行なうことができる。
【0052】
【発明の効果】
以上のように、この発明によると、駆動軸の分離部に2駆走行と4駆走行を外部からの遠隔操作によって切換えるクラッチ装置を設け、このクラッチ装置をデフケース内に収納したので、ディファレンシャルとクラッチ装置をユニット化でき、車両の組立工程の簡略化が図れる。
【0053】
また、駆動軸の分離部分にクラッチ装置を設けることにより、クラッチ装置の設置スペースの確保が容易になり、ホイールハブの構造を簡略化することができる。
【0054】
更に、クラッチ装置は、係合子の保持器を従動部材に結合部材で切離し自在に結合できるようにしたので、任意にクラッチのフリーランニングを停止させることができ、駆動部材と従動部材間でトルク伝達経路を開放状態と直結状態とに変化させることができ、前後駆動系を切離した状態で2駆走行できると共に、4駆走行時には前後輪を直結することができ、燃費と静粛性に優れ、路面の変化に正確に対応できる4輪走行を実現できる効果がある。
【図面の簡単な説明】
【図1】4輪駆動車の車輪駆動系を示す平面図
【図2】同上における前輪駆動系を示す縦断面図
【図3】同上における駆動力伝達装置の横断平面図
【図4】同上におけるクラッチ装置の拡大断面図
【図5】(a)は同上におけるロック手段の開放状態を示す断面図、(b)は同じくロック状態を示す縦断面図
【図6】ロック手段の要部を示す分解斜視図
【図7】図4矢印VI−VIに沿う断面図
【図8】図4の矢印VII −VII に沿う断面図
【図9】スプラグの前進係合状態とフリーランニング状態を示す断面図
【図10】スプラグの後退係合状態とフリーランニングを停止した状態を示す断面図
【図11】ロック手段の他の例を示す縦断面図
【図12】ロック手段の更に他の例を示す縦断面図
【符号の説明】
1 フロントディファレンシャル
2 前車輪
3 デフカバー
12、13 車軸
12a、12b 駆動軸
16 外輪
18 内輪
21、22 円筒面
23 大径保持器
24 小径保持器
25 延長腕
29 圧着バネ
30、31 ポケット
32 スプラグ
37 スイッチバネ
38 ロック手段
39 噛合い部材
40 切欠き
41 スライダー
42 結合部材
43 突起
44 溝
45 歯形凹部
[0001]
[Industrial application fields]
The present invention relates to a driving force transmission device that switches between transmission and interruption of driving force on a driving path between a differential and wheels of a four-wheel drive vehicle.
[0002]
[Prior art]
In a part-time four-wheel drive vehicle, the rear wheel is always driven, and a hub clutch device is incorporated between the front wheel axle and the wheel hub, and the hub clutch device transmits the driving force to the wheel hub. There is a type of switching between four-wheel drive and two-wheel drive by blocking.
[0003]
Conventional hub clutch devices include manual and automatic drive switching methods, but none of them has a function of simply connecting or disconnecting an axle and a wheel hub.
[0004]
[Problems to be solved by the invention]
In other words, the conventional hub clutch device moves the slide gear fitted to the axle by the action of a cam mechanism or the like interlocking with the movement of the axle, and engages the slide gear with the wheel hub to connect and disconnect the axle and the wheel hub. However, when the hub clutch device is engaged, it will be in a four-wheel drive state in which the axle and the wheel hub are directly connected. Therefore, when turning the tie corner etc. in that state, the turning that occurs between the front wheel and the rear wheel The tight corner braking phenomenon occurs due to the difference in distance, slipping occurs between the front and rear wheels, and it can only run on unpaved and slippery roads.
[0005]
For this reason, when traveling on a paved road or the like, it is necessary for the driver to switch the engagement of the hub clutch device each time to disconnect the connection between the front and rear wheels. It was.
[0006]
Further, the structure in which the hub clutch device is incorporated between the axle and the wheel hub has a problem that the differential and the hub clutch device are separate parts in the vehicle assembly process, and it takes time and labor to assemble the vehicle.
[0007]
Therefore, the problem of the present invention is that the front wheel drive system can be disconnected during 2WD driving, and the 4 wheels can be driven directly connected during 4WD driving without causing a tight corner braking phenomenon and a unit with a differential. An object of the present invention is to provide a driving force transmission device for a vehicle that can improve the efficiency of vehicle assembly.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention separates the drive shaft that connects the vehicle differential and the wheel in the axial direction, and the separation portion is switched between two-wheel drive and four-wheel drive by remote control from the outside. A clutch device is provided, the clutch device is housed in a differential cover, and the clutch device is fixed to a differential side, and a driven member is fixed to a wheel-side drive shaft and is rotatably fitted to the drive member. And a plurality of engagement elements that are assembled between the drive member and the driven member, and engage with both members when the drive member and the driven member are relatively rotated in the forward and reverse directions, and are assembled between the drive member and the driven member. A cage that rotates relative to the drive member to move each engagement element to the engagement operation position, and a relative rotation in one direction so that each engagement element moves to the engagement operation position. Let A rotational force providing means, the driving force transmitting apparatus for a vehicle is formed with a locking means for detachably coupling disconnect the cage and the driven member by remote control from outside, the locking means, the cage and the driven member A coupling member that engages with one side and moves toward and away from the meshing portion provided on the other side and a slider that is fitted to the drive shaft so as to be movable in the axial direction are coupled to move integrally in the axial direction. The operation fork connected to the slider is configured to move the slider in the axial direction .
[0010]
According to a second aspect of the present invention, in the vehicle driving force transmission device as in the first aspect, the locking member engages with one of the cage and the driven member, and approaches and separates from a meshing member provided on the other. And a slider that is inserted into the drive shaft so as to be freely movable in the axial direction is coupled so as to move integrally in the axial direction, and the slider is moved in the axial direction by a pressure fluid drive source connected to the slider. It is a thing.
[0011]
According to a third aspect of the present invention, in the driving force transmission device for a vehicle as in the first aspect, the locking member engages with one of the retainer and the driven member, and approaches and separates from a meshing portion provided on the other. And an operating member that connects the connecting member and the wire cable to convert an operating force applied to the wire cable into an approaching / separating movement of the connecting member.
[0012]
[Action]
In the above structure, when the vehicle travels in a state where the driven member and the cage are separated from each other, the engagement element moves to the engagement operation position between the driving member and the driven member by the action of the rotational force applying means.
[0013]
In this case, in the normal traveling state, the driven member that rotates integrally with the wheel rotates at a rotational speed equal to or higher than that of the driving member, so that the engaging member is in a free running state. As a result, torque transmission is not performed, and the drive system from the transfer to the axle is stopped.
[0014]
On the other hand, when the driven member and the retainer are coupled by the locking means, the engaging member is forcedly moved to the engagement position by the rotation of the retainer. Therefore, the driven member and the drive member are rotated together, and the front and rear wheels are directly connected. It will be in a wheel drive state.
[0015]
Further, since the clutch device is housed in the differential cover, unitization with the differential is possible, and vehicle assembly work can be simplified.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0017]
FIG. 1 shows a wheel drive system of a four-wheel drive vehicle mainly for rear wheel drive. In FIG. 1, 1 indicates a front differential, 2 indicates a front wheel, and 3 indicates a rear wheel.
[0018]
The front differential 1 rotatably supports a differential case 9 connected to an engine 7 and a transfer 8 via a ring gear 5 and a drive pinion 6 inside the differential cover 4, and is connected to the differential case 9 so as to be rotatable. A pair of side gears 11 and 11 are engaged with 10 and 10, and axles 12 and 13 as drive shafts are connected to the side gears 11 and 11.
[0019]
As shown in FIGS. 1 and 2, the short wheel 13 of the wheels 12 and 13 is connected to the front wheel 2 via a constant velocity joint 14.
[0020]
On the other hand, the long-side wheel 12 is separated into two in the middle of the differential cover 4 through which the axle 12 is inserted so that the drive shafts 12a and 12b are coaxially arranged in the axial direction. The clutch device A is incorporated in the differential cover 4 and the outer drive shaft 12b is connected to the front wheel 2 via the constant velocity joint 14.
[0021]
FIGS. 3 to 10 show a first example of the clutch device A, in which an outer wheel 16 serving as a driven member is connected to a separated wheel-side drive shaft 12b via a spline 15, and to the differential-side drive shaft 12a. An inner ring 18 serving as a driving member is connected through a spline 17, the outer ring 16 is rotatably supported by a differential cover 4 using a bearing 19 and a sleeve 20, and the inner ring 18 is rotatably fitted inside the outer ring 16. Matching.
[0022]
As shown in FIGS. 7 and 9, concentric cylindrical surfaces 21 and 22 are formed on the inner diameter surface of the outer ring 16 and the outer diameter surface of the inner ring 18, and a large diameter is formed between the cylindrical surfaces 21 and 22. A cage 23 and a small-diameter cage 24 are incorporated.
[0023]
As shown in FIG. 4, the large-diameter retainer 23 is integrally formed with an extension arm 25 at the rear end, and the extension arm 25 is rotatably supported by the bearings 26 with respect to the outer ring 16 and the inner ring 18. Has been.
[0024]
On the other hand, the small-diameter retainer 24 is formed with a bent portion 27 that is bent toward the inner diameter side at the front end portion, and the bent portion 27 is in sliding contact with the end surface of the inner ring 18, and the bent portion 27 A crimping spring 29 made of a disc spring is incorporated between the retaining ring 28 and the retaining ring 28. The crimp spring 29 crimps the bent portion 27 toward the end surface of the inner ring 18, and crimps the small-diameter retainer 24 to the inner ring 18 by the frictional force generated by the pressing force.
[0025]
Further, as shown in FIGS. 7 and 9, a plurality of pockets 30 and 31 are formed on the peripheral surfaces of the large-diameter retainer 23 and the small-diameter retainer 24 so as to face each other in the radial direction. 31 includes a sprag 32 as an engagement element and a spring 33 that holds the sprag 32.
[0026]
The sprag 32 is formed with symmetrical circular arc surfaces 34 and 34a having different centers of curvature on the outer diameter side and the inner diameter side, respectively, and engages with both cylindrical surfaces 21 and 22 when inclined by a predetermined angle in both the left and right directions. Then, the outer ring 16 and the inner ring 18 are integrated. The spring 33 is supported at one end by the large-diameter retainer 33 and presses the sprags 20 from both sides to hold the sprags 32 at positions where they are engaged with the cylindrical surfaces 21 and 22. Therefore, a two-way clutch is formed by the large-diameter retainer 23, the small-diameter retainer 24, and the sprag 32.
[0027]
In addition, slits 35 and 36 penetrating in the radial direction are formed at the ends of the large-diameter cage 23 and the small-diameter cage 24, respectively, and a switch spring 37 having a C-shaped ring shape is formed in the slits 35 and 36. The both ends of the are engaged. The switch spring 37 is set in a state of being contracted in the circumferential direction, and is attached by pressing one end to the large-diameter retainer 23 and the other end to the small-diameter retainer 24. 24 is given a force in the circumferential direction. Due to this force, the large-diameter retainer 23 receives a rotational force, and due to the spring force of the switch spring 37, the retainers 23, 24 and the sprag 32 are in a standby state at the meshing position in one direction of rotation. In the above structure, the switch spring 37 constitutes a means for applying a unidirectional rotational force to the large diameter holder 23.
[0028]
On the other hand, a locking means 38 is connected to the rear end portion of the extended arm 25 of the large-diameter retainer 23 so that the large-diameter retainer 23 and the outer ring 16 are detachably coupled.
[0029]
As shown in FIGS. 3 to 6, the locking means 38 press-fits and fixes an annular engagement member 39 that forms a spline-like tooth profile on the inner diameter surface of the outer ring 16. A plurality of notches 40 are provided at the end of the extension arm 25.
[0030]
An annular coupling member 42 is fixed to the tip of a cylindrical slider 41 that is externally fitted to the drive shaft 12a so as to freely move and rotate in the axial direction.
[0031]
In this coupling member 42, a plurality of projections 43 provided on the outer periphery so as to be bent forward in the axial direction are fitted in grooves 40 provided in the extension portion 25 of the large-diameter retainer 23. The guide slides in the axial direction together with the large-diameter cage 23.
[0032]
A plurality of protrusions 44 projecting outward in the radial direction are provided on the outer periphery of the coupling member 42. When the slider 41 is moved forward to approach the inner ring 18 as shown in FIG. 5B, the protrusions 44 mesh with each other. The tooth 39 is engaged with the tooth-shaped recess 45 of the member 39, whereby the large-diameter retainer 23 and the outer ring 16 are coupled and integrated in the rotational direction.
[0033]
Further, as shown in FIG. 5A, when the slider 41 is moved to the retracted position away from the inner ring 18, the projection 44 of the coupling member 42 is separated from the meshing member 39, and the projection 44 is detached from the tooth profile recess 45. Then, the coupling of the large diameter cage 23 and the outer ring 16 in the rotational direction is released.
[0034]
An operating fork 46 is engaged with the slider 41. The operation fork 46 is connected to an actuator or the like connected to the vehicle transfer 8 as shown in FIG. 1, and the slider 41 is moved in the axial direction by a remote operation from the transfer 8 so that the coupling member 42 is engaged. 39 is made to approach and leave.
[0035]
In the example shown in FIG. 11, the slider 41 is moved in the axial direction by supplying / discharging pressure fluid to / from an air or hydraulic cylinder 51 attached to the differential cover 4. A solenoid may be used to move the slider 41 by electrical control.
[0036]
The example shown in FIGS. 12A and 12B shows a structure in which the connecting member 42 is moved by the wire cable 61 in the locking means 38.
[0037]
In this example, the coupling member 42 is fixed to a disk-like slider 41a that is externally fitted to the drive shaft 12a so as to be movable in the axial direction, and the fixing case 62 and the slider 41a that are fixed to the differential cover 4 side are moved in the axial direction. The slider 41a is connected to be free to prevent rotation, and a return spring 63 that constantly presses the slider 41a toward the inner ring 18 is provided between opposing surfaces of the slider 41a. The wire cable 61 is coupled to an actuator or the like connected to the transfer.
[0038]
When the wire cable 61 is pulled, as shown in FIG. 12A, the slider 41a compresses the return spring 63 and moves to the fixed case 62 side, and the protrusion 44 of the coupling member 42 is engaged with the engagement member 39. The connection between the outer ring 16 and the large-diameter cage 23 is released. When the pulling pressure of the wire cable 61 is released, the coupling member 42 moves closer to the inner ring 18 side integrally with the slider 41a by the pressing force of the return spring 63, and the outer peripheral projection 44 engages with the meshing member 39. The outer ring 16 and the large-diameter cage 23 are combined and integrated in the rotational direction.
[0039]
The driving force transmission device of the present invention is configured as described above. Next, the traveling state of a vehicle using this device will be described.
[0040]
In the two-wheel drive running mode, as shown in FIG. 5A, the slider 41 is retracted, the coupling member 42 and the engagement member 39 are separated, and the outer ring 16 and the large-diameter retainer 23 are opened.
[0041]
When the vehicle travels forward in this state, the large-diameter retainer 23 rotates relative to the inner ring 18 by the elastic force of the switch spring 37, and moves the sprag 32 to the engagement operation position in the forward direction as shown in FIG. .
[0042]
In this state where the sprag 32 has shifted to the engagement operation position, when the outer wheel 16 is rotated beyond the rotational speed of the axle, the sprag 32 is released from the engaged state, and the outer wheel 16 is free running. Can do. For this reason, the front wheel axles 12 whose power is separated from the transfer are respectively rotated by the driving force from the tires. The drive side of the front wheel on the long side rotates in the opposite direction to the drive shaft on the short side via a differential. In that case, the ring gear 5, the pinion gear 6, and the drive system up to the transfer connected thereto are stopped.
[0043]
Therefore, the quietness and fuel consumption performance during forward traveling are maintained close to the same level as a conventional manual or automatic freewheel hub.
[0044]
When driving on a road surface having a low coefficient of friction such as a snowy road, the slider 41 is moved forward so that the coupling member 42 and the engagement member 39 are engaged with each other as shown in FIG.
[0045]
As a result, the outer ring 16 and the large-diameter retainer 23 are integrated, and the large-diameter retainer 23 rotates in the same direction as the outer ring 16. Therefore, even when the sprag 32 is in a free running state as shown in FIG. 9, the sprag 32 changes its inclination as shown in FIG. 10 due to the rotation of the large-diameter retainer 23, and the cylindrical surfaces 21 of the outer ring 16 and the inner ring 18. The free running of the outer ring 16 is stopped. Accordingly, the outer wheel 16 and the drive shaft 12a are directly connected, and the four-wheel drive state in which the front and rear wheels are directly connected is obtained.
[0046]
In the above state, since it is not necessary to reverse the vehicle in order to switch the 4-wheel drive to the 2-wheel drive, the 4-wheel drive state will be maintained even when the vehicle moves back and forth on a rough road. , Can exert a great running power.
[0047]
In addition, even when stopping on a long uphill with a low coefficient of friction in a 2-wheel drive state, and then starting with a 4-wheel drive, it switches to the 4-wheel drive state instantly, and there is no time lag in switching, so a smooth start Can be performed.
[0048]
On the other hand, when driving on a road surface with a high coefficient of friction such as a paved road, the slider 41 is moved backward as shown in FIG. 5A so that the outer ring 16 and the large diameter cage 23 are separated.
[0049]
As a result, four-wheel drive is achieved in the forward direction, and the free running function is activated according to the rotational difference between the drive side and the driven side.
[0050]
That is, when the vehicle turns and has a snake angle, the outer wheel 16 connected to the front wheel rotates faster than the inner wheel 18 due to the difference in turning distance between the front wheel and the outer wheel, and the outer wheel 16 free-runs with respect to the sprag 32. For this reason, the front wheel and the outer wheel are separated and rotated, and the braking phenomenon at the tight corner does not occur.
[0051]
As described above, the clutch device according to the embodiment can cope with a wide range of changes in the road surface during traveling, and can perform stable traveling as in a full-time four-wheel drive vehicle.
[0052]
【The invention's effect】
As described above, according to the present invention, the clutch device for switching between the two-wheel drive and the four-wheel drive by a remote operation from the outside is provided in the separation portion of the drive shaft, and the clutch device is housed in the differential case. The device can be unitized, and the vehicle assembly process can be simplified.
[0053]
Further, by providing the clutch device at the separation portion of the drive shaft, it is easy to secure the installation space for the clutch device, and the structure of the wheel hub can be simplified.
[0054]
In addition, the clutch device is configured such that the retainer of the engagement element can be freely coupled to the driven member by the coupling member, so that free running of the clutch can be arbitrarily stopped, and torque transmission between the driving member and the driven member is possible. The route can be changed between an open state and a direct connection state, and the two-wheel drive can be run with the front and rear drive systems disconnected, and the front and rear wheels can be directly connected during the four-wheel drive, resulting in excellent fuel efficiency and quietness. There is an effect that it is possible to realize a four-wheel running capable of accurately responding to the change of the vehicle.
[Brief description of the drawings]
FIG. 1 is a plan view showing a wheel drive system of a four-wheel drive vehicle. FIG. 2 is a longitudinal sectional view showing a front wheel drive system in the same as above. FIG. 3 is a cross-sectional plan view of a driving force transmission device in the same. Enlarged sectional view of the clutch device [FIG. 5] (a) is a sectional view showing the unlocking state of the locking means, and (b) is a longitudinal sectional view showing the locked state. [FIG. 7 is a cross-sectional view taken along arrows VI-VI in FIG. 4. FIG. 8 is a cross-sectional view taken along arrows VII-VII in FIG. 4. FIG. FIG. 10 is a cross-sectional view showing a state in which the sprag is engaged backward and free running is stopped. FIG. 11 is a vertical cross-sectional view showing another example of the lock means. FIG. 12 is a vertical cross-section showing still another example of the lock means. Figure [Explanation of symbols]
1 Front differential 2 Front wheel 3 Differential cover 12, 13 Axles 12a, 12b Drive shaft 16 Outer ring 18 Inner ring 21, 22 Cylindrical surface 23 Large diameter retainer 24 Small diameter retainer 25 Extension arm 29 Crimp spring 30, 31 Pocket 32 Sprag 37 Switch spring 38 Locking means 39 Engagement member 40 Notch 41 Slider 42 Coupling member 43 Projection 44 Groove 45 Tooth profile recess

Claims (3)

車両のディファレンシャルと車輪を連結する駆動軸を軸方向に分離し、この分離部に2駆走行と4駆走行の切換えを外部からの遠隔操作によって行なうクラッチ装置を設け、このクラッチ装置をデフカバー内に収納し、前記クラッチ装置が、ディファレンシャル側に固定した駆動部材と、車輪側の駆動軸に固定され前記駆動部材に回転可能に嵌合する従動部材と、駆動部材と従動部材の間に組込まれ、駆動部材と従動部材が正逆方向に相対回転したとき両部材に係合する複数の係合子と、駆動部材と従動部材の間に組込まれ、駆動部材と相対回転して各係合子を係合作動位置に移動させる保持器と、この保持器に連結され、各係合子が係合作動位置に移動するように保持器を一方向に相対回転させる回転力付与手段と、外部からの遠隔操作により保持器と従動部材を切離し自在に結合するロック手段とで形成されている車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部に対して接近離反する結合部材と、駆動軸に軸方向への移動が自在となるよう嵌挿したスライダーを軸方向に一体動するよう結合し、スライダーに連結した操作用フォークで該スライダーを軸方向に移動させるように形成したことを特徴とする車両の駆動力伝達装置。A drive shaft that connects the vehicle differential and the wheel is separated in the axial direction, and a clutch device is provided in the separation portion to switch between 2-drive and 4-drive by remote control from outside, and this clutch device is placed in the differential cover. The clutch device is assembled between the drive member and the driven member, the drive member fixed to the differential side, the driven member fixed to the drive shaft on the wheel side and rotatably fitted to the drive member, A plurality of engaging members that engage with both members when the driving member and the driven member are rotated relative to each other in the forward and reverse directions, and are assembled between the driving member and the driven member. A retainer that is moved to a moving position; a rotational force applying means that is connected to the retainer and that relatively rotates the retainer in one direction so that each engagement element moves to the engagement operation position; and remote operation from the outside. Ri in the driving force transmitting apparatus for a vehicle is formed with a locking means for detachably coupling disconnect the cage and the driven member, the locking means is provided on the other while engaged with one of the cage and the driven member engaged A connecting member that moves closer to and away from the moving part and a slider that is fitted to the drive shaft so as to be freely movable in the axial direction are connected so as to move integrally in the axial direction, and the slider is operated by an operating fork connected to the slider A driving force transmission device for a vehicle, characterized in that the vehicle is moved in the axial direction . 車両のディファレンシャルと車輪を連結する駆動軸を軸方向に分離し、この分離部に2駆走行と4駆走行の切換えを外部からの遠隔操作によって行なうクラッチ装置を設け、このクラッチ装置をデフカバー内に収納し、前記クラッチ装置が、ディファレンシャル側に固定した駆動部材と、車輪側の駆動軸に固定され前記駆動部材に回転可能に嵌合する従動部材と、駆動部材と従動部材の間に組込まれ、駆動部材と従動部材が正逆方向に相対回転したとき両部材に係合する複数の係合子と、駆動部材と従動部材の間に組込まれ、駆動部材と相対回転して各係合子を係合作動位置に移動させる保持器と、この保持器に連結され、各係合子が係合作動位置に移動するように保持器を一方向に相対回転させる回転力付与手段と、外部からの遠隔操作により保持器と従動部材を切離し自在に結合するロック手段とで形成されている車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部材に対して接近離反する結合部材と、駆動軸に軸方向への移動が自在となるよう嵌挿したスライダーを軸方向に一体動するよう結合し、スライダーに連結した圧力流体駆動源で該スライダーを軸方向に移動させるように形成したことを特徴とする車両の駆動力伝達装置。 A drive shaft that connects the vehicle differential and the wheel is separated in the axial direction, and a clutch device is provided in the separation portion to switch between 2-drive and 4-drive by remote control from outside, and this clutch device is placed in the differential cover. The clutch device is assembled between the drive member and the driven member, the drive member fixed to the differential side, the driven member fixed to the drive shaft on the wheel side and rotatably fitted to the drive member, A plurality of engaging members that engage with both members when the driving member and the driven member are rotated relative to each other in the forward and reverse directions, and are assembled between the driving member and the driven member. A retainer that is moved to a moving position, a rotational force applying means that is connected to the retainer and that relatively rotates the retainer in one direction so that each engagement element moves to the engagement operation position, and remote operation from the outside. In a vehicle driving force transmission device formed by a lock means and a lock means for detachably coupling the follower member, the lock means is engaged with one of the retainer and the follower member while being engaged with the other. A connecting member that moves closer to and away from the moving member and a slider that is fitted to the drive shaft so as to be movable in the axial direction are connected to move integrally in the axial direction, and the pressure fluid drive source connected to the slider A driving force transmission device for a vehicle, wherein the slider is formed to move in an axial direction . 車両のディファレンシャルと車輪を連結する駆動軸を軸方向に分離し、この分離部に2駆走行と4駆走行の切換えを外部からの遠隔操作によって行なうクラッチ装置を設け、このクラッチ装置をデフカバー内に収納し、前記クラッチ装置が、ディファレンシャル側に固定した駆動部材と、車輪側の駆動軸に固定され前記駆動部材に回転可能に嵌合する従動部材と、駆動部材と従動部材の間に組込まれ、駆動部材と従動部材が正逆方向に相対回転したとき両部材に係合する複数の係合子と、駆動部材と従動部材の間に組込まれ、駆動部材と相対回転して各係合子を係合作動位置に移動させる保持器と、この保持器に連結され、各係合子が係合作動位置に移動するように保持器を一方向に相対回転させる回転力付与手段と、外部からの遠隔操作により保持器と従動部材を切離し自在に結合するロック手段とで形成されている車両の駆動力伝達装置において、上記ロック手段を、保持器と従動部材の一方に係合しつつ他方に設けた噛合い部に対して接近離反する結合部材と、その結合部材とワイヤケーブルを連結してワイヤケーブルに加えた操作力を結合部材の接近離反の動きに変換する操作部材とから形成したことを特徴とする車両の駆動力伝達装置。 A drive shaft that connects the vehicle differential and the wheel is separated in the axial direction, and a clutch device is provided in the separation portion to switch between 2-drive and 4-drive by remote control from outside, and this clutch device is placed in the differential cover. The clutch device is assembled between the drive member and the driven member, the drive member fixed to the differential side, the driven member fixed to the drive shaft on the wheel side and rotatably fitted to the drive member, A plurality of engaging members that engage with both members when the driving member and the driven member are rotated relative to each other in the forward and reverse directions, and are assembled between the driving member and the driven member. A retainer that is moved to a moving position; a rotational force applying means that is connected to the retainer and that relatively rotates the retainer in one direction so that each engagement element moves to the engagement operation position; and remote operation from the outside. In a vehicle driving force transmission device formed by a lock means and a lock means for detachably coupling the follower member, the lock means is engaged with one of the retainer and the follower member while being engaged with the other. A coupling member that approaches and separates from the main part, and an operation member that connects the coupling member and the wire cable and converts an operation force applied to the wire cable into a movement of the coupling member that approaches and separates. A driving force transmission device for a vehicle.
JP04068895A 1995-01-26 1995-02-28 Vehicle driving force transmission device Expired - Fee Related JP3609476B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04068895A JP3609476B2 (en) 1995-02-28 1995-02-28 Vehicle driving force transmission device
US08/592,880 US5732807A (en) 1995-01-26 1996-01-24 Power transmission device
DE19602685A DE19602685A1 (en) 1995-01-26 1996-01-25 Power transmission device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04068895A JP3609476B2 (en) 1995-02-28 1995-02-28 Vehicle driving force transmission device

Publications (2)

Publication Number Publication Date
JPH08230506A JPH08230506A (en) 1996-09-10
JP3609476B2 true JP3609476B2 (en) 2005-01-12

Family

ID=12587501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04068895A Expired - Fee Related JP3609476B2 (en) 1995-01-26 1995-02-28 Vehicle driving force transmission device

Country Status (1)

Country Link
JP (1) JP3609476B2 (en)

Also Published As

Publication number Publication date
JPH08230506A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
AU2014244607B2 (en) Bi-directional overrunning clutch with improved indexing mechanism
US7150694B2 (en) Power take-off unit for four-wheel drive vehicle
US6629474B2 (en) On-demand transfer case with controllable bi-directional overrunning clutch assembly
US5355748A (en) Rotation transmitting device for an interaxle gearless differential
JP3572266B2 (en) Four-wheel drive vehicle with two-wheel drive four-wheel drive switching device for running on uneven terrain
JP3609476B2 (en) Vehicle driving force transmission device
GB2278899A (en) Rotation transmission device
JPH0999755A (en) Motive power transmitting device
JPH08230507A (en) Drive force transmission gear for vehicle
JPH08244490A (en) Driving force transmission device for vehicle
JPH09104256A (en) Power transmitting device
JPH08244492A (en) Clutch device
JPH08175206A (en) Rotational transmission device
JPH0968239A (en) Power transmission device
JP3535622B2 (en) Hub clutch device
JP3137387B2 (en) Vehicle driving force transmission device
JPH08197974A (en) Driving force transmitting device of vehicle
JPH08244491A (en) Driving force transmission device for vehicle
JPH09104255A (en) Power transmitting device
JPH08258586A (en) Power transmission
JPH0872581A (en) Rotation transmitting device
JPH0893800A (en) Rotation transmitting device and driving force transmitting device of vehicle using it
JPH09164855A (en) Power transmission device
JPH07197947A (en) Hub clutch device
JPH08150850A (en) Rotation transmission device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees