JP3606916B2 - Thermal barrier structure of cryogenic tank - Google Patents

Thermal barrier structure of cryogenic tank Download PDF

Info

Publication number
JP3606916B2
JP3606916B2 JP20019294A JP20019294A JP3606916B2 JP 3606916 B2 JP3606916 B2 JP 3606916B2 JP 20019294 A JP20019294 A JP 20019294A JP 20019294 A JP20019294 A JP 20019294A JP 3606916 B2 JP3606916 B2 JP 3606916B2
Authority
JP
Japan
Prior art keywords
tank
reinforcing material
cryogenic
temperature
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20019294A
Other languages
Japanese (ja)
Other versions
JPH0842793A (en
Inventor
正俊 大山
容透 中村
圭二 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Zosen KK
Original Assignee
Kawasaki Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Zosen KK filed Critical Kawasaki Zosen KK
Priority to JP20019294A priority Critical patent/JP3606916B2/en
Publication of JPH0842793A publication Critical patent/JPH0842793A/en
Application granted granted Critical
Publication of JP3606916B2 publication Critical patent/JP3606916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液化石油ガス(LPG)、液化天然ガス(LNG)、液化水素(LH2)、液化窒素(LN2)、液化酸素(LO2)、液化ヘリウム(LHe)などの極低温物質を貯蔵するための極低温用タンクにおいて、極低温用タンクの表面を被覆し、硬質ウレタン、フェノール樹脂などの合成樹脂発泡体からなり、その中間に網状の補強材を介装した極低温用タンクの防熱層構造に関するものである。本発明の対象とする極低温用タンクは球形や円筒形など曲率を有するもので、地上に設置されるものだけでなく、たとえば、船舶に搭載されるものも含む。
【0002】
【従来の技術】
この種の極低温用タンクでは、外気からのタンク内への熱の侵入を防止するため、その表面を防熱層で被覆する必要がある。この防熱層には、従来、特公昭54−1948号公報および実公昭59−7676号公報に記載のものがある。いずれも、硬質ポリウレタンやフェノール樹脂などの合成樹脂発泡体からなる内側防熱層部と外側防熱層部の間に網状の補強材を介装し、前記合成樹脂の発泡時の自己接着作用もしくは接着剤で接着して一体にした構造からなる。補強材は、主に外側防熱層部の低温割れを防止するために介装されている。またタンクはステンレスやアルミニウム合金で形成され、タンクの外周面上を被覆する防熱層は、タンクの周面に植設された多数の支持具(スタッドボルト等)によって支持され、とくにタンクの下半分で防熱層が落下するのを阻止している。それらの支持具は、通常、タンクと同質の材料であるステンレスやアルミニウム合金で形成されている。たとえばLNG船に搭載される大型の球形タンク(直径40m前後)の場合、内側防熱層部と外側防熱層部の厚みはそれぞれ100mm前後(この値は一例で要求防熱性能によって設計的に変更される得る)で、その境界層位置に介装される補強材には、線径0.9mm、網目密度(ピッチ)5mmの平織の金網が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した公報に記載の従来の防熱層には、次のような点で改良の余地がある。すなわち、
(1) 上記したLNG船用の球形タンクの場合、タンクの材質がアルミニウム合金の場合には、タンクの線膨張係数が略(20×10-6)でLNGの温度が−162℃で、外気温度を38℃とすると、タンクと外気との温度差が200℃になる。一方、補強材としての金網の線膨張係数が略(10×10-6)で、金網の温度が略−62℃((−162℃+38℃)×1/2)であるから、外気との温度差が略100℃になる。したがってタンク内にLNGを貯蔵した状態では、タンクの熱収縮が金網の熱収縮よりもはるかに大きく(4倍前後)なるため、防熱層を連結する多数の支持具にタンク側へ防熱層を引き寄せようとする力が作用する。この引き寄せ力は、防熱層の自重の約20倍以上に達することがある。
【0004】
(2) LNGなどの極低温物質をタンクに注入した際に各支持具に作用する負荷(熱荷重)を低減するためには、支持具の本数を増やす必要があるが、支持具の増設は施工コストの増加をまねくのに加えて、支持具を経由して補強材へ逃げるタンクからの冷熱量(伝熱量)が増加することにより、防熱性能が低下する。
【0005】
(3) たとえば球形タンクの場合に、その直径をたとえば40mから20m前後に小型化(直径を半分に)しようとすると、曲率(1/R)が倍になるため、各支持具に作用する熱荷重も倍近くになる。したがって、支持具の本数を倍に増やしたり、支持具の強度を上げたりする必要がある。
【0006】
この発明は上述の点に鑑みなされたもので、LPGやLNGなどの極低温物質をタンク内に注入した際に常温から極低温に温度低下することにより生じる支持具の熱荷重を低減あるいはゼロにし、支持具の本数を減らして材料コスト並びに施工コストを下げ、支持具を経由して逃げる伝熱量を削減し、防熱性能を向上することができ、タンクの小型化にも十分に対応し得る極低温用タンクの防熱層構造を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明の防熱層構造は、1)極低温用タンクの表面を被覆し、硬質ウレタン、フェノール樹脂などの合成樹脂発泡体からなり、その中間に網状の補強材を介装するとともに、前記タンクの外周面には支持具を一定の間隔をあけて立設し該支持具の先端部にて前記補強材を貫通保持した極低温用タンクの防熱層構造において、2)前記補強材の熱収縮率{(線膨張係数(α N ))×(前記補強材の温度と外気温度との温度差(△T N ))}を、前記タンクの熱収縮率{(線膨張係数(α TK ))×(前記タンク内に貯蔵される極低温物質の温度と外気温度との温度差(△T TK ))}よりも大きくなるように設定したこと特徴とする。なお、前記補強材の熱収縮率(α N ×△T N )は、前記補強材の材質と同補強材の前記合成樹脂発泡体内における介装位置とによって決定される。
【0008】
たとえば請求項2記載のように、3)前記補強材の網目を構成する線材を、ポリエステル繊維(ポリエチレンテレフタレート繊維)の撚り糸で構成するとともに、前記補強材の介装位置(前記合成樹脂発泡体の外表面からの深さ)を前記合成樹脂発泡体の厚みの1/2の位置又はこの位置よりも前記タンクの表面寄りにするとよい。
なお、上記請求項1又は2記載の防熱層構造において、前記補強材の網目を構成する線材(単線)の断面積と該網目密度(線材のピッチ)とで特定される補強材の等価板厚をteq、前記補強材の縦弾性係数をETとしたときに、前記補強材の面内引張剛性(ET×teq)が前記タンク表面上に前記防熱層を支持できるまで大きくなるように設定するとなおよい。とくに、補強材の縦弾性係数ETだけを大きくするのが望ましい。このように構成した防熱層構造によれば、極低温物質をタンクに貯蔵したときに補強材の面内引張剛性が増大し、タンク面に防熱層を押し付けようとする力が大きくなるから、支持具を省いても防熱層の自重を十分に支持できる。とくに補強材の等価板厚teqは増大させずに前記補強材の縦弾性係数ETだけを増大すると効果的である。これは、補強材の等価板厚teqが増大すると、施工上の理由、たとえば防熱層をタンク表面に施工する途中で落下防止のため仮取付する等の理由で、支持具を設ける場合において、その支持具を介して逃げる冷熱量が増え、防熱性能が低下するからである。
【0009】
請求項3記載のように、a)極低温用タンクの表面を被覆し、硬質ウレタン、フェノール樹脂などの合成樹脂発泡体からなり、その中間に網状の補強材を介装するとともに、前記タンクの外周面には支持具を一定の間隔をあけて立設し該支持具の先端部にて前記補強材を貫通保持した極低温用タンクの防熱層構造において、b)前記補強材を、線径0.1〜0.8mmで5〜30mmピッチのポリエステル繊維(ポリエチレンテレフタレート繊維)の撚り糸からなる平織の網で形成し、 c)前記補強材の熱収縮率{(線膨張係数(αN))×(前記補強材の温度と外気温度との温度差(△TN))}を、前記タンクの熱収縮率{(線膨張係数(αTK))×(前記タンク内に貯蔵される極低温物質の温度と外気温度との温度差(△TTK))}よりも大きくなるように設定することが好ましい。
【0010】
請求項4記載のように、d)前記補強材の介装位置(前記合成樹脂発泡体の外表面からの深さ)を、前記合成樹脂発泡体の厚みの1/2の位置又はこの位置よりも前記タンクの表面寄りにするとよい。
【0011】
【作用】
上記した構成を有する本発明の防熱層構造によれば、タンクの熱収縮率(αTK×△TTK)よりも、補強材の熱収縮率(αN×△TN)が大きくなるように、つまり、(αN×△TN)>(αTK×△TTK)が成り立つように前記補強材の材質と同補強材の前記合成樹脂発泡体内における介装位置とが決定されているから、LNGなどの極低温物質をタンクに貯蔵したときに、防熱層内の補強材の熱収縮がタンクの熱収縮よりも大きくなる。これにより、従来の防熱層構造と違って各支持具に作用する熱荷重が低減あるいはゼロになる。したがって、支持具の本数を減らしたり、たとえば球形タンクの場合には上半分の支持具が不要になったりする(タンクの下半分は、常温で防熱層自重をタンク側に支持するために必要)。
【0012】
請求項2記載の防熱層構造では、たとえばアルミニウム合金製タンクにLNGを貯蔵する場合に、補強材を防熱層の厚さ方向の1/2の位置に介装すると、ポリエステル繊維のうち、ポリエチレンテレフタレート繊維の場合には線膨張係数が80×10-6で、外気温度との差が100℃、タンク(アルミニウム合金)の線膨張係数が20×10-6で、外気温度との差が200℃であるから、(80×10-6×100)>(20×10-6×200)となり、請求項1の要件が成立する。
【0013】
請求項3記載の防熱層構造では、請求項1記載の防熱層構造と補強材の熱伝導性を小さくすることとの両者の長所を合わせ持ち、したがって、支持具の本数を減らしたり、たとえば球形タンクの場合には上半分の支持具が不要になったりするとともに、支持具と補強材を伝わって逃げる冷熱量も小さくなるため、防熱層の防熱性能が向上する。また、補強材をポリエステル繊維(ポリエチレンテレフタレート繊維)の撚り糸からなる平織の網にしたことにより、まず(80×10 -6 ×100)>(20×10 -6 ×200)となって請求項1の要件が充足されるうえに、網の線径0.1〜0.8mmで5〜30mmピッチとしたことにより、従来の金網に比べて等価板厚(t eq )および熱伝導率(λ)がそれぞれ小さくなって補強材の熱伝導性を小さくすることも同時に充足される。
【0015】
【実施例】
以下、本発明の極低温用タンクの防熱層構造の実施例を図面に基づいて説明する。
【0016】
図1は本実施例の防熱層構造を備えた極低温用タンクの縦断面図、図2はタンクおよび防熱層の一部を切り欠いて示す部分拡大切断図、図3は図2のタンクおよび防熱層を拡大して示す縦断面図である。
【0017】
図1に示すように、タンク1は球形もしくは円筒形の曲率を有し、本例ではアルミニウム合金から形成されている。タンク1の外周面を被覆する防熱層2は、内側(タンク側)防熱層部2aと外側防熱層部2bとの2層積層構造からなり、両層部2a・2bの間に網状の補強材3を介装し、相互に防熱層を形成する合成樹脂を発泡成形するときの発泡時自己接着作用あるいは接着剤にて接着して一体化した構造からなる。内側防熱層部2aはガラス繊維、天然繊維、化学繊維などで強化された硬質ウレタン樹脂発泡体、フェノール樹脂発泡体などから選択されるが、本例では天然繊維強化のフェノール樹脂発泡体からなる。また、外側防熱層部2bは、硬質ウレタン樹脂発泡体、フェノール樹脂発泡体などから選択されるが、本例では硬質ウレタン樹脂発泡体からなる。さらに、両層2a・2bの厚さは、いずれも100mmにしている。
【0018】
図2・図3に示すように、タンク1の外周面には、支持具としてのアルミニウム合金製スタッドボルト4が一定の間隔(本例では、2本/m2)をあけて溶接等により植設されており、スタッドボルト4の先端部は補強材3を貫通し、ワッシャー5を挿通したうえナット6で補強材3を保持している。外側防熱層部2bのワッシャー5の位置に該当する部分は目地になっており、この目地に外側防熱層部2bと同質の合成樹脂発泡体2cが充填されている。また外側防熱層部2bの外表面には、エンボス成形されたアルミニウム合金板2dが装着されている。
【0019】
さて、本発明(請求項1)に対応する防熱層構造においては、次のような特徴的構成を備えている。すなわち、タンク1内にLNGなどの極低温物質を注入(貯蔵)したときに、タンク1の熱収縮よりも補強材3の熱収縮が大きくなるように設定している。タンク1内にたとえばLNGが注入されることにより、タンク1および防熱層2が冷却されるが、定常状態となったときの常温(外気温度)との冷却温度差(△T)は、図4の右側の線図に示すように、防熱層2の厚さ方向における表面からの深さ(d)にほぼ比例する。したがって、防熱層2内において補強材3が介装されている位置の表面からの深さが決まれば、補強材3の冷却温度差(△TN)が求められる。図4はタンク1とその防熱層2の部分断面図および冷却温度差(△T)と防熱層2の厚さ方向における表面からの深さ(d)の関係を示す線図である。
【0020】
また、タンク1の冷却温度差(△TTK)およびタンク1の線膨張率(αTK)がわかっているから、補強材の熱収縮率(αN×△TN)>タンクの熱収縮率(αTK×△TTK)となる、線膨張率(αN)を有する補強材3の材質を選択すればよい。補強材3を防熱層2の厚み方向の1/2の位置に介装する場合には、△TN=1/2×△TTKで、アルミニウム合金の線膨張率はαTN=20×10-6であるから、αN>40×10-6となる補強材3の材質を選択すればよい。これに該当するものに、ポリエチレンテレフタレート繊維(線膨張係数:80×10-6)製の網状補強材がある。なお、補強材3を介装する防熱層2内の位置(表面からの深さ)は深くしてタンク1の表面に近づければ近づけるほど、有利になることは言うまでもない。すなわち、補強材3の位置をタンク1の表面に近づけるほど、αN×△TN>αTK×△TTKを満たすαNの必要最小値が小さくなり、それだけ補強材3の材質の選択枝が増え、設計上の自由度(フレキシビリティー)が増すことになる。
【0021】
次に、本発明の他の実施例にかかる防熱層構造においては、次のような特徴的構成を備えている。すなわち、補強材3の面内圧縮剛性を、従来の補強材(0.9mm径の金網)に比べてかなり小さくしている。補強材3の面内圧縮剛性は補強材3の縦弾性係数(Ec)と補強材3の等価板厚(teq)の積になる。ここで等価板厚(teq)とは、網状の補強材3を一枚の薄い板に均等に引き伸ばしたと仮定したときの板厚をいう。同時に、補強材3の面内熱伝導性も、従来の補強材(0.9mm径の金網)に比べてかなり小さくしている。補強材3の面内熱伝導性は、補強材3の熱伝導率(λ)と補強材3の等価板厚(teq)の積になる。
【0022】
本例では、補強材3の網の線径を0.6mmに細くした3つの場合を示している。いずれも網目(メッシュ)密度(ピッチ)は5mmで従来のものと共通している。そして、材質は金網(鉄)、ステンレス鋼およびガラス繊維(グラスネット)である。結果は、図5に示すように、スタッドボルト4に作用する熱荷重およびタンク1から防熱層2の外表面に逃げる冷熱量のいずれも小さくなった。すなわち、
図5(a)は上記タンク1にLNGを貯蔵したときにスタッドボルト4に作用する熱荷重(F)と補強材3の面内圧縮剛性(Ec×teq)との関係を示す線図であり、図5(b)は上記タンク1にLNGを貯蔵したときに防熱層2の外表面からタンク1内に侵入する伝熱量(Q)と補強材3の面内熱伝導性(λ×teq)との関係を示す線図である。いずれの線図も
、補強材が0.9mm径の平織の金網(線材のピッチ5mm)の場合を指数100として現したものである。これらの結果から認められるように、補強材3の網目を構成する線材の径を0.6mmに縮小したことによって等価板厚(teq)が小さくなったから、材質に関係なく、図5(a)に示すようにスタッドボルト4に作用する熱荷重(F)が小さくなった。同時に、図5(b)に示すようにタンク1内に侵入する伝熱量(Q)も小さくなった。とくに、金網に比べて縦弾性係数(Ec)および熱伝導率(λ)のどちらも小さいガラス繊維(グラスネット)を使用することにより、図5(a)・図5(b)に示すように熱荷重(F)および伝熱量(Q)がさらに小さくなった。
【0023】
このように補強材3の線径を細くすること、あるいはピッチ(メッシュ密度)を広げることが効果的であるが、外側防熱層部2bの低温割れを防止するための補強材3の強度を考慮すると、線径は外側防熱層部2bの合成樹脂発泡体の比重、強度、強度のバラツキ度にもよるが、最小でも0.1mmが限度である。またメッシュ密度は、外側防熱層部2bの発泡体の上記に例示した強度特性との関係から、最大で20〜30mmが限度である。20〜30mmよりもメッシュ密度を広げると、外側防熱層部2bの低温割れを確実に防止できないおそれがあるからである。合成樹脂発泡体の強度は、本来大きくなく、しかも発泡条件や施工要領に影響され、発泡の均一性が保たれにくく、その結果として強度特性がバラツクものであるからである。
【0024】
とくに、上記のスタッドボルト4に作用する熱荷重(F)は、タンク1の曲率が大きくなるのに正比例して増加するから、タンク1を小型化するときはその防熱層2の構造において、スタッドボルト4並びに同近傍部構造の安全率確保のためにスタッドボルト4に作用する熱荷重を低減すべきであり、本発明を適用すると効果的である。
【0025】
最後に、本発明(請求項3)に対応する防熱層構造においては、次のような特徴的構成を備えている。すなわち、タンク1内に極低温物質を貯蔵したときに、タンク1の熱収縮よりも補強材3の熱収縮が大きくなるように設定したうえ、補強材3の面内熱伝導性も、従来の補強材(0.9mm径の金網)に比べてかなり小さくしている。本例では、補強材3にポリエチレンテレフタレート繊維製の網状補強材を選択し、その線径を0.6mmにした。補強材3の線膨張係数が(80×10-6)であるため、補強材3の熱収縮度がタンク1より大となり、補強材3の熱伝導率が(0.12kcal/mh℃)で、等価板厚(teq)が小となり、補強材3の上記した2つの要件である、(1)補強材の熱収縮率(αN×△TN)>タンクの熱収縮率(αTK×△TTK)、(2)補強材3の面内熱伝導性(λ×teq)を、従来の補強材(0.9mm径の金網)に比べてかなり小さくすることを充足するものとなった。
【0026】
ところで、上記実施例は単一の材質で補強材3を構成した場合の例であるが、下記のように実施することによって、αNE(E c 又はE T 、λ、teqの物性値が当該防熱層の補強材として設計・施工性・コスト上において適したものとなる補強材を新たに作り上げ、これを採用することも可能である。すなわち、図6に示すように、
(a) 材質の異なる二種の材料によってそれぞれ形成した線材3a・3bを組み合わせて、補強材3を構成する(図6(a))。
【0027】
(b) 材質の異なる二種の材料によってそれぞれ形成した線材3a・3bを組み合わせる際に、メッシュ密度も変更して配列して、補強材3を構成する(図6(b))。
【0028】
(c) 材質の異なる二種の材料によって形成し、かつ材料の違いによって線径を変えた線材3a・3cを組み合わせて、補強材3を構成する(図6(c))。
【0029】
(d) 材質の異なる二種以上の材料によってそれぞれ糸材3e・3fを形成し、それらの糸材を組み合わせて単一の線材3dとして、補強材3を構成する(図6(d))。
【0030】
【発明の効果】
以上説明したことから明らかなように、本発明の極低温用タンクの防熱層構造には、次のような優れた効果がある。
【0031】
(1) 極低温物質をタンクに貯蔵したときに、防熱層内の補強材の熱収縮がタンクの熱収縮よりも大きくなるようにしたから、従来の防熱層構造と違って各支持具に作用する熱荷重が低減される。したがって支持具の本数を減らしたり、支持具を不要にしたりでき、支持具の本数を減らして材料コスト並びに施工コストを削減でき、また支持具を経由して逃げる伝熱量も低減されるから、防熱性能が向上する。また支持具の熱荷重が低減されるから、タンクの小型化にも十分対応できる。
【0032】
(2) 請求項2記載の防熱層構造では、上記した本発明が有効に達成される。
【0033】
(3) 請求項3記載の防熱層構造では、請求項1記載の防熱層構造と補強材の熱伝導性を小さくすることとの両者の効果が同時に発揮され、防熱層の防熱性能がより一層向上する。
【0034】
(4) 請求項4記載の防熱層構造では、請求項3の発明が有効に達成される。
【図面の簡単な説明】
【図1】本発明の実施例の防熱層構造を備えた極低温用タンクの縦断面図である。
【図2】タンクおよび防熱層の一部を切り欠いて示す部分拡大切断図である。
【図3】図2のタンクおよび防熱層を拡大して示す縦断面図である。
【図4】タンクとその断熱層の部分断面図および冷却温度差(△T)と防熱層の厚さ方向における表面からの深さ(d)の関係を示す線図である。
【図5】図5(a)はタンクにLNGを貯蔵したときにスタッドボルトに作用する熱荷重(F)と補強材の面内圧縮剛性(Ec×teq)との関係を示す線図であり、図5(b)はタンクにLNGを貯蔵したときに防熱層の外表面からタンク内に侵入する熱量(Q)と補強材の面内熱伝導性(λ×teq)との関係を示す線図である。
【図6】図6(a)〜図6(d)はそれぞれ本発明の異なる実施例を示す、補強材の線材の拡大断面図である。
【符号の説明】
1 タンク
2 防熱層(合成樹脂発泡体)
3 補強材
4 スタッドボルト(支持具)
[0001]
[Industrial application fields]
The present invention relates to cryogenic substances such as liquefied petroleum gas (LPG), liquefied natural gas (LNG), liquefied hydrogen (LH 2 ), liquefied nitrogen (LN 2 ), liquefied oxygen (LO 2 ), and liquefied helium (LH e ). A cryogenic tank that stores the surface of the cryogenic tank, which is made of a synthetic resin foam such as hard urethane or phenolic resin, with a net-like reinforcing material in between. This relates to a heat insulating layer structure. The cryogenic tank which is the subject of the present invention has a curvature such as a spherical shape or a cylindrical shape, and includes not only those installed on the ground but also those installed on ships, for example.
[0002]
[Prior art]
In this type of cryogenic tank, in order to prevent heat from entering into the tank from outside air, it is necessary to cover the surface with a heat insulating layer. Conventionally, there are those described in Japanese Patent Publication No. 54-1948 and Japanese Utility Model Publication No. 59-7676. In either case, a net-like reinforcing material is interposed between the inner heat insulating layer portion and the outer heat insulating layer portion made of a synthetic resin foam such as hard polyurethane or phenol resin, and the self-adhesive action or adhesive when the synthetic resin is foamed. It has a structure that is bonded and integrated. The reinforcing material is mainly interposed in order to prevent cold cracking of the outer heat insulating layer. The tank is made of stainless steel or aluminum alloy, and the heat insulation layer covering the outer peripheral surface of the tank is supported by a number of supports (stud bolts, etc.) implanted on the peripheral surface of the tank. This prevents the thermal barrier from falling. These supports are usually made of stainless steel or aluminum alloy, which is the same material as the tank. For example, in the case of a large spherical tank (about 40 m in diameter) mounted on an LNG ship, the thickness of the inner thermal barrier layer and the outer thermal barrier layer is about 100 mm each (this value is an example and is changed by design depending on the required thermal barrier performance) Therefore, a plain woven wire mesh having a wire diameter of 0.9 mm and a mesh density (pitch) of 5 mm is used as the reinforcing material interposed at the boundary layer position.
[0003]
[Problems to be solved by the invention]
However, the conventional heat insulating layer described in the above publication has room for improvement in the following points. That is,
(1) In the case of the above-mentioned spherical tank for an LNG ship, when the material of the tank is an aluminum alloy, the linear expansion coefficient of the tank is approximately (20 × 10 −6 ), the LNG temperature is −162 ° C., and the outside air temperature Is 38 ° C., the temperature difference between the tank and the outside air is 200 ° C. On the other hand, since the linear expansion coefficient of the wire mesh as the reinforcing material is approximately (10 × 10 −6 ) and the temperature of the wire mesh is approximately −62 ° C. ((−162 ° C. + 38 ° C.) × 1/2), The temperature difference becomes approximately 100 ° C. Therefore, when the LNG is stored in the tank, the heat shrinkage of the tank is much larger than the heat shrinkage of the wire mesh (around 4 times), so the heat insulation layer is drawn to the tank side to the many supports connecting the heat insulation layer. The force to try acts. This attractive force may reach about 20 times or more the dead weight of the heat-insulating layer.
[0004]
(2) In order to reduce the load (thermal load) that acts on each support when a cryogenic substance such as LNG is injected into the tank, it is necessary to increase the number of support, In addition to increasing the construction cost, the amount of cold heat (heat transfer amount) from the tank that escapes to the reinforcing material via the support increases, resulting in a decrease in heat insulation performance.
[0005]
(3) For example, in the case of a spherical tank, if the diameter is reduced from about 40 m to about 20 m (diameter is halved), the curvature (1 / R) is doubled. The load is nearly doubled. Therefore, it is necessary to double the number of support tools or increase the strength of the support tools.
[0006]
The present invention has been made in view of the above points, and when a cryogenic substance such as LPG or LNG is injected into a tank, the thermal load of the support caused by the temperature drop from room temperature to cryogenic temperature is reduced or made zero. The number of support tools can be reduced to lower the material cost and construction cost, the amount of heat transfer that escapes via the support tools can be reduced, the heat insulation performance can be improved, and the tank can be sufficiently miniaturized. It aims at providing the thermal barrier layer structure of the tank for low temperature.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the heat insulating layer structure of the present invention comprises 1) the surface of a cryogenic tank, a synthetic resin foam such as hard urethane and phenolic resin, and a net-like reinforcing material in the middle. In the thermal barrier layer structure of the cryogenic tank in which a support is erected on the outer peripheral surface of the tank with a certain interval and the reinforcing material is penetrated and held at the tip of the support. ) Thermal contraction rate of the reinforcing material {(linear expansion coefficient (α N )) × (temperature difference between the temperature of the reinforcing material and outside temperature (ΔT N ))} The expansion coefficient (α TK )) × (temperature difference between the temperature of the cryogenic substance stored in the tank and the outside air temperature (ΔT TK ))} is set. In addition, the thermal contraction rate (α N × ΔT N ) of the reinforcing material is determined by the material of the reinforcing material and the interposed position of the reinforcing material in the synthetic resin foam.
[0008]
For example as in claim 2, 3) wherein the wire constituting the mesh of the reinforcing member, as well as composed of strands of polyester fiber (Po triethylene terephthalate fibers), interposed position of the reinforcing material (the synthetic resin foam The depth from the outer surface of the synthetic resin foam may be set at a position that is half the thickness of the synthetic resin foam or closer to the surface of the tank than this position.
The heat insulation layer structure according to claim 1 or 2, wherein an equivalent plate thickness of the reinforcing material specified by a cross-sectional area of the wire material (single wire) constituting the mesh of the reinforcing material and the mesh density (pitch of the wire material). T eq , and the longitudinal elastic modulus of the reinforcing material is E T , so that the in-plane tensile rigidity (E T × t eq ) of the reinforcing material increases until the thermal barrier can be supported on the tank surface. Even better. In particular, it is desirable to increase only the longitudinal elastic modulus E T of the reinforcing material. According to the heat insulating layer structure configured as described above, the in-plane tensile rigidity of the reinforcing material is increased when the cryogenic substance is stored in the tank, and the force to press the heat insulating layer against the tank surface is increased. Even if the tools are omitted, the weight of the heat-insulating layer can be sufficiently supported. In particular, it is effective to increase only the longitudinal elastic modulus E T of the reinforcing material without increasing the equivalent plate thickness t eq of the reinforcing material. This is because, when the equivalent plate thickness t eq of the reinforcing material is increased, in the case of providing a support for reasons of construction, for example, temporary attachment to prevent dropping while the thermal insulation layer is being applied to the tank surface, This is because the amount of cold heat that escapes through the support increases, and the heat insulation performance decreases.
[0009]
As described in claim 3, a) the surface of a cryogenic tank is coated, made of a synthetic resin foam such as hard urethane or phenolic resin, with a net-like reinforcing material interposed between them, In the thermal barrier layer structure of the cryogenic tank in which the support is erected on the outer peripheral surface with a certain interval and the reinforcement is penetrated and held at the tip of the support, b) the reinforcement is wire diameter It is formed of a plain weave net made of twisted yarns of polyester fibers (polyethylene terephthalate fibers) with a pitch of 0.1 to 0.8 mm and a pitch of 5 to 30 mm, and c) thermal contraction rate of the reinforcing material {(linear expansion coefficient (α N )) × (Temperature difference between the temperature of the reinforcing material and the outside air temperature (ΔT N ))} is the thermal contraction rate of the tank {(Linear expansion coefficient (α TK )) × (Cryogenic temperature stored in the tank the temperature difference between the temperature and the ambient temperature of the material (△ T TK)) larger than} It is preferably set so that.
[0010]
As in claim 4, d) interposed position of the reinforcing material (depth from the outer surface of the synthetic resin foam), the position or the position of 1/2 of the thickness before Symbol synthetic resin foam It is better to be closer to the surface of the tank than.
[0011]
[Action]
According to the heat insulating layer structure of the present invention having the above-described configuration, the thermal contraction rate (α N × ΔT N ) of the reinforcing material is larger than the thermal contraction rate (α TK × ΔT TK ) of the tank. That is, since the material of the reinforcing material and the position of the reinforcing material in the synthetic resin foam are determined so that (α N × ΔT N )> (α TK × ΔT TK ) holds. When a cryogenic substance such as LNG is stored in the tank, the thermal contraction of the reinforcing material in the heat insulating layer becomes larger than the thermal contraction of the tank. Thereby, unlike the conventional heat insulating layer structure, the thermal load acting on each support is reduced or zero. Therefore, the number of support tools is reduced, or in the case of a spherical tank, for example, the upper half support tool becomes unnecessary (the lower half of the tank is necessary to support the heat insulation layer's own weight on the tank side at room temperature). .
[0012]
The insulation layer structure according to claim 2, wherein, for example, when the storage of LNG in an aluminum alloy tank, when interposed reinforcement half the position in the thickness direction of the insulation layer, of polyester fibers, Po Riechiren In the case of terephthalate fiber, the linear expansion coefficient is 80 × 10 −6 , the difference from the outside air temperature is 100 ° C., the linear expansion coefficient of the tank (aluminum alloy) is 20 × 10 −6 , and the difference from the outside air temperature is 200. Since it is ° C., (80 × 10 −6 × 100)> (20 × 10 −6 × 200), and the requirement of claim 1 is satisfied.
[0013]
The heat insulating layer structure according to claim 3 has the advantages of both the heat insulating layer structure according to claim 1 and the reduction of the thermal conductivity of the reinforcing member, and therefore the number of supports can be reduced, for example, a spherical shape. In the case of a tank, the upper half of the support becomes unnecessary, and the amount of cold heat that escapes through the support and the reinforcing material is reduced, so that the heat insulation performance of the heat insulation layer is improved. Further, since the reinforcing material is a plain weave net made of a twisted yarn of polyester fiber (polyethylene terephthalate fiber), first, (80 × 10 −6 × 100)> (20 × 10 −6 × 200). In addition to satisfying the above requirements, the equivalent wire thickness (t eq ) and thermal conductivity (λ) compared to the conventional wire mesh are obtained by setting the wire diameter of the mesh to 0.1 to 0.8 mm and the pitch of 5 to 30 mm. It is simultaneously satisfied that the thermal conductivity of the reinforcing material is reduced by decreasing the size of each.
[0015]
【Example】
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the thermal barrier layer structure for a cryogenic tank according to the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 is a longitudinal sectional view of a cryogenic tank having a heat insulating layer structure of the present embodiment, FIG. 2 is a partially enlarged cutaway view showing a part of the tank and the heat insulating layer, and FIG. It is a longitudinal cross-sectional view which expands and shows a heat insulation layer.
[0017]
As shown in FIG. 1, the tank 1 has a spherical or cylindrical curvature, and is made of an aluminum alloy in this example. The heat insulating layer 2 covering the outer peripheral surface of the tank 1 has a two-layer laminated structure of an inner (tank side) heat insulating layer portion 2a and an outer heat insulating layer portion 2b, and a net-like reinforcing material between both layer portions 2a and 2b. 3 and a synthetic resin which forms a heat-insulating layer with each other, and has a structure in which it is integrated by self-adhesion during foaming when it is foam-molded or by an adhesive. The inner heat-insulating layer portion 2a is selected from a hard urethane resin foam reinforced with glass fiber, natural fiber, chemical fiber, or the like, a phenol resin foam, or the like. In this example, it is made of a natural fiber reinforced phenol resin foam. Moreover, although the outer side heat-insulating layer part 2b is selected from a hard urethane resin foam, a phenol resin foam, etc., in this example, it consists of a hard urethane resin foam. Furthermore, the thickness of both layers 2a and 2b is 100 mm.
[0018]
As shown in FIG. 2 and FIG. 3, an aluminum alloy stud bolt 4 as a support is planted on the outer peripheral surface of the tank 1 by welding or the like with a certain interval (in this example, 2 / m 2 ). The stud bolt 4 has a distal end portion that penetrates the reinforcing member 3, a washer 5 is inserted, and the reinforcing member 3 is held by a nut 6. A portion corresponding to the position of the washer 5 of the outer heat-insulating layer portion 2b is a joint, and this joint is filled with a synthetic resin foam 2c of the same quality as the outer heat-insulating layer portion 2b. Further, an embossed aluminum alloy plate 2d is mounted on the outer surface of the outer heat insulating layer 2b.
[0019]
The thermal barrier structure corresponding to the present invention (Claim 1) has the following characteristic configuration. That is, the thermal contraction of the reinforcing material 3 is set to be larger than the thermal contraction of the tank 1 when a cryogenic substance such as LNG is injected (stored) into the tank 1. For example, when LNG is injected into the tank 1, the tank 1 and the heat insulating layer 2 are cooled, but the cooling temperature difference (ΔT) from the normal temperature (outside air temperature) in a steady state is shown in FIG. As shown in the diagram on the right side, the depth (d) from the surface in the thickness direction of the thermal barrier layer 2 is substantially proportional. Therefore, if the depth from the surface of the position where the reinforcing material 3 is interposed in the heat insulating layer 2 is determined, the cooling temperature difference (ΔT N ) of the reinforcing material 3 is obtained. FIG. 4 is a partial cross-sectional view of the tank 1 and its heat insulating layer 2 and a diagram showing the relationship between the cooling temperature difference (ΔT) and the depth (d) from the surface of the heat insulating layer 2 in the thickness direction.
[0020]
Further, since the cooling temperature difference (ΔT TK ) of the tank 1 and the linear expansion coefficient (α TK ) of the tank 1 are known, the thermal contraction rate of the reinforcing material (α N × ΔT N )> the thermal contraction rate of the tank What is necessary is just to select the material of the reinforcing material 3 which has a linear expansion coefficient ((alpha) N ) used as ((alpha) TK * ( DELTA ) TTK ). When the reinforcing material 3 is interposed at a half position in the thickness direction of the thermal barrier layer 2, ΔT N = 1/2 × ΔT TK , and the linear expansion coefficient of the aluminum alloy is α TN = 20 × 10. Therefore , the material of the reinforcing material 3 that satisfies α N > 40 × 10 −6 may be selected. To those corresponding thereto, Po triethylene terephthalate fiber (linear expansion coefficient: 80 × 10 -6) is made of mesh reinforcement. Needless to say, the closer the position (depth from the surface) in the heat insulating layer 2 that interposes the reinforcing material 3 is, the closer to the surface of the tank 1, the more advantageous. That is, the closer the position of the reinforcing member 3 on the surface of the tank 1, α N × △ T N > α TK × △ required minimum value of T TK satisfy alpha N is decreased, the more choices of the material of the reinforcing member 3 This increases the degree of design flexibility.
[0021]
Next, a thermal barrier structure according to another embodiment of the present invention has the following characteristic configuration. That is, the in-plane compression rigidity of the reinforcing material 3 is made considerably smaller than that of the conventional reinforcing material (0.9 mm diameter wire mesh). The in-plane compression rigidity of the reinforcing material 3 is the product of the longitudinal elastic modulus (E c ) of the reinforcing material 3 and the equivalent plate thickness (t eq ) of the reinforcing material 3. Here, the equivalent plate thickness (t eq ) refers to a plate thickness when it is assumed that the net-like reinforcing material 3 is uniformly stretched to one thin plate. At the same time, the in-plane thermal conductivity of the reinforcing material 3 is considerably smaller than that of the conventional reinforcing material (0.9 mm diameter wire mesh). The in-plane thermal conductivity of the reinforcing material 3 is a product of the thermal conductivity (λ) of the reinforcing material 3 and the equivalent plate thickness (t eq ) of the reinforcing material 3.
[0022]
In this example, three cases in which the wire diameter of the mesh of the reinforcing material 3 is reduced to 0.6 mm are shown. In both cases, the mesh (mesh) density (pitch) is 5 mm, which is the same as the conventional one. The material is wire mesh (iron), stainless steel, and glass fiber (glass net). As a result, as shown in FIG. 5, both the thermal load acting on the stud bolt 4 and the amount of cold heat escaping from the tank 1 to the outer surface of the heat-insulating layer 2 were reduced. That is,
FIG. 5A is a diagram showing the relationship between the thermal load (F) acting on the stud bolt 4 and the in-plane compression rigidity (E c × t eq ) of the reinforcing material 3 when LNG is stored in the tank 1. FIG. 5B shows the amount of heat transfer (Q) that enters the tank 1 from the outer surface of the heat-insulating layer 2 when LNG is stored in the tank 1 and the in-plane thermal conductivity (λ × It is a diagram which shows the relationship with teq ). In each diagram, the index is 100 when the reinforcing material is a 0.9 mm diameter plain woven wire mesh (wire pitch 5 mm). As can be seen from these results, the equivalent plate thickness (t eq ) is reduced by reducing the diameter of the wire constituting the mesh of the reinforcing member 3 to 0.6 mm. ), The thermal load (F) acting on the stud bolt 4 is reduced. At the same time, as shown in FIG. 5 (b), the heat transfer amount (Q) entering the tank 1 was also reduced. In particular, by using a glass fiber (glass net) having a smaller longitudinal elastic modulus (E c ) and thermal conductivity (λ) than a wire mesh, as shown in FIGS. 5 (a) and 5 (b). Further, the heat load (F) and the heat transfer amount (Q) were further reduced.
[0023]
In this way, it is effective to reduce the wire diameter of the reinforcing material 3 or widen the pitch (mesh density), but consider the strength of the reinforcing material 3 to prevent low temperature cracking of the outer heat insulating layer 2b. Then, although the wire diameter depends on the specific gravity, strength, and strength variation of the synthetic resin foam of the outer heat-insulating layer portion 2b, the minimum is 0.1 mm. The mesh density is limited to a maximum of 20 to 30 mm from the relationship with the above-described strength characteristics of the foam of the outer thermal barrier layer 2b. This is because if the mesh density is increased more than 20 to 30 mm, low temperature cracking of the outer heat-insulating layer portion 2b may not be reliably prevented. This is because the strength of the synthetic resin foam is not inherently large, and it is influenced by the foaming conditions and the construction procedure, and it is difficult to maintain the uniformity of foaming. As a result, the strength characteristics vary.
[0024]
In particular, the thermal load (F) acting on the stud bolt 4 increases in direct proportion to the increase in the curvature of the tank 1. The thermal load acting on the stud bolt 4 should be reduced in order to ensure the safety factor of the bolt 4 and the vicinity thereof, and it is effective when the present invention is applied.
[0025]
Finally, the heat-insulating layer structure corresponding to the present invention ( Claim 3 ) has the following characteristic configuration. That is, when the cryogenic substance is stored in the tank 1, the thermal contraction of the reinforcing material 3 is set to be larger than the thermal contraction of the tank 1, and the in-plane thermal conductivity of the reinforcing material 3 is also the same as the conventional one. It is considerably smaller than the reinforcing material (0.9 mm diameter wire mesh). In this example, a mesh-like reinforcing material made of polyethylene terephthalate fiber was selected as the reinforcing material 3, and its wire diameter was 0.6 mm. Since the linear expansion coefficient of the reinforcing material 3 is (80 × 10 −6 ), the thermal contraction degree of the reinforcing material 3 is larger than that of the tank 1, and the thermal conductivity of the reinforcing material 3 is (0.12 kcal / mh ° C.). The equivalent plate thickness (t eq ) is small, and the two requirements described above for the reinforcing material 3 are: (1) Thermal contraction rate of the reinforcing material (α N × ΔT N )> Thermal contraction rate of the tank (α TK × △ T TK ), (2) satisfying that the in-plane thermal conductivity (λ × t eq ) of the reinforcing material 3 is considerably smaller than that of a conventional reinforcing material (0.9 mm diameter wire mesh). became.
[0026]
Incidentally, although the above embodiment is an example of a case where the reinforcing member 3 with a single material, by performing as follows, α N, E (E c or E T), lambda, of t eq It is also possible to newly create a reinforcing material whose physical property value is suitable as a reinforcing material for the heat insulation layer in terms of design, workability, and cost, and adopt this. That is, as shown in FIG.
(a) Reinforcing material 3 is formed by combining wire rods 3a and 3b respectively formed of two different materials (FIG. 6 (a)).
[0027]
(b) When the wire rods 3a and 3b respectively formed of two different materials are combined, the mesh density is also changed and arranged to constitute the reinforcing member 3 (FIG. 6 (b)).
[0028]
(c) Reinforcing material 3 is formed by combining wire rods 3a and 3c formed of two different materials and having different wire diameters depending on the material difference (FIG. 6 (c)).
[0029]
(d) Two or more kinds of different materials are used to form the thread materials 3e and 3f, respectively, and these thread materials are combined to form the reinforcing material 3 as a single wire 3d (FIG. 6 (d)).
[0030]
【The invention's effect】
As is apparent from the above description, the thermal barrier layer structure of the cryogenic tank of the present invention has the following excellent effects.
[0031]
(1) When cryogenic substances are stored in the tank, the heat shrinkage of the reinforcing material in the heat insulation layer is larger than the heat shrinkage of the tank, so it works on each support unlike the conventional heat insulation layer structure. Thermal load to be reduced. Therefore, it is possible to reduce the number of support tools, eliminate the need for support tools, reduce the number of support tools, reduce material costs and construction costs, and reduce the amount of heat transferred through the support tools. Performance is improved. In addition, since the thermal load on the support is reduced, it is possible to sufficiently cope with downsizing of the tank.
[0032]
(2) In the heat-insulating layer structure according to claim 2, the present invention described above is effectively achieved.
[0033]
(3) In the heat-insulating layer structure according to claim 3 , the effects of both the heat-insulating layer structure according to claim 1 and reducing the thermal conductivity of the reinforcing material are exhibited simultaneously, and the heat-insulating performance of the heat-insulating layer is further enhanced. improves.
[0034]
(4) In the heat-insulating layer structure according to claim 4 , the invention of claim 3 is effectively achieved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cryogenic tank having a thermal barrier layer structure according to an embodiment of the present invention.
FIG. 2 is a partially enlarged cutaway view showing a part of a tank and a heat insulating layer.
3 is an enlarged longitudinal sectional view showing a tank and a heat insulating layer in FIG. 2;
FIG. 4 is a partial cross-sectional view of a tank and its heat insulating layer and a diagram showing the relationship between the cooling temperature difference (ΔT) and the depth (d) from the surface in the thickness direction of the heat insulating layer.
FIG. 5 (a) is a diagram showing the relationship between the thermal load (F) acting on the stud bolt when LNG is stored in the tank and the in-plane compression rigidity (E c × t eq ) of the reinforcing material. FIG. 5 (b) shows the relationship between the amount of heat (Q) entering the tank from the outer surface of the thermal barrier layer and the in-plane thermal conductivity (λ × t eq ) when LNG is stored in the tank. FIG.
6 (a) to 6 (d) are enlarged sectional views of reinforcing material wires, showing different embodiments of the present invention, respectively.
[Explanation of symbols]
1 Tank 2 Thermal barrier (synthetic resin foam)
3 Reinforcing material 4 Stud bolt (support)

Claims (4)

極低温用タンクの表面を被覆し、硬質ウレタン、フェノール樹脂などの合成樹脂発泡体からなり、その中間に網状の補強材を介装するとともに、前記タンクの外周面には支持具を一定の間隔をあけて立設し該支持具の先端部にて前記補強材を貫通保持した極低温用タンクの防熱層構造において、
前記補強材の熱収縮率{(線膨張係数(αN))×(前記補強材の温度と外気温度との温度差(△TN))}を、前記タンクの熱収縮率{(線膨張係数(αTK))×(前記タンク内に貯蔵される極低温物質の温度と外気温度との温度差(△TTK))}よりも大きくなるように設定したことを特徴とする極低温用タンクの防熱層構造。
Covers the surface of the cryogenic tank, is made of a synthetic resin foam such as hard urethane, phenol resin, etc., and has a net-like reinforcing material in the middle, and supports on the outer peripheral surface of the tank at regular intervals In the heat insulation layer structure of the cryogenic tank in which the reinforcing material is penetrated and held at the tip of the support,
The thermal contraction rate {(linear expansion coefficient (α N )) × (temperature difference between the temperature of the reinforcing material and the outside air temperature (ΔT N ))}} is the thermal contraction rate {(linear expansion) of the tank. Coefficient (α TK )) × (temperature difference between the cryogenic substance stored in the tank and the temperature of the outside air (ΔT TK ))} Heat insulation layer structure of the tank.
前記補強材の網目を構成する線材を、ポリエステル繊維の撚り糸で構成するとともに、前記補強材の介装位置(前記合成樹脂発泡体の外表面からの深さ)を前記合成樹脂発泡体の厚みの1/2の位置又はこの位置よりも前記タンクの表面寄りにした請求項1記載の極低温用タンクの防熱層構造。The wire constituting the mesh of the reinforcing material is composed of polyester fiber twist yarns, and the interposed position of the reinforcing material (the depth from the outer surface of the synthetic resin foam) is the thickness of the synthetic resin foam. The thermal barrier layer structure for a cryogenic tank according to claim 1, wherein the thermal barrier layer structure is located at a half position or closer to the surface of the tank than this position. 極低温用タンクの表面を被覆し、硬質ウレタン、フェノール樹脂などの合成樹脂発泡体からなり、その中間に網状の補強材を介装するとともに、前記タンクの外周面には支持具を一定の間隔をあけて立設し該支持具の先端部にて前記補強材を貫通保持した極低温用タンクの防熱層構造において、
前記補強材を、線径0.1〜0.8mmで5〜30mmピッチのポリエステル繊維の撚り糸からなる平織の網で形成し、
前記補強材の熱収縮率{(線膨張係数(αN))×(前記補強材の温度と外気温度との温度差(△TN))}を、前記タンクの熱収縮率{(線膨張係数(αTK))×(前記タンク内に貯蔵される極低温物質の温度と外気温度との温度差(△TTK))}よりも大きくなるように設定することを特徴とする極低温用タンクの防熱層構造。
The surface of the cryogenic tank is covered with a synthetic resin foam such as hard urethane or phenolic resin, with a net-like reinforcing material in the middle, and supporters are placed at regular intervals on the outer peripheral surface of the tank. In the heat insulation layer structure of the cryogenic tank in which the reinforcing material is penetrated and held at the tip of the support,
The reinforcing material is formed of a plain weave net made of polyester fiber twisted yarn having a wire diameter of 0.1 to 0.8 mm and a pitch of 5 to 30 mm,
The thermal contraction rate of the reinforcing material {(linear expansion coefficient (α N )) × (temperature difference between the temperature of the reinforcing material and the outside air temperature (ΔT N ))} is expressed as the thermal contraction rate {(linear expansion) of the tank. coefficient (alpha TK)) × for cryogenic and setting to be larger than (the temperature difference (△ T TK between the temperature and the ambient temperature of the cryogen being stored in the tank))} Heat insulation layer structure of the tank.
記補強材の介装位置(前記合成樹脂発泡体の外表面からの深さ)を、前記合成樹脂発泡体の厚みの1/2の位置又はこの位置よりも前記タンクの表面寄りにした請求項3記載の極低温用タンクの防熱層構造。Interposed position before Symbol stiffener (depth from the outer surface of the synthetic resin foam) than half of the position or the position of the thickness before Symbol synthetic resin foam was surface side of the said tank The thermal barrier layer structure of the cryogenic tank according to claim 3.
JP20019294A 1994-08-01 1994-08-01 Thermal barrier structure of cryogenic tank Expired - Fee Related JP3606916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20019294A JP3606916B2 (en) 1994-08-01 1994-08-01 Thermal barrier structure of cryogenic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20019294A JP3606916B2 (en) 1994-08-01 1994-08-01 Thermal barrier structure of cryogenic tank

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003379970A Division JP2004138247A (en) 2003-11-10 2003-11-10 Insulating layer structure of tank for very low temperature

Publications (2)

Publication Number Publication Date
JPH0842793A JPH0842793A (en) 1996-02-16
JP3606916B2 true JP3606916B2 (en) 2005-01-05

Family

ID=16420333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20019294A Expired - Fee Related JP3606916B2 (en) 1994-08-01 1994-08-01 Thermal barrier structure of cryogenic tank

Country Status (1)

Country Link
JP (1) JP3606916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174856B2 (en) * 2010-06-16 2013-04-03 鹿島建設株式会社 How to install a thermal resistance mitigation material for a levee-integrated cryogenic tank

Also Published As

Publication number Publication date
JPH0842793A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
KR0151780B1 (en) Method for manufacturing adiabatic and enhanced panel
Lifshitz et al. Filament-wound pressure vessel with thick metal liner
US3970210A (en) Heat insulation lined tank for low temperature liquids and methods of manufacturing the same
US3595424A (en) Containers for liquefied gases
WO2011093227A1 (en) Low-temperature tank
KR102150458B1 (en) Insulation System For Membrane Type in LNG Storage Tank
US20130082066A1 (en) Steel wrapped pressure vessel
US3852973A (en) Structure for storage of liquified gas
CN113614438B (en) Pressure vessel and method for producing a pressure vessel
US3303617A (en) Cored wall construction
JP3606916B2 (en) Thermal barrier structure of cryogenic tank
KR100322846B1 (en) An insulation panel for LNG tanker
IT1042699B (en) THERMALLY INSULATING STRUCTURE FOR CRYOGENIC CONTAINERS
CN214249125U (en) Anti-burst plastic inner container composite material storage tank
JP2004138247A (en) Insulating layer structure of tank for very low temperature
US3249251A (en) Thermally insulated and counterweighted roof
JP3915077B2 (en) Low temperature tank with prestressed concrete outer tub
CN210950777U (en) Low-evaporation-rate cooling storage system for precooling and cooling marine cryogenic liquid
US3688938A (en) Heat insulating wall structure for a low temperature liquefied gas tank of the membrane type
US3025993A (en) Anchor system
US4009236A (en) Method of making insulated tank for low temperature service
US5698289A (en) Compressed light filler material for reinforced duroplastic composites and process for producing it
JP3634315B2 (en) Thermal insulation structure for cryogenic tanks
US3229473A (en) Vessel for transporting low temperature liquids
JP2010048027A (en) Structure of joint part provided between a plurality of heat insulating panels arranged at outer wall of low temperature tank

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees